JPH06306458A - Production of steel material by hot charging rolling in austenite region - Google Patents

Production of steel material by hot charging rolling in austenite region

Info

Publication number
JPH06306458A
JPH06306458A JP11238293A JP11238293A JPH06306458A JP H06306458 A JPH06306458 A JP H06306458A JP 11238293 A JP11238293 A JP 11238293A JP 11238293 A JP11238293 A JP 11238293A JP H06306458 A JPH06306458 A JP H06306458A
Authority
JP
Japan
Prior art keywords
temperature
slab
recrystallization
precipitation
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11238293A
Other languages
Japanese (ja)
Inventor
Hiroyasu Yokoyama
泰康 横山
Sadahiro Yamamoto
定弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11238293A priority Critical patent/JPH06306458A/en
Publication of JPH06306458A publication Critical patent/JPH06306458A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a steel material, having superior characteristics equal to or higher than those of reheated and rolled materials, by hot charging in austenite region. CONSTITUTION:After casting of a molten steel, working, where the strain necessary to cause recrystallization effective in refining of structure is left, is performed at a slab temp. in the region between the higher temp. between the Ar3 point and the precipitation temp. of precipitation hardening elements and the upper limit temp. where working strain remains. Subsequently, heating is done from a slab temp. in the higher region between the Ar3 point and the precipitation temp. of precipitation hardening elements up to a temp. between the lower limit temp., where recrystallization occurs owing to working strain, and the upper limit temp. where grain coarsening due to grain growth after recrystallization does not occur. After soaking, the slab is extracted, in the stage where the refining of structure due to recrystallization proceeds, from a furnace, by which the steel material can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オーステナイト域ホッ
トチャージ圧延による鋼材の製造方法に係り、鋼材の製
造工程のうち多量の熱エネルギーを消費しているスラブ
加熱時の省エネルギー化を計るため、スラブの加熱炉装
入温度を高くし、オーステナイト(γ)温度域から加熱
炉装入を行い、ホットチャージ圧延(HCR)を行った
場合においても、再加熱圧延(CCR)材と同等以上の
優れた特性を有するオーステナイト域ホットチャージ圧
延(γ−HCR)による鋼材の製造方法を提供しようと
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a steel material by hot charge rolling in an austenite region, and in order to save energy when heating a slab that consumes a large amount of heat energy in the steel material manufacturing process, Even when the heating furnace charging temperature is increased and the heating furnace charging is performed from the austenite (γ) temperature range and hot charge rolling (HCR) is performed, it is as good as or better than the reheating rolled (CCR) material. An object of the present invention is to provide a method for producing a steel material by austenite hot charge rolling (γ-HCR) having characteristics.

【0002】[0002]

【従来の技術】近年スラブに蓄えられた熱エネルギーを
有効利用できるように、鋳造されたスラブが室温まで温
度低下する以前の200℃以上600℃以下のフェライ
ト(α)単相温度域から加熱炉に装入して加熱を行い、
その後圧延を行うα域ホット・チャージ圧延(HCR)
(α−HCR)が行われるようになっている。熱効率の
観点からは、スラブ温度が更に高温であるγ温度域から
加熱炉に装入し、圧延するγ−HCRが望ましいことは
いうまでもない。
2. Description of the Related Art In order to make effective use of the thermal energy stored in a slab in recent years, a furnace from a ferrite (α) single-phase temperature range of 200 ° C. to 600 ° C. before the temperature of the cast slab drops to room temperature I put it in and heat it,
Α region hot charge rolling (HCR)
(Α-HCR) is performed. From the viewpoint of thermal efficiency, it is needless to say that γ-HCR in which the slab temperature is higher than the γ temperature range, which is charged into the heating furnace and rolled, is preferable.

【0003】しかし、このようなγ−HCRにより炭素
鋼・低合金鋼の鋼材を製造する場合、スラブ冷却時のγ
→α変態、及び再加熱時のα→γ逆変態が行われないた
め、変態に起因する組織の細粒化・均質化が行われな
い。従って構造用材料として用いられる鋼材の要求特性
として重要となる強度・靱性といった機械的性質が、室
温まで一旦温度低下したスラブのCCR材・α−HCR
材と比較した場合、劣化することは避けられない。この
ため現状においては強度・靱性といった特性が重要とな
る鋼材に関しては、γ−HCRはほとんど行われていな
い。
However, when a carbon steel / low alloy steel is manufactured by such γ-HCR, γ during slab cooling
Since the α transformation and the α → γ reverse transformation during reheating are not performed, the grain refinement / homogenization due to the transformation is not performed. Therefore, mechanical properties such as strength and toughness, which are important properties required for steel materials used as structural materials, are CCR materials for slabs whose temperature has once decreased to room temperature. Α-HCR
Deterioration is inevitable when compared with wood. Therefore, at present, γ-HCR is scarcely performed for steel materials for which properties such as strength and toughness are important.

【0004】しかし構造用鋼材においても製造時の省エ
ネルギープロセスは重要な課題となっていることから、
γ−HCR材の特性を向上する手段は種々検討されてお
り、例えば「鉄と鋼 1988 p.230」のように精
錬終了直前にLa、Ce等のレア・アース・メタル(RE
M)を微量に添加し、これらの微細酸化物を凝固組織の
核生成サイトとして連続鋳造時の凝固組織を微細にする
ことにより、高強度・高靱性を計る方法、REMではな
く、Ti,Bを微量添加してこれらの化合物を凝固組織の
核生成サイトとすることにより微細凝固組織を得る方法
が提案されている。
However, since the energy saving process at the time of manufacturing is an important issue for structural steel materials,
Various means for improving the properties of the γ-HCR material have been studied. For example, rare earth metals (RE, RE, etc.) such as La and Ce just before the completion of refining, such as “Iron and Steel 1988 p.230”.
M) is added in a small amount, and these fine oxides are used as nucleation sites for the solidification structure to make the solidification structure fine during continuous casting to measure high strength and high toughness. There has been proposed a method of obtaining a fine solidification structure by adding a small amount of these to make these compounds nucleation sites of the solidification structure.

【0005】[0005]

【発明が解決しようとする課題】前記したREMなどの
添加による凝固組織の微細化は必ずしも十分ではなく、
現状ではCCR材・α−HCR材と同等の機械的性質を
得るのは困難である。また、特願昭58-181408 のように
加熱後の圧延の段階において温度域と低下率を制御して
組織の細粒化を行おうとする手段も提案されているが、
この手段では凝固時の粗大な鋳造組織を微細化するには
十分ではなく、また、圧延パス数を多くする必要が有
り、生産能力が低下し不経済である。
The refinement of the solidified structure by the addition of REM or the like is not always sufficient,
At present, it is difficult to obtain mechanical properties equivalent to those of CCR materials and α-HCR materials. In addition, as in Japanese Patent Application No. 58-181408, there has been proposed a means for controlling the temperature range and the rate of reduction in the rolling stage after heating to make the structure finer.
This means is not sufficient for refining the coarse casting structure during solidification, and it is necessary to increase the number of rolling passes, which reduces the production capacity and is uneconomical.

【0006】また、化合物の分散に関しては、その分散
量を増加しても、凝固組織の微細化には限度があり、過
剰な添加では逆に介在物として作用し、鋼の清浄度を劣
化させ、各種特性を劣化させる原因となることから、鋼
材の特性は向上しなくなる。
Regarding the dispersion of the compound, even if the amount of the dispersion is increased, there is a limit to the refinement of the solidified structure, and excessive addition acts as inclusions to deteriorate the cleanliness of the steel. However, the characteristics of the steel material are not improved because they cause deterioration of various characteristics.

【0007】なお、高強度・高靱性を得ることを目的と
してNb, Vといった析出硬化系のマイクロアロイを微量
添加している鋼種においては、La, Ce, Ti, B等の過剰
な添加は圧延時に再結晶を抑制し、凝固組織の微細化に
よる効果を打ち消すことになり、高強度と高靱性を兼ね
備えた鋼材のγ−HCRによる製造は困難となる。
In the case of steel grades in which a small amount of precipitation hardening microalloys such as Nb and V are added for the purpose of obtaining high strength and high toughness, excessive addition of La, Ce, Ti, B, etc. causes rolling. At times, recrystallization is suppressed, and the effect due to the refinement of the solidification structure is canceled out, and it becomes difficult to manufacture a steel material having both high strength and high toughness by γ-HCR.

【0008】さらに、加熱後の圧延による組織の微細化
では、圧下を行う温度域、圧下率を細かく指定し、圧延
パス数を極端に多くする必要があるため生産能率が低下
し不経済となるだけでなく、粗大な凝固組織の微細化に
は不十分である。
Further, in the refinement of the structure by rolling after heating, it is necessary to finely specify the temperature range in which the rolling is performed and the rolling reduction, and the number of rolling passes must be extremely increased, resulting in reduced production efficiency and uneconomical. In addition, it is not sufficient for refining a coarse solidified structure.

【0009】[0009]

【課題を解決するための手段】本発明は、上記に示した
問題点を解決すべく検討を重ね、鋳造後のスラブの加熱
前の加工条件を規定することにより、熱効率を落とすこ
となく再加熱圧延材と同等以上の優れた特性を有する鋼
材をオーステナイト域ホットチャージにより製造するこ
とに成功したものであって、以下の如くである。
Means for Solving the Problems The present invention has been studied repeatedly in order to solve the above-mentioned problems, and by redefining the processing conditions before heating of a slab after casting, reheating without lowering thermal efficiency. The present invention succeeds in producing a steel material having excellent properties equal to or better than that of a rolled material by hot charging in the austenite region, and is as follows.

【0010】(1) 溶鋼の鋳造後、スラブ温度がAr3
もしくは析出硬化元素の析出温度の何れか高い方の温度
以上で加工歪が残留する上限温度以下の温度域におい
て、組織の微細化に有効な再結晶を生じさせるために必
要とする歪が残留する加工を付与し、その後スラブ温度
がAr3 点もしくは析出硬化元素の析出温度の何れか高い
方の温度域から、加工歪により再結晶が生じる下限温度
以上で且つ再結晶後の粒成長により粒が粗大化しない上
限温度以下に加熱し、均熱後、再結晶による組織の微細
化が進行した段階で炉から抽出し、圧延を行うことを特
徴とするオーステナイト域ホットチャージ圧延による鋼
材の製造方法。
(1) After casting of molten steel, the slab temperature becomes finer in the temperature range below the upper limit temperature at which work strain remains above the Ar 3 point or the precipitation temperature of the precipitation hardening element, whichever is higher, whichever is higher. Processing is applied to leave the strain necessary for effective recrystallization to occur, and then the slab temperature is regenerated by processing strain from the higher temperature range of Ar 3 point or precipitation temperature of precipitation hardening element, whichever is higher. Heating above the lower limit temperature where crystals occur and below the upper limit temperature where grains do not coarsen due to grain growth after recrystallization, after soaking, extraction from the furnace at the stage where the refinement of the structure by recrystallization progressed, rolling A method for producing a steel material by hot-charge rolling in an austenite region, which is characterized by being performed.

【0011】(2) 溶鋼の鋳造後、スラブ温度がAr3
もしくは析出硬化元素の析出温度の何れか高い方の温度
以上1000℃以下の温度域において、累積圧下率15
%以上50%以下の圧下を行い、その後スラブ温度がAr
3 点もしくは析出硬化元素の析出温度以上の何れか高い
方の温度以上の状態で、1000℃以上1150℃以下
の温度に加熱炉で加熱し、均熱後、再結晶による組織の
微細化が進行した段階で炉から抽出し、圧延を行うこと
を特徴とするオーステナイト域ホットチャージ圧延によ
る鋼材の製造方法。
(2) After the molten steel is cast, the cumulative reduction rate is 15 in the temperature range in which the slab temperature is the Ar 3 point or the precipitation temperature of the precipitation hardening element, whichever is higher, and 1000 ° C. or less.
% Or more and 50% or less, and then the slab temperature is Ar
Three points or precipitation hardening element or higher, whichever is higher, whichever is higher, is heated to a temperature of 1000 ° C or higher and 1150 ° C or lower in a heating furnace, and after soaking, refinement of the structure by recrystallization proceeds. A method for manufacturing a steel product by austenite hot charge rolling, which comprises extracting from a furnace and rolling at this stage.

【0012】(3) スラブ温度がAr3 点以上もしくは析
出硬化元素の析出温度以上の何れか高い方の温度以上、
1000℃以下の温度域における加熱前の圧下を、2パ
ス以上の複数パスで行い、そのうち初期のパスは1パス
当り圧下率5%以下の小圧下とし、後期のパスは1パス
当り圧下率10%以上の大圧下とすることを特徴とする
前記(2)項記載のオーステナイト域ホットチャージ圧延
による鋼材の製造方法。
(3) The slab temperature is higher than the Ar 3 point or higher or the precipitation temperature of the precipitation hardening element, whichever is higher,
The reduction before heating in the temperature range of 1000 ° C. or less is performed by two or more passes, of which the initial pass is a small reduction of 5% or less per pass, and the latter pass is a reduction of 10 per pass. %, And a large reduction is applied. The method for producing a steel material by austenite region hot charge rolling according to the above item (2).

【0013】上記したような本発明についてその技術的
仔細を説明すると、図1には次の表1に化学成分を示し
た鋼1を用いて連続鋳造時の冷却速度をシミュレートし
た鋳造を行い、鋳造後スラブ温度が775℃から120
0℃の温度域で、初期1パス当り5%の小圧下、後期1
パス当り10%の大圧下、全圧下率で30%の圧下を行
った後、スラブ温度が1050℃になるように設定して
ある加熱炉に装入し、10分間均熱後、圧延を行い、鋼
材平均温度850℃で仕上げた鋼材の圧下温度と機械的
性質の関係を示したものである。
The technical details of the present invention as described above will be explained. In FIG. 1, casting in which the cooling rate during continuous casting is simulated is performed using steel 1 whose chemical composition is shown in Table 1 below. , The slab temperature after casting is 775 ℃ to 120 ℃
In the temperature range of 0 ℃, a small pressure of 5% per initial pass, late 1
After performing a large reduction of 10% per pass and a total reduction of 30%, the slab temperature is set in a heating furnace set to 1050 ° C., soaked for 10 minutes, and then rolled. FIG. 3 shows the relationship between the rolling temperature and mechanical properties of steel products finished at a steel product average temperature of 850 ° C.

【0014】[0014]

【表1】 [Table 1]

【0015】即ち、Ar3 点(鋼1については767℃)
以上加工歪の残留する温度(鋼1では1000℃)以下
で圧下が加えられ、γ粒に再結晶を生じるために十分な
歪が与えられた場合については、比較例である鋳造スラ
ブを一度室温まで冷却し、その後再加熱した圧延材(C
CR材)と同等の強度・靱性を示している。しかし、加
工温度が加工歪の残留しない高温(鋼1では1000℃
以上)の場合には、靱性が著しく劣化している。
That is, Ar 3 points (767 ° C. for steel 1)
In the case where the reduction was applied below the temperature at which the processing strain remained (1000 ° C for steel 1) and sufficient strain was applied to cause recrystallization of the γ grains, the cast slab as the comparative example was once cooled to room temperature. Rolled material (C
It has the same strength and toughness as CR material). However, the processing temperature is high (1000 ° C for steel 1) where no processing strain remains.
In the above case, the toughness is remarkably deteriorated.

【0016】また、図2には前記表1に示した鋼2を鋳
造後、スラブ温度が950℃の状態で、0〜60%の圧
下を行い、直ちにスラブ温度が1100℃になるように
設定した加熱炉に装入し、均熱後保持無しで直ちに抽出
し、圧延を行い、鋼材平均温度900℃で仕上げた鋼材
の圧下率と機械的性質の関係を示す。再結晶を誘起する
ために必要な歪が残留する加工量(鋼2では15%以上
の累積圧下率)を確保した場合には優れた強度・靱性を
示しているのに対し、累積圧下率が15%未満の場合に
は、靱性が劣化している。また、累積圧下率50%以上
では、特性はほぼ一定となっている。
Further, in FIG. 2, after casting the steel 2 shown in Table 1 above, a reduction of 0 to 60% is performed with the slab temperature being 950 ° C., and the slab temperature is immediately set to 1100 ° C. The following shows the relationship between the rolling reduction and the mechanical properties of the steel material which is charged into the above heating furnace, immediately extracted after being soaked without holding and rolled, and finished at the steel material average temperature of 900 ° C. When the processing amount (the cumulative reduction ratio of 15% or more in Steel 2) in which the strain necessary for inducing recrystallization remains is secured, excellent strength and toughness are exhibited, whereas the cumulative reduction ratio is If it is less than 15%, the toughness is deteriorated. The characteristics are almost constant when the cumulative rolling reduction is 50% or more.

【0017】更に、図3には前記表1に化学成分を示し
た鋼3を鋳造後、スラブ温度が920℃の状態で30%
の圧下を行い、直ちにスラブ加熱温度が850℃〜13
00℃に変化するように加熱温度を設定してある炉に装
入し、均熱後15分保持して抽出し、圧延を行い、鋼材
平均温度700℃で仕上げた鋼材のスラブ加熱温度と機
械的性質の関係を示す。つまり加熱温度が再結晶による
微細化を誘起するのに十分な温度でない場合(鋼3では
1000℃未満)、また再結晶した粒が粗大化する温度
(鋼3では1150℃)以上の場合には靱性が劣化して
いる。
Further, in FIG. 3, after casting the steel 3 whose chemical composition is shown in Table 1 above, 30% was obtained in a state where the slab temperature was 920 ° C.
The slab heating temperature is 850 ° C to 13 immediately.
The slab heating temperature and the machine of the steel material which is charged into a furnace whose heating temperature is set so as to change to 00 ° C, is kept for 15 minutes after soaking, is extracted, is rolled, and is finished at a steel material average temperature of 700 ° C. Shows the relationship of the physical properties. That is, when the heating temperature is not sufficient to induce refinement due to recrystallization (less than 1000 ° C in steel 3), or when the temperature at which recrystallized grains coarsen (1150 ° C in steel 3) or more The toughness is deteriorated.

【0018】なお図4には上記表1に化学成分を示した
鋼4を鋳造後、スラブ温度が950℃の状態で、1パス
目の圧下率を1〜20%と変化させ、最終パスの圧下率
を22%一定とし、スラブ加熱前の全圧下率は40%一
定とした圧下を行い、直ちに1070℃に設定してある
加熱炉に装入し、均熱後抽出・圧延を行い、鋼材平均温
度850℃で仕上げた鋼材の1パス目の圧下率と機械的
性質の関係を示した。即ち全ての条件において優れた特
性を呈しているが、初期圧下を5%以下とした場合の特
性の向上が著しい。
In FIG. 4, after casting the steel 4 whose chemical composition is shown in Table 1 above, the rolling reduction of the first pass was changed to 1 to 20% with the slab temperature kept at 950 ° C. The reduction rate is kept constant at 22% and the total reduction rate before heating the slab is kept constant at 40%. Immediately after that, the material is put into a heating furnace set at 1070 ° C., soaked, extracted and rolled to obtain a steel material. The relationship between the first-pass reduction ratio and the mechanical properties of steel materials finished at an average temperature of 850 ° C. was shown. That is, although excellent characteristics are exhibited under all conditions, the characteristics are remarkably improved when the initial reduction is 5% or less.

【0019】又、図5には上述した表1に示した鋼5を
鋳造後、スラブ温度が930℃の状態で第1パス目の1
パス当りの圧下率を3%一定、最終パスの圧下率を1〜
30%と変化させ、スラブ加熱前の全圧下率は32%一
定とした圧下を行い、直ちにスラブ温度が1080℃に
なるように温度設定している加熱炉に装入し、均熱後保
持なしで抽出・圧延を行い、鋼材平均温度800℃で仕
上げた鋼材の最終パスの圧下率と機械的性質の関係を示
す。つまり全ての条件において優れた特性を呈している
が、中でも後期の圧下率を10%以上とした場合の特性
向上が著しい。
Further, in FIG. 5, after casting the steel 5 shown in Table 1 above, the slab temperature was 930 ° C. and the first pass 1
The rolling reduction per pass is constant at 3%, and the rolling reduction of the final pass is 1-
It is changed to 30% and the total reduction rate before slab heating is kept constant at 32%. Immediately after the soaking, the slab temperature is set to 1080 ° C. The relationship between the rolling reduction and the mechanical properties of the final pass of the steel material that has been extracted and rolled in the above manner and finished at the steel material average temperature of 800 ° C is shown. That is, although excellent properties are exhibited under all conditions, the improvement of properties is remarkable when the rolling reduction in the latter period is 10% or more.

【0020】さらに、図6には前記表1における鋼6、
7を鋳造後、スラブ温度が970℃の状態で全圧下率3
0%の圧下を行い、直ちにスラブが1090℃に加熱さ
れるように温度設定した炉に装入し、均熱後保持時間を
0〜10時間まで変化させ、その後抽出し圧延を行い、
鋼材平均温度800℃で仕上げた鋼材の均熱時間と機械
的性質の関係を示した。いずれも均熱が完了すると同時
に再結晶による微細化も終了していることから保持時間
0でも優れた特性を示し、その後保持時間を長くしても
特性に変化は見られない。
Further, FIG. 6 shows the steel 6 in Table 1 above.
After casting 7, when the slab temperature is 970 ° C, the total rolling reduction is 3
A 0% reduction is performed, the slab is immediately charged into a furnace whose temperature is set to be heated to 1090 ° C., the holding time after soaking is changed to 0 to 10 hours, and then extraction and rolling are performed,
The relationship between soaking time and mechanical properties of the steel material finished at the steel material average temperature of 800 ° C. is shown. In both cases, the soaking is completed and the refinement by recrystallization is completed at the same time, so that the excellent characteristics are exhibited even when the holding time is 0, and the characteristics are not changed even if the holding time is increased thereafter.

【0021】[0021]

【作用】上記したような本発明についてその仔細を説明
すると、本発明は、炭素鋼・低合金鋼の製造において、
γ−HCRを適用して再加熱圧延材と同等以上の高強度
・高靱性を有する鋼材を製造する方法であり、その骨子
は鋳造後スラブ温度がAr3 点以上もしくは析出硬化元素
の析出温度の何れか高い方の温度以上、加工歪が残留す
る上限温度以下の温度域において、組織の微細化に有効
な再結晶を生じさせるために必要とする歪が残留するよ
うな加工を付与し、その後スラブ温度がAr3 点もしくは
析出硬化元素の析出温度のいずれか高い方の温度域の状
態で、再結晶を生じさせる下限温度以上で且つ粒成長に
より組織が粗大化しない上限温度以下になるように加熱
を行い、再結晶による組織の微細化が進行した段階で炉
から抽出し、圧延を行うことを特徴とするものである。
The details of the present invention as described above will be described. The present invention provides the following in the production of carbon steel / low alloy steel:
γ-HCR is a method for producing a steel material having high strength and high toughness equivalent to or higher than that of the reheated rolled material, and the slab temperature after casting is that the slab temperature is 3 points or higher of Ar or the precipitation temperature of the precipitation hardening element. Either higher temperature or higher, in the temperature range below the upper limit temperature at which processing strain remains, impart processing that residual strain necessary for causing recrystallization effective for refinement of the structure, and then In the state where the slab temperature is in the higher temperature range of Ar 3 point or the precipitation hardening element precipitation temperature, whichever is higher, it should be higher than the lower limit temperature that causes recrystallization and lower than the upper limit temperature at which the structure does not coarsen due to grain growth. It is characterized in that it is heated and extracted from the furnace at the stage where the refinement of the structure by recrystallization has progressed and rolling is performed.

【0022】前記のようなオーステナイト域ホットチャ
ージによる鋼材の製造方法においては、加工を付与する
スラブ温度域、加工量、加工後のスラブの加熱温度、ス
ラブ均熱条件が重要な因子となるもので、以下これらの
限定理由を述べると次の如くである。
In the above-mentioned method for producing a steel material by hot charging in the austenite range, the slab temperature range to which the processing is applied, the processing amount, the heating temperature of the slab after the processing, and the slab soaking condition are important factors. The reasons for these limitations are as follows.

【0023】(1)加工を付与するスラブ温度域 スラブ温度が加工歪が残留する上限温度を超えた場合に
は、加工直後に歪が回復し、その後の加熱において歪誘
起の再結晶が行われず、圧延後の組織が粗大粒を含む混
粒組織を示し、満足すべき特性が得られないので除外し
た。一方、本発明範囲内で加工が付与された場合には、
加工歪が加熱中に再結晶を誘起し、粗大な凝固組織を通
常の変態により細粒化したスラブの加熱粒径と同等にす
ることからその後の圧延においても通常材と同等の再結
晶挙動を示し、圧延後の組織が微細な整粒組織を呈し満
足すべき特性が得られる。
(1) Slab temperature range to which processing is applied When the slab temperature exceeds the upper limit temperature at which processing strain remains, the strain recovers immediately after processing and strain-induced recrystallization does not occur in the subsequent heating. Since the structure after rolling showed a mixed grain structure containing coarse grains and satisfactory properties could not be obtained, it was excluded. On the other hand, when processing is given within the scope of the present invention,
The processing strain induces recrystallization during heating, making the coarse solidified structure equivalent to the heated grain size of the slab refined by normal transformation. As shown, the structure after rolling exhibits a fine grain size control structure, and satisfactory properties are obtained.

【0024】Ar3 点以上析出物生成温度以下について
は、生成した析出物が加熱の際すぐに固溶しないこと、
加工歪により歪誘起析出で析出硬化元素が多量に析出す
ること、その結果これらの析出物が歪を受けたオーステ
ナイト粒の再結晶を抑制するため、組織の細粒化が促進
されず、結果として粗大粒を含んだ混粒組織となり特性
が劣化することから除外した。Ar3 点以下の場合は、組
織がフェライトとオーステナイトの2相となり、オース
テナイト域ホットチャージとならないことから請求範囲
から除外している。また、第2発明のように、加工歪が
残留する上限温度については1000℃以下とすること
と歪の残留の観点から一層効果的である。
As for the Ar 3 point or more and the precipitate formation temperature or less, the formed precipitate does not form a solid solution immediately upon heating,
Precipitation hardening elements are precipitated in a large amount by strain-induced precipitation due to processing strain, and as a result, these precipitates suppress recrystallization of austenite grains that have undergone strain, so that grain refinement of the structure is not promoted, and as a result It was excluded because it has a mixed grain structure containing coarse grains and the characteristics deteriorate. When the number of Ar points is 3 or less, the structure becomes two phases of ferrite and austenite, and the hot charge does not occur in the austenite region. Further, as in the second invention, the upper limit temperature at which the processing strain remains is set to 1000 ° C. or less, and it is more effective from the viewpoint of the strain remaining.

【0025】(2)加熱前の加工 本発明においては、歪誘起による再結晶により凝固組織
を微細化することから、加熱前の加工は非常に重要な因
子となる。即ちこの加工量が、加熱時に組織を微細化す
る再結晶を生じさせるのに必要な歪が残留する下限値未
満では、再結晶を誘起せず、加熱中に歪が徐々に回復す
るだけで再結晶による微細化が行われないことから、除
外する。この歪量は、加熱時に再結晶が誘起される最低
限度が残留していれば十分であるが、第2発明に示すよ
うに下限値を15%以上とすることが、加熱時の組織の
細粒化の観点から一層有効である。
(2) Processing before heating In the present invention, since the solidified structure is refined by strain-induced recrystallization, processing before heating is a very important factor. That is, if this amount of processing is less than the lower limit value at which the strain necessary for causing recrystallization that refines the structure during heating remains, the recrystallization is not induced and the strain is gradually recovered during heating. It is excluded because it is not refined by crystals. This strain amount is sufficient if the minimum degree of recrystallization induced upon heating remains, but as shown in the second invention, setting the lower limit value to 15% or more makes it possible to reduce the fineness of the structure during heating. It is more effective from the viewpoint of granulation.

【0026】また、圧下率が50%を超える場合は、得
られる特性が変化しなくなること、スラブ長が鋳造まま
の2倍以上となり、これを加熱する加熱炉の熱収支の面
から得策ではなく、不経済となることから第2発明以降
ではこれを上限とした。
If the rolling reduction exceeds 50%, the obtained properties will not change, and the slab length will be twice or more as long as it was cast, which is not a good measure in terms of the heat balance of the heating furnace that heats this. However, since it becomes uneconomical, this is set as the upper limit in the second and subsequent inventions.

【0027】加熱前の圧延に関しては、第3発明のよう
に、初期の圧下率と、後期の圧下率を定めることが好ま
しい。凝固組織は一般に板厚中央部の等軸晶部とその外
側の粗い柱状晶部があり、柱状晶部は特に粗大であるこ
とから再結晶し難いことが知られている。このように粒
径の異なる凝固組織に均一な再結晶を誘起させて微細な
再結晶組織を得るためには、初期の低圧下で表層側の粗
い柱状晶部に優先的に歪を与え、後期の大圧下で全体に
歪を与えることにより、凝固組織に分布を持たせた歪を
付与することが非常に有効である。このため、初期にお
いては柱状晶部分にのみ優先的に歪が加えられる5%以
下の圧下率、後期においてはスラブ全厚にわたり歪の加
わる10%以上の圧下率とする。
Regarding the rolling before heating, it is preferable to determine the initial rolling reduction and the latter rolling reduction as in the third invention. It is known that the solidified structure generally has an equiaxed crystal portion in the central part of the plate thickness and a coarse columnar crystal portion outside the equiaxed crystal portion, and the columnar crystal portion is particularly coarse, so that recrystallization is difficult. Thus, in order to induce uniform recrystallization in the solidified structures with different grain sizes to obtain a fine recrystallized structure, strain is preferentially applied to the rough columnar crystal part on the surface side under the initial low pressure, and It is very effective to give a strain having a distribution to the solidified structure by giving a strain to the whole under a large pressure. Therefore, in the initial stage, a reduction rate of 5% or less where strain is preferentially applied only to the columnar crystal portion, and in the latter stage, a reduction rate of 10% or more where strain is applied over the entire thickness of the slab.

【0028】(3)圧下後のスラブの加熱温度 本発明は、加熱前に付与する歪を有効に利用して加熱中
に再結晶による微細化を行うため、加熱温度も重要な因
子である。加熱温度が再結晶後の粒成長により粗大化し
ない上限温度以上の場合、組織が粒成長により粗大化す
ることから、その後の圧延において細粒化が不可能にな
り、優れた特性の鋼材が得られなくなる。一方、加熱温
度が加工歪により再結晶を生じ得る下限温度以下の場合
には、十分に活性にならないため再結晶が生じず、付与
された歪が徐々に回復するだけで微細な再結晶組織が得
られない。
(3) Heating temperature of slab after reduction In the present invention, the strain applied before heating is effectively used to perform refining by recrystallization during heating, so the heating temperature is also an important factor. When the heating temperature is higher than the upper limit temperature at which coarsening does not occur due to grain growth after recrystallization, the structure coarsens due to grain growth, making fine graining impossible in subsequent rolling, and obtaining a steel material with excellent properties. I will not be able to. On the other hand, when the heating temperature is lower than or equal to the lower limit temperature at which recrystallization due to processing strain can occur, recrystallization does not occur because it is not sufficiently activated, and the applied strain gradually recovers a fine recrystallization structure. I can't get it.

【0029】以上のようなことから圧下後のスラブの加
熱温度については、加工歪により再結晶を生じ得る下限
温度未満及び再結晶後の粒成長により粒が粗大化しない
上限温度以上を除外する。また、特に加熱温度を第2発
明に示すように1000℃以上1150℃以下とするこ
とは、再結晶による微細化と粒成長の抑制の観点から一
層効果的である。
From the above, as for the heating temperature of the slab after reduction, excluding below the lower limit temperature at which recrystallization can occur due to processing strain and above the upper limit temperature at which grains are not coarsened due to grain growth after recrystallization. Further, in particular, setting the heating temperature to 1000 ° C. or higher and 1150 ° C. or lower as shown in the second invention is more effective from the viewpoint of miniaturization by recrystallization and suppression of grain growth.

【0030】(4)スラブ均熱条件 スラブの均熱条件は、再結晶を生じさせて組織を微細化
するために重要な因子である。加熱温度が加工歪により
再結晶が生ずる下限温度以上で且つ再結晶後の粒成長に
より粒が粗大化しない上限温度以下を満足する温度域で
あっても、再結晶による組織の微細化が完全に終了する
前に加熱が終了し、圧延工程に移行すると、粗大な未再
結晶粒を含んだ混粒組織となり圧延によっても微細組織
が得られなくなることから、均熱により再結晶による組
織の微細化が進行した段階で炉から抽出することが必要
である。
(4) Slab soaking condition The slab soaking condition is an important factor for causing recrystallization and refining the structure. Even in the temperature range where the heating temperature is equal to or higher than the lower limit temperature at which recrystallization occurs due to processing strain and lower than or equal to the upper limit temperature at which grains are not coarsened due to grain growth after recrystallization, the refinement of the structure due to recrystallization is completely achieved. If heating is completed and rolling process is completed before completion, a mixed grain structure containing coarse unrecrystallized grains will result and a fine structure will not be obtained even by rolling. It is necessary to extract from the furnace at the stage when the process has progressed.

【0031】[0031]

【実施例】【Example】

(実施例1)本発明によるものの具体的な実施例につい
て説明すると、本発明者等が用いた鋼の化学成分は次の
表2に示す如くで、またこのような鋼に対する製造条件
およびそれによって得られた鋼材の機械的性質は後記す
る表3の如くである。
(Example 1) Explaining specific examples of the present invention, the chemical composition of steel used by the present inventors is as shown in Table 2 below, and the manufacturing conditions for such steel and The mechanical properties of the obtained steel material are as shown in Table 3 below.

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】即ち、スラブに圧下を加える温度域が加工
歪が残留する上限温度を超える1−3、1−5の場合に
は、製造された鋼材の機械的性質、特に靱性が劣化して
いる。それに対し、スラブに圧下を加える温度域がAr3
点以上加工歪が残留する上限温度以下の1−1、1−2
および1−4の場合には比較例として示した1−6のC
CR材と同等の特性を有していることが確認された。
That is, in the case where the temperature range where the rolling is applied to the slab is 1-3 or 1-5 which exceeds the upper limit temperature where the working strain remains, the mechanical properties of the manufactured steel material, particularly the toughness, are deteriorated. . On the other hand, the temperature range for applying reduction to the slab is Ar 3
1-1, 1-2 below the upper limit temperature at which the processing strain remains above the point
And 1-4, C of 1-6 shown as a comparative example.
It was confirmed that it has the same characteristics as the CR material.

【0035】(実施例2)次の表4に示した化学成分を
有する低合金鋼に対し、採用した鋼材の製造条件は後記
する表5の如くである。
(Example 2) With respect to the low alloy steel having the chemical composition shown in the following Table 4, the manufacturing conditions of the steel material adopted are as shown in Table 5 described later.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】即ち表4に示したスラブに圧下を加える温
度域が、Ar3 点以上表5に示す析出物生成上限温度以下
の場合には、圧下による歪で析出物が更に過剰析出し、
結果として組織の微細化を抑制してしまうことから機械
的性質も劣化している。また圧下を加える温度域が加工
歪が残留する上限温度を超える場合には、やはり加熱時
に組織が粗くなり、靱性が劣化している。このような比
較例のものに対し、析出物生成上限温度以上加工歪が残
留する上限温度以下でスラブに圧下を与えた場合には、
比較例に示すCCR材と同等の特性を有することが知ら
れた。
That is, when the temperature range in which the slab shown in Table 4 is subjected to reduction is not less than the Ar 3 point and not higher than the precipitate formation upper limit temperature shown in Table 5, the precipitate is further excessively precipitated due to strain due to the reduction.
As a result, the refinement of the structure is suppressed, and the mechanical properties are also deteriorated. Further, when the temperature range to which the reduction is applied exceeds the upper limit temperature at which processing strain remains, the structure also becomes rough during heating and the toughness deteriorates. In the case of applying a reduction to the slab at a temperature higher than the precipitate formation upper limit temperature and lower than the upper limit temperature at which the processing strain remains, in comparison with the comparative example,
It was known to have the same characteristics as the CCR material shown in the comparative example.

【0039】(実施例3)次の表6に示すような化学成
分を有する炭素鋼・低合金鋼を用いた場合におけるγ−
HCR条件と、鋼材の機械的性質は後記する表7の如く
である。
(Example 3) γ-in the case of using carbon steel / low alloy steel having the chemical composition shown in Table 6 below
The HCR conditions and the mechanical properties of the steel material are as shown in Table 7 below.

【0040】[0040]

【表6】 [Table 6]

【0041】[0041]

【表7】 [Table 7]

【0042】即ち、この場合においては、スラブに加え
る圧下率が組織の微細化に有効な再結晶を生じさせるた
めに必要な値未満の場合には、加熱時に十分な再結晶が
行われず、組織は粗大な状態を呈し、これを均熱後圧延
しても圧延後の組織は微細にならず、混粒組織となり結
果として機械的性質は劣化する。またスラブの圧下率が
50%を超える場合には、機械的性質は圧下率50%以
下の場合と同等であるが、スラブ長が極端に長くなり炉
の効率の面から望ましくない。一方、スラブの圧下率が
15%以上50%以下の場合には、加熱時に再結晶によ
る微細化を誘起するのに十分な歪が加わり、スラブ長も
極端に長くならないことから機械的性質、効率の両面か
ら優れている。
That is, in this case, if the rolling reduction applied to the slab is less than the value required to cause recrystallization effective for the refinement of the structure, sufficient recrystallization is not performed during heating, and the structure is Shows a coarse state, and even if it is soaked and rolled, the structure after rolling does not become fine, and it becomes a mixed grain structure, resulting in deterioration of mechanical properties. Further, when the rolling reduction of the slab exceeds 50%, the mechanical properties are the same as when the rolling reduction is 50% or less, but the slab length becomes extremely long, which is not desirable in terms of the efficiency of the furnace. On the other hand, when the rolling reduction ratio of the slab is 15% or more and 50% or less, sufficient strain is applied to induce miniaturization due to recrystallization during heating, and the slab length does not become extremely long, so mechanical properties and efficiency are improved. It is excellent from both sides.

【0043】(実施例4)次の表8に示すような化学成
分を示す炭素鋼・低合金鋼を用いてγ−HCRを行った
場合の鋼材の製造条件と、その鋼材の機械的性質は更に
次に示した表9の如くである。
(Example 4) The production conditions of the steel material and the mechanical properties of the steel material when γ-HCR was performed using carbon steel / low alloy steel having the chemical composition shown in Table 8 below are as follows. Further, it is as shown in Table 9 below.

【0044】[0044]

【表8】 [Table 8]

【0045】[0045]

【表9】 [Table 9]

【0046】即ち、スラブに圧下を加えた後の加熱温度
が1000℃未満の場合には熱的な活性化が十分ではな
いことから歪誘起の再結晶による組織の微細化が行われ
ず、機械的性質は好ましくない。また、加熱温度が11
50℃を超える場合には歪誘起再結晶により一度は組織
が微細化するが、高温で熱的に活性化しすぎていること
からこの微細組織が直ちに粒成長を起こし、結果として
粗い組織となり、機械的性質が劣化する。これらに対
し、加熱温度が1000℃以上1150℃以下の本発明
の場合には、熱的な活性化が適当量であることから、歪
誘起再結晶による微細化が行われ、これが粗大化しない
ことから圧延後の組織も微細均質組織となり、機械的性
質が優れていることが確認された。
That is, when the heating temperature after the reduction is applied to the slab is less than 1000 ° C., the thermal activation is not sufficient, so that the structure is not refined by the strain-induced recrystallization and the mechanical activation is not performed. The nature is unfavorable. Also, the heating temperature is 11
When the temperature exceeds 50 ° C., the structure is once refined due to strain-induced recrystallization, but since it is thermally activated at a high temperature, this fine structure immediately causes grain growth, resulting in a coarse structure, resulting in mechanical failure. Properties deteriorate. On the other hand, in the case of the present invention in which the heating temperature is 1000 ° C. or more and 1150 ° C. or less, thermal activation is an appropriate amount, so that refinement by strain-induced recrystallization is performed and this is not coarsened. From this, it was confirmed that the structure after rolling also became a fine homogeneous structure and had excellent mechanical properties.

【0047】(実施例5)次の表10に示すような化学
成分の鋼を準備した。
Example 5 Steels having chemical compositions shown in Table 10 below were prepared.

【0048】[0048]

【表10】 [Table 10]

【0049】上記表10に示した鋼に対し次の表11に
示したγ−HCR条件で鋼材を製造した場合の機械的性
質は表11において併せて示す如くである。
The mechanical properties of the steels produced in the following Table 11 under the γ-HCR conditions for the steels shown in Table 10 are as shown in Table 11 together.

【0050】[0050]

【表11】 [Table 11]

【0051】即ち、スラブ圧下温度、スラブ圧下率、加
熱炉装入時のスラブ温度、スラブの均熱温度、均熱時間
のいずれかが本請求範囲を外れている場合には、得られ
た鋼材の機械的性質が劣化している。
That is, when any one of the slab reduction temperature, the slab reduction rate, the slab temperature at the time of charging the heating furnace, the soaking temperature of the slab, and the soaking time is outside the scope of the present claim, the obtained steel material is obtained. Has deteriorated mechanical properties.

【0052】[0052]

【発明の効果】以上説明したような本発明によるとき
は、炭素鋼・低合金鋼のオーステナイト域ホットチャー
ジによる鋼材の製造方法において、加熱炉装入前のスラ
ブの加工温度と加工率、加工後の加熱温度、均熱時間を
適正化することにより、優れた特性を示し、かつ省エネ
ルギー性にも優れた鋼材の製造が可能となるもので、工
業的にその効果の大きい発明である。
According to the present invention as described above, in the method for producing a steel material by hot charging of carbon steel / low alloy steel in the austenite region, the processing temperature and processing rate of the slab before charging in the heating furnace, and after processing By optimizing the heating temperature and the soaking time, it becomes possible to manufacture a steel material having excellent properties and also excellent in energy saving, and it is an invention having a great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】スラブ圧下温度と機械的性質の関係を示した図
表である。
FIG. 1 is a chart showing the relationship between slab reduction temperature and mechanical properties.

【図2】加熱前におけるスラブ圧下率と機械的性質の関
係を示した図表である。
FIG. 2 is a chart showing a relationship between a slab reduction ratio and mechanical properties before heating.

【図3】スラブ圧下後の加熱温度と機械的性質の関係を
示した図表である。
FIG. 3 is a chart showing the relationship between heating temperature and mechanical properties after slab reduction.

【図4】1パス目の圧下率に伴う特性変化を示した図表
である。
FIG. 4 is a chart showing characteristic changes associated with a first pass rolling reduction.

【図5】最終パスの圧下率に伴う特性変化を要約して示
した図表である。
FIG. 5 is a table summarizing characteristic changes with the rolling reduction of the final pass.

【図6】均熱時間に伴う特性変化の関係を要約して示し
た図表である。
FIG. 6 is a table summarizing the relationship of characteristic changes with soaking time.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年2月23日[Submission date] February 23, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】[0033]

【表3】 [Table 3]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼の鋳造後、スラブ温度がAr3 点もし
くは析出硬化元素の析出温度の何れか高い方の温度以上
で加工歪が残留する上限温度以下の温度域において、組
織の微細化に有効な再結晶を生じさせるために必要とす
る歪が残留する加工を付与し、その後スラブ温度がAr3
点もしくは析出硬化元素の析出温度の何れか高い方の温
度域から、加工歪により再結晶が生じる下限温度以上で
且つ再結晶後の粒成長により粒が粗大化しない上限温度
以下に加熱し、均熱後、再結晶による組織の微細化が進
行した段階で炉から抽出し、圧延を行うことを特徴とす
るオーステナイト域ホットチャージ圧延による鋼材の製
造方法。
1. After the molten steel is cast, the structure is refined in a temperature range below the upper limit temperature at which the work strain remains at the slab temperature higher than the Ar 3 point or the precipitation temperature of the precipitation hardening element, whichever is higher. The strain required for effective recrystallization is applied, and then the slab temperature is changed to Ar 3
From the higher temperature range of the point or the precipitation temperature of the precipitation hardening element, whichever is higher, to a temperature not lower than the lower limit temperature at which recrystallization occurs due to processing strain and not higher than the upper limit temperature at which grains do not coarsen due to grain growth after recrystallization, A method for producing a steel material by austenite hot-rolling, which comprises extracting from a furnace and rolling at a stage where the structure has been refined by recrystallization after heating.
【請求項2】 溶鋼の鋳造後、スラブ温度がAr3 点もし
くは析出硬化元素の析出温度の何れか高い方の温度以上
1000℃以下の温度域において、累積圧下率15%以
上50%以下の圧下を行い、その後スラブ温度がAr3
もしくは析出硬化元素の析出温度以上の何れか高い方の
温度以上の状態で、1000℃以上1150℃以下の温
度に加熱炉で加熱し、均熱後、再結晶による組織の微細
化が進行した段階で炉から抽出し、圧延を行うことを特
徴とするオーステナイト域ホットチャージ圧延による鋼
材の製造方法。
2. After the molten steel is cast, in the temperature range in which the slab temperature is the Ar 3 point or the precipitation temperature of the precipitation hardening element, whichever is higher, and 1000 ° C. or less, the cumulative reduction is 15% or more and 50% or less. After that, the slab temperature is heated to a temperature of 1000 ° C. or higher and 1150 ° C. or lower in a heating furnace in a state where the slab temperature is higher than the Ar 3 point or the precipitation temperature of the precipitation hardening element, whichever is higher. A method for manufacturing a steel product by austenite hot charge rolling, which comprises extracting from a furnace and rolling at a stage where the refinement of the structure by crystals has progressed.
【請求項3】 スラブ温度がAr3 点以上もしくは析出硬
化元素の析出温度以上の何れか高い方の温度以上、10
00℃以下の温度域における加熱前の圧下を、2パス以
上の複数パスで行い、そのうち初期のパスは1パス当り
圧下率5%以下の小圧下とし、後期のパスは1パス当り
圧下率10%以上の大圧下とすることを特徴とする請求
項2記載のオーステナイト域ホットチャージ圧延による
鋼材の製造方法。
3. A slab temperature of Ar 3 or higher or a precipitation hardening element precipitation temperature or higher, whichever is higher, 10
The reduction before heating in the temperature range of 00 ° C or less is performed by two or more passes, of which the initial pass is a small reduction of 5% or less per pass, and the latter pass is a reduction of 10 per pass. A large reduction of at least 0.1% is used, and the method for producing a steel product by austenite region hot charge rolling according to claim 2.
JP11238293A 1993-04-16 1993-04-16 Production of steel material by hot charging rolling in austenite region Pending JPH06306458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11238293A JPH06306458A (en) 1993-04-16 1993-04-16 Production of steel material by hot charging rolling in austenite region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11238293A JPH06306458A (en) 1993-04-16 1993-04-16 Production of steel material by hot charging rolling in austenite region

Publications (1)

Publication Number Publication Date
JPH06306458A true JPH06306458A (en) 1994-11-01

Family

ID=14585286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11238293A Pending JPH06306458A (en) 1993-04-16 1993-04-16 Production of steel material by hot charging rolling in austenite region

Country Status (1)

Country Link
JP (1) JPH06306458A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516224A (en) * 2003-01-22 2006-06-29 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method and apparatus for producing continuous cast slabs
CN113399461A (en) * 2021-06-15 2021-09-17 山西太钢不锈钢股份有限公司 Method for processing niobium-containing austenitic heat-resistant stainless steel round pipe billet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516224A (en) * 2003-01-22 2006-06-29 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method and apparatus for producing continuous cast slabs
CN113399461A (en) * 2021-06-15 2021-09-17 山西太钢不锈钢股份有限公司 Method for processing niobium-containing austenitic heat-resistant stainless steel round pipe billet
CN113399461B (en) * 2021-06-15 2023-01-31 山西太钢不锈钢股份有限公司 Method for processing niobium-containing austenitic heat-resistant stainless steel round pipe billet

Similar Documents

Publication Publication Date Title
JP2005262217A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP2510187B2 (en) Method for producing hot-rolled steel sheet for low-yield ratio high-strength line pipe with excellent low temperature toughness
JPH06306458A (en) Production of steel material by hot charging rolling in austenite region
JPH07100814B2 (en) Method for producing steel sheet with excellent brittle crack propagation arresting properties and low temperature toughness
JP2525961B2 (en) Manufacturing method of high toughness seamless steel pipe with fine grain structure
JPH0387313A (en) Production of high permeability steel sheet
JPH02258931A (en) Production of cr stainless steel sheet by thin-wall casting method
JP3137754B2 (en) Efficient production method of cold rolled steel sheet with excellent deep drawability
JPS6261646B2 (en)
JPS63143225A (en) Manufacture of hot rolled steel sheet having superior workability
JPS6337166B2 (en)
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP2003129133A (en) Method for manufacturing thick steel plate with high strength and high toughness
JP3061915B2 (en) Manufacturing method of cold rolled steel sheet for processing
JPS592725B2 (en) Method for producing thermosetting high-strength cold-rolled steel sheet for deep drawing
JPH09137232A (en) Production of high tensile strength hot rolled steel plate
JP3174098B2 (en) Low-yield-ratio web thin-walled H-section steel and method for producing the same
JP3474586B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPS595652B2 (en) Manufacturing method of high tensile strength cold rolled steel sheet
JPH02232318A (en) Production of cr-based stainless steel sheet by thin-wall casting method
JPH0765111B2 (en) Method for producing hot rolled strip of duplex stainless steel
JPH0619109B2 (en) Method for producing straight-rolled thick steel plate having excellent characteristics at low pressure reduction ratio
JPS5857491B2 (en) Method for producing thermosetting cold-rolled steel sheet for deep drawing
JPH062902B2 (en) Manufacturing method of high strength hot rolled steel sheet
JPH0321610B2 (en)