JPH0630344B2 - Pattern deformation measuring element - Google Patents

Pattern deformation measuring element

Info

Publication number
JPH0630344B2
JPH0630344B2 JP2870286A JP2870286A JPH0630344B2 JP H0630344 B2 JPH0630344 B2 JP H0630344B2 JP 2870286 A JP2870286 A JP 2870286A JP 2870286 A JP2870286 A JP 2870286A JP H0630344 B2 JPH0630344 B2 JP H0630344B2
Authority
JP
Japan
Prior art keywords
impurity region
pattern deformation
epitaxial layer
impurity
measuring element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2870286A
Other languages
Japanese (ja)
Other versions
JPS62186529A (en
Inventor
保博 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2870286A priority Critical patent/JPH0630344B2/en
Publication of JPS62186529A publication Critical patent/JPS62186529A/en
Publication of JPH0630344B2 publication Critical patent/JPH0630344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はパターン変形量測定用素子に係わり、特に半導
体素子の製造工程におけるエピタキシャル成長時に生じ
るパターン変形を非破壊的に測定するための半導体基板
上に形成される測定用素子に関する。
Description: TECHNICAL FIELD The present invention relates to a pattern deformation amount measuring element, and more particularly, to a semiconductor substrate for non-destructively measuring pattern deformation that occurs during epitaxial growth in a semiconductor element manufacturing process. And a measuring element formed in.

〈従来の技術〉 一般にバイポーラトランジスタの場合、半導体基板に埋
込層を形成し該埋込層を含む半導体基板の表面にエピタ
キシャル層を成長させ、このエピタキシャル層に種々の
拡散領域を形成するのであるが、かかる拡散領域を規定
するマスク工程では埋込層のパターンを用いてマスク合
せを行っている。ところが、エピタキシャル層の成長に
際しては、成長速度に面方位依存性があるので、この面
方位依存性が顕著に現れ、所謂パターン変形が生じると
上記マスク合せが不良となり、著しい場合には、製造さ
れたバイポーラトランジスタが正常に機能しなくなる。
そこで、パターン変形量を予め把握しておき、該パター
ン変形量を考慮してマスク合せをおこなえばかかる不具
合を避けることができる。
<Prior Art> Generally, in the case of a bipolar transistor, a buried layer is formed on a semiconductor substrate, an epitaxial layer is grown on the surface of the semiconductor substrate including the buried layer, and various diffusion regions are formed in the epitaxial layer. However, in the mask process for defining such a diffusion region, mask alignment is performed using the pattern of the buried layer. However, during the growth of the epitaxial layer, the growth rate depends on the plane orientation, and this plane orientation dependency appears remarkably. If so-called pattern deformation occurs, the mask alignment becomes defective. The bipolar transistor does not work properly.
Therefore, if the pattern deformation amount is grasped in advance and the mask alignment is performed in consideration of the pattern deformation amount, such a problem can be avoided.

したがって、上記パターン変形量を定量的に把握してお
くことは半導体素子の製造工程上不可欠であり、従来は
製造工程の終了したウエハから定期的にサンプルを抽出
し、これをへき開して、半導体基板に形成された、例え
ば埋込層と、該埋込層のパターンを用いてマスク合せの
なされた、例えば分離用拡散層とのずれを顕微鏡を用い
て計測していた。
Therefore, it is indispensable in the manufacturing process of the semiconductor device to quantitatively grasp the pattern deformation amount, and conventionally, a sample is periodically extracted from the wafer after the manufacturing process and cleaved to obtain a semiconductor. The displacement between, for example, a buried layer formed on a substrate and, for example, a diffusion layer for separation, which is mask-matched using the pattern of the buried layer, is measured using a microscope.

〈発明の解決しようとする問題点〉 しかしながら、上記従来のパターン変形量の計測方法で
は、製造工程の終了したウエハをへき開しなければなら
ないので、限られたサンプルについてしか計測できず、
パターン変形量を連続的に把握してこれを製造工程の制
御に反映させることができなかった。さらに、サンプル
としてへき開されるウエハには多数の半導体素子あるい
は集積回路が形成されており、これらが計測後に破棄さ
れるので、不経済であった。加えて、顕微鏡での計測は
計測者の熟練度により測定結果に差が生じ、測定結果の
信頼性も低かった。
<Problems to be Solved by the Invention> However, in the above-described conventional pattern deformation amount measuring method, since it is necessary to cleave the wafer after the manufacturing process, it is possible to measure only a limited sample,
It was not possible to continuously grasp the pattern deformation amount and reflect this in the control of the manufacturing process. Further, a large number of semiconductor elements or integrated circuits are formed on the wafer cleaved as a sample, and these are discarded after the measurement, which is uneconomical. In addition, the measurement results of microscopes differed depending on the skill of the measurer, and the reliability of the measurement results was also low.

したがって、本発明は上記従来の問題点に鑑み、ウエハ
を破壊することなく経済的で信頼性の高いパターン変形
量測定用素子を提供することを目的にしている。
Therefore, in view of the above conventional problems, it is an object of the present invention to provide an economical and highly reliable pattern deformation amount measuring element without breaking a wafer.

〈問題点を解決するための手段〉 本発明は、エピタキシャル層成長時に生じるパターン変
形の変形量を測定する測定用素子にして、半導体基板の
表面部に形成され第1の所定電圧を印加可能な第1導電
型の第1不純物領域と、上記半導体基板の表面に成長さ
れた第1導電型のエピタキシャル層と、該エピタキシャ
ル層の表面部に形成され第2の所定電圧を印加可能な第
1導電型の第2不純物領域と、を有し、上記第1不純物
領域と第2不純物領域とを製品領域に形成された半導体
素子の対応する不純物領域と同時に形成させたことを要
旨とする。
<Means for Solving the Problems> The present invention is a measuring element for measuring the deformation amount of pattern deformation that occurs during growth of an epitaxial layer, and is capable of applying a first predetermined voltage formed on the surface portion of a semiconductor substrate. A first impurity region of the first conductivity type, a first conductivity type epitaxial layer grown on the surface of the semiconductor substrate, and a first conductivity formed on the surface of the epitaxial layer and capable of applying a second predetermined voltage. And a second impurity region of a mold, wherein the first impurity region and the second impurity region are formed simultaneously with the corresponding impurity regions of the semiconductor element formed in the product region.

〈作用および効果〉 本発明に係わる測定用素子は、エピタキシャル層を挟ん
で第1不純物領域と第2不純物領域とが対向しているの
で、これらの不純物領域に第1の所定電圧と第2の所定
電圧とをそれぞれ印加するとエピタキシャル層中に電流
通路が形成される。このエピタキシャル層中の電流通路
を流れる電流の受ける抵抗はエピタキシャル層の比抵
抗、電流通路の断面積および電流通路の流さから求めら
れる。一般にエピタキシャル層の比抵抗は正確に測定あ
るいは計算可能なので、第1不純物領域と第2不純物領
域との相対的位置関係に変化が生じ、上記電流通路の断
面積あるいは長さが変化すると、第1不純物領域と第2
不純物領域との間に生じる電圧降下も変化する。よっ
て、この電圧降下値をロット毎に測定すれば各ウエハの
エピタキシャル成長時のパターン変形量の変化をモニタ
することができ、直に製造工程にフィードバックさせる
ことができる。
<Operation and Effect> In the measuring element according to the present invention, since the first impurity region and the second impurity region are opposed to each other with the epitaxial layer sandwiched therebetween, a first predetermined voltage and a second impurity region are applied to these impurity regions. When a predetermined voltage is applied, a current path is formed in the epitaxial layer. The resistance of the current flowing through the current path in the epitaxial layer is obtained from the resistivity of the epitaxial layer, the cross-sectional area of the current path and the flow rate of the current path. In general, the resistivity of the epitaxial layer can be accurately measured or calculated, so that when the relative positional relationship between the first impurity region and the second impurity region changes and the cross-sectional area or length of the current passage changes, Impurity region and second
The voltage drop generated between the impurity region and the impurity region also changes. Therefore, if this voltage drop value is measured for each lot, it is possible to monitor the change in the pattern deformation amount during the epitaxial growth of each wafer, and to directly feed it back to the manufacturing process.

また、電圧降下値の測定は非破壊で行えるので、測定に
用いた半導体基板の製品領域に形成されている半導体素
子はそのまま製品として使用することができ、測定に要
するコストを低下させることができる。
In addition, since the voltage drop value can be measured nondestructively, the semiconductor element formed in the product area of the semiconductor substrate used for the measurement can be used as a product as it is, and the cost required for the measurement can be reduced. .

さらに、パターン変形量は電圧降下値として求められる
ので、測定の精度が高く、測定結果の信頼性を向上させ
ることができる。
Further, since the pattern deformation amount is obtained as the voltage drop value, the measurement accuracy is high and the reliability of the measurement result can be improved.

〈実施例〉 第1図は本発明の一実施例を示す断面図であり、第2図
は一実施例の平面図、第3図は一実施例の等価回路図で
ある。図において、1は面方位(1,1,1)のp型半
導体基板を示しており、この半導体基板1には種々のモ
ニタパターンの形成されているモニタ領域が集積回路を
構成するバイポーラトランジスタの形成される製品チッ
プ領域に混ざって規定されている。第1図および第2図
はモニタ領域の一部を示しており、バイポーラトランジ
スタの埋込層の形成時に高濃度のn型不純物領域3が形
成されている。かかる不純物領域3の形成後、半導体基
板1の表面には低濃度のn型エピタキシャル層5が成長
させられており、このエピタキシャル層5の表面部には
高濃度のn型不純物領域7,9,11,13,15がバ
イポーラトランジスタのエミッタ領域と同時に形成され
ている。バイポーラトランジスタの製造プロセスではエ
ミッタ領域を規定するリソグラフィ工程では埋込層のパ
ターンに基づきマスク合せをするか、あるいは埋込層に
基づきマスク合せがすでに行われた他のパターンに対し
てマスク合せをするので、埋込層と同時に形成される不
純物領域3とエミッタ領域と同時に形成される不純物領
域7,9,11,13,15とにはパターン変形による
ずれがそのまま反映されている。
<Embodiment> FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a plan view of the embodiment, and FIG. 3 is an equivalent circuit diagram of the embodiment. In the figure, reference numeral 1 denotes a p-type semiconductor substrate having a plane orientation (1, 1, 1). In this semiconductor substrate 1, a monitor region in which various monitor patterns are formed is a bipolar transistor forming an integrated circuit. It is defined by being mixed with the product chip area to be formed. 1 and 2 show a part of the monitor region, in which a high-concentration n-type impurity region 3 is formed when the buried layer of the bipolar transistor is formed. After the formation of the impurity region 3, the low-concentration n-type epitaxial layer 5 is grown on the surface of the semiconductor substrate 1, and the high-concentration n-type impurity regions 7, 9, 11, 13, and 15 are formed at the same time as the emitter region of the bipolar transistor. In the manufacturing process of a bipolar transistor, masking is performed based on the pattern of the buried layer in the lithography step that defines the emitter region, or masking is performed on another pattern that has already been masked based on the buried layer. Therefore, the deviation due to the pattern deformation is directly reflected in the impurity region 3 formed at the same time as the buried layer and the impurity regions 7, 9, 11, 13, 15 formed at the same time as the emitter region.

この実施例では不純物領域3は正十字形をしており、こ
の不純物領域3の一辺は〈1,1,1〉方向に延在して
いる。また、不純物領域7,11,13,15は不純物
領域3の4つの端部近傍に、不純物領域9は不純物領域
3の中央近傍にそれぞれ対向している(第2図参照)。
したがって、不純物領域9と不純物領域3との間の電流
経路に生じる電気抵抗はパターン変形によるずれに無関
係に一定であり、その値R1はエピタキシャル層5の比
抵抗値とエピタキシャル層5の厚さとに基づき求められ
る。これに対して、不純物領域7,11,13,15と
不純物領域3との間に形成される電流通路の電気抵抗
は、パターン変形によるずれに従い不純物領域3と重畳
する面積が変化するので、それらの値R3,R5,R
7,R9は、ずれ量に対応して変化する。一方、不純物
領域7,11,13,15のずれと共に不純物領域9も
移動するので、不純物領域9と不純物領域7,11,1
3,15との間に介在する不純物領域3の電気抵抗も変
化し、それらの値R11,R13,R15,R17もず
れ量に対応して変化する。
In this embodiment, the impurity region 3 has a regular cross shape, and one side of the impurity region 3 extends in the <1,1,1> direction. Further, the impurity regions 7, 11, 13, and 15 are opposed to the vicinity of the four ends of the impurity region 3, and the impurity region 9 is opposed to the vicinity of the center of the impurity region 3 (see FIG. 2).
Therefore, the electric resistance generated in the current path between the impurity region 9 and the impurity region 3 is constant irrespective of the deviation due to the pattern deformation, and its value R1 is set to the specific resistance value of the epitaxial layer 5 and the thickness of the epitaxial layer 5. Required based on On the other hand, the electric resistance of the current path formed between the impurity regions 7, 11, 13, 15 and the impurity region 3 changes in the area overlapping with the impurity region 3 according to the deviation due to the pattern deformation. Value of R3, R5, R
7, R9 change according to the amount of deviation. On the other hand, since the impurity region 9 also moves with the displacement of the impurity regions 7, 11, 13, and 15, the impurity region 9 and the impurity regions 7, 11, and 1 are
The electric resistance of the impurity region 3 interposed between 3 and 15 also changes, and their values R11, R13, R15, and R17 also change corresponding to the shift amount.

したがって、不純物領域7と9との間に電流を流すと、
不純物領域7,9間には抵抗値TR1=(R1+R11
+R3)に比例した電圧降下が生じる。すでに説明した
ように、抵抗値R3,R11はパターン変形に基づくず
れ量に対応して変化するので、この不純物領域7,9間
の電圧降下を測定すればパターン変形に基づくずれ量を
算出することができる。同様にして不純物領域9,11
間、不純物領域9,13間、不純物領域9,15間の電
圧降下からもそれぞれずれ量を求めることができ、これ
らのずれ量からずれの方向も算出することができる。
Therefore, when a current is passed between the impurity regions 7 and 9,
The resistance value TR1 = (R1 + R11) between the impurity regions 7 and 9.
A voltage drop occurs in proportion to + R3). As described above, the resistance values R3 and R11 change corresponding to the shift amount based on the pattern deformation. Therefore, if the voltage drop between the impurity regions 7 and 9 is measured, the shift amount based on the pattern deformation can be calculated. You can Similarly, the impurity regions 9 and 11
The amount of deviation can be obtained from the voltage drop between the impurity regions 9 and 13, and the voltage drop between the impurity regions 9 and 15, respectively, and the direction of the deviation can be calculated from the amount of deviation.

なお、上記一実施例では不純物領域3に電圧を供給する
ために不純物領域9を設けたので、不純物領域3への給
電を容易にすることができたが、不純物領域9を経るこ
となく、直接不純物領域3に電圧を印加し、不純物領域
3と不純物領域7,11,13,15との間にのみそれ
ぞれ電流経路を形成してもよい。また、不純物領域7,
11,13,15を複数設けたので、ずれの測定結果の
信頼度を向上させることができたが、不純物領域7のみ
形成してもずれ量を測定することはできる。
In the above embodiment, the impurity region 9 is provided to supply the voltage to the impurity region 3, so that the power supply to the impurity region 3 can be facilitated. However, the impurity region 9 can be directly supplied without passing through the impurity region 9. A voltage may be applied to the impurity region 3 to form current paths only between the impurity region 3 and the impurity regions 7, 11, 13, and 15. In addition, the impurity region 7,
Since a plurality of 11, 13, 15 are provided, the reliability of the deviation measurement result can be improved, but the deviation amount can be measured even if only the impurity region 7 is formed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を表す断面図、第2図は第1
図で示された一実施例に係わる測定用素子の平面図、第
3図は第1図で示された一実施例に係わる測定用素子の
等価回路図である。 1……半導体基板、 3……第1不純物領域、 5……エピタキシャル層、 7,11,13,15……第2不純物領域。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG.
FIG. 3 is a plan view of the measuring element according to the embodiment shown in FIG. 3, and FIG. 3 is an equivalent circuit diagram of the measuring element according to the embodiment shown in FIG. 1 ... Semiconductor substrate, 3 ... 1st impurity region, 5 ... Epitaxial layer, 7, 11, 13, 15 ... 2nd impurity region.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】エピタキシャル層成長時に生じるパターン
変形の変形量を測定する測定用素子にして、半導体基板
の表面部に形成され第1の所定電圧を印加可能な第1導
電型の第1不純物領域と、上記半導体基板の表面に成長
された第1導電型のエピタキシャル層と、該エピタキシ
ャル層の表面部に形成され第2の所定電圧を印加可能な
第1導電型の第2不純物領域と、を有し、上記第1不純
物領域と第2不純物領域とを製品領域に形成された半導
体素子の対応する不純物領域と同時に形成させたことを
特徴とするパターン変形量測定用素子。
1. A first conductivity type first impurity region formed on a surface portion of a semiconductor substrate and capable of applying a first predetermined voltage as a measuring element for measuring a deformation amount of pattern deformation generated during growth of an epitaxial layer. And a first-conductivity-type epitaxial layer grown on the surface of the semiconductor substrate, and a first-conductivity-type second impurity region formed on the surface of the epitaxial layer and capable of applying a second predetermined voltage. A pattern deformation amount measuring element having the first impurity region and the second impurity region formed simultaneously with the corresponding impurity regions of the semiconductor element formed in the product region.
JP2870286A 1986-02-12 1986-02-12 Pattern deformation measuring element Expired - Lifetime JPH0630344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2870286A JPH0630344B2 (en) 1986-02-12 1986-02-12 Pattern deformation measuring element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2870286A JPH0630344B2 (en) 1986-02-12 1986-02-12 Pattern deformation measuring element

Publications (2)

Publication Number Publication Date
JPS62186529A JPS62186529A (en) 1987-08-14
JPH0630344B2 true JPH0630344B2 (en) 1994-04-20

Family

ID=12255791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2870286A Expired - Lifetime JPH0630344B2 (en) 1986-02-12 1986-02-12 Pattern deformation measuring element

Country Status (1)

Country Link
JP (1) JPH0630344B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462610U (en) * 1990-10-04 1992-05-28
JPH0462611U (en) * 1990-10-04 1992-05-28

Also Published As

Publication number Publication date
JPS62186529A (en) 1987-08-14

Similar Documents

Publication Publication Date Title
DE69334194T2 (en) Method for producing a semiconductor device
JPH0630344B2 (en) Pattern deformation measuring element
EP0016596B1 (en) Semiconductor device having a monitor pattern and method of monitoring the same
EP0188893B1 (en) Method of fabricating a mesa stripe on a semiconductor wafer plane
US6828647B2 (en) Structure for determining edges of regions in a semiconductor wafer
KR100370987B1 (en) Compound semiconductor device and method for controlling characteristics of the same
JPS60147154A (en) Resistance structure
JP3127448B2 (en) Etching control method
JP3712496B2 (en) Resistance value monitor pattern of connection hole of semiconductor device
JPS6148927A (en) Semiconductor device
JP2839469B2 (en) Pattern for measuring mask misalignment and method for measuring the same
JPH11214457A (en) Inspection element for epitaxial film and manufacture thereof
JPH10144752A (en) Evaluation of pattern shift and manufacture of semiconductor device
JP3757728B2 (en) Mask alignment evaluation pattern
JPS6132424A (en) Semiconductor device
JPS5946098B2 (en) Manufacturing method of semiconductor device
JPH033943B2 (en)
JPS62206845A (en) Manufacture of semiconductor device
JPS61181123A (en) Matching method for position of pattern for semiconductor device
JPH0560661B2 (en)
JPH06267878A (en) Manufacture of semiconductor integrated circuit device
JPS6130739B2 (en)
JPS61239663A (en) Inspection element for measuring characteristic
JPH0697672B2 (en) Semiconductor device manufacturing yield prediction method
JPH02137351A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term