JPH06302916A - Semiconductor optical element - Google Patents

Semiconductor optical element

Info

Publication number
JPH06302916A
JPH06302916A JP11222293A JP11222293A JPH06302916A JP H06302916 A JPH06302916 A JP H06302916A JP 11222293 A JP11222293 A JP 11222293A JP 11222293 A JP11222293 A JP 11222293A JP H06302916 A JPH06302916 A JP H06302916A
Authority
JP
Japan
Prior art keywords
light
absorption
layer
semiconductor optical
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11222293A
Other languages
Japanese (ja)
Inventor
Kenji Kawashima
健児 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11222293A priority Critical patent/JPH06302916A/en
Publication of JPH06302916A publication Critical patent/JPH06302916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Optical Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a semiconductor optical element wherein integration and miniaturization are facilitated and pulse light is generated. CONSTITUTION:When a voltage is applied to an absorption part B having an absorption layer 6 of superlattice structure, the energy gap between two levels increases, and the absorption coefficient to oscillation light becomes small. In the gain part C having an active layer 11, the loss in a resonator becomes small as compared with the gain, and a light oscillates. In the state of light oscillation, the voltage applied to a resistor R connected in series with the absorption part B increases, the voltage applied to the absorption part B decreases, and the absorption coefficient of the absorption layer 6 becomes large. At this time, light absorption in the absorption layer 6 becomes large, the loss in the resonator becomes large as compared with the optical gain of the active layer 11, and light oscillation stops. When light oscillation stops, the voltage applied to the absorption part B increases, the absorption coefficient of the absorption layer 6 becomes small, the loss of the whole resonator becomes smaller than the optical gain of the active layer 11, and the light oscillates. The above process is repeated, and pulse light is outputted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、活性層及び吸収層を備
える垂直共振器型の半導体光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical cavity type semiconductor optical device having an active layer and an absorption layer.

【0002】[0002]

【従来の技術】図8は、パルス光を発振する従来のレー
ザ装置の構造を示す模式的断面図である。図に示すレー
ザ装置はストライプ構造であり、n−GaAsからなる
基板51上にクラッド層52,AlGaAsからなる活
性層53,クラッド層54及びコンタクト層55が、こ
の順に積層され、コンタクト層55上の中央には電極5
6が形成され、電極56を挟んで両側に電極57,58
が形成されている。
2. Description of the Related Art FIG. 8 is a schematic sectional view showing the structure of a conventional laser device which oscillates pulsed light. The laser device shown in the figure has a stripe structure, and a clad layer 52, an active layer 53 made of AlGaAs, a clad layer 54, and a contact layer 55 are laminated in this order on a substrate 51 made of n-GaAs, and on the contact layer 55. Electrode 5 in the center
6 are formed, and electrodes 57, 58 are provided on both sides of the electrode 56 with the electrode 56 interposed therebetween.
Are formed.

【0003】このようなストライプ構造のレーザ装置
は、電極57,58に電圧が印加され、電極56に逆バ
イアス電圧が印加されており、適切な値の電流を流した
場合に、キャリアが活性層53へ注入され、装置内での
光強度が次第に増加する。このとき、電極56により逆
バイアス電圧が印加されている活性層53の中央部、即
ち可飽和吸収領域SAで光の一部が吸収される。このた
めに、装置内での光密度はレーザ光発振に十分な程度ま
で達しない。
In the laser device having such a stripe structure, a voltage is applied to the electrodes 57 and 58 and a reverse bias voltage is applied to the electrode 56, and when an electric current of an appropriate value is passed, carriers become active layers. Injected into 53, the light intensity in the device gradually increases. At this time, part of the light is absorbed in the central portion of the active layer 53 to which the reverse bias voltage is applied by the electrode 56, that is, in the saturable absorption region SA. Therefore, the light density in the device does not reach a level sufficient for laser light oscillation.

【0004】そして、可飽和吸収領域SAが飽和状態に
なったときには、光が吸収されなくなり、装置内の光強
度が急に増加して、活性層53にてキャリアの反転分布
が生じ、レーザ光が発振する。この瞬間にキャリア放出
により反転分布がなくなり、装置内で光強度が弱い状態
に戻る。そして、再び光強度が増加するに従って可飽和
吸収領域SAで光の一部が吸収される。
When the saturable absorption area SA is saturated, light is no longer absorbed, the light intensity in the device suddenly increases, and the population inversion of carriers occurs in the active layer 53. Oscillates. At this moment, the population inversion disappears due to carrier emission, and the light intensity returns to a weak state in the device. Then, as the light intensity increases again, part of the light is absorbed in the saturable absorption area SA.

【0005】このようにして、上述のレーザ装置ではレ
ーザ光の発振と停止が交互に起こり、パルス光が出力さ
れる。このようにパルス光が出力されるレーザ装置は、
Appl.Phys.Lett.58 (12), 25 March 1991 に提案されて
いる。このようなレーザ装置に、過大な電流を流した場
合は、光発振したときにキャリアが放出されても反転分
布が消滅せず、この結果レーザ光の発振が停止しないの
で、光を発振した状態が続き、パルス光は出力されな
い。
In this way, in the above laser device, oscillation and stop of the laser light occur alternately and pulsed light is output. A laser device that outputs pulsed light in this way is
Appl.Phys.Lett.58 (12), 25 March 1991. When an excessive current is applied to such a laser device, the population inversion does not disappear even if carriers are emitted during optical oscillation, and as a result, the oscillation of the laser light does not stop. The pulse light is not output.

【0006】[0006]

【発明が解決しようとする課題】ところで、レーザ装置
は前記ストライプ型と垂直共振器型とに大別され、垂直
共振器型は、基板,活性層及び反射鏡等の構成層の積層
方向に光を発振させるレーザ装置である。上述したパル
ス光を出力するストライプ型のレーザ装置は、これを2
次元的に集積化する場合に、装置が大きくなるという問
題がある。これに対して、垂直共振器型のレーザ装置は
2次元で集積化しても小型化が可能である。このような
2次元でパルス光を出力する垂直共振器型のレーザ装置
は、例えば2次元で発振する光コンピュータ用のクロッ
クに応用することが考えられる。
The laser device is roughly classified into the stripe type and the vertical cavity type, and the vertical cavity type is a type in which light is emitted in the stacking direction of the substrate, the active layer, and the constituent layers such as a reflecting mirror. Is a laser device that oscillates. The stripe type laser device that outputs the pulsed light described above is
There is a problem that the device becomes large in the case of dimensional integration. On the other hand, the vertical cavity type laser device can be miniaturized even if it is two-dimensionally integrated. Such a vertical cavity type laser device which outputs pulsed light in two dimensions can be applied to a clock for an optical computer which oscillates in two dimensions, for example.

【0007】本発明は、吸収領域での光の吸収双安定特
性を利用することにより、光の発振,停止が繰り返され
ることに着目してなされたものであり、集積化及び小型
化が容易に行え、パルス光を出力する半導体光素子を提
供することを目的とする。
The present invention has been made paying attention to the fact that light oscillation and stoppage are repeated by utilizing the absorption bistable characteristic of light in the absorption region, and the integration and miniaturization can be easily performed. An object of the present invention is to provide a semiconductor optical device that can perform and outputs pulsed light.

【0008】[0008]

【課題を解決するための手段】第1発明に係る半導体光
素子は、積層方向に活性層を挟んで両側に反射鏡を備
え、この両反射鏡間での吸収損失より大きな光利得で積
層方向に光を発振させる半導体光素子において、前記両
反射鏡間に、前記光に対して吸収係数の双安定性を有す
る吸収層を備えることを特徴とする。
A semiconductor optical device according to a first aspect of the present invention is provided with reflecting mirrors on both sides of an active layer in the stacking direction with an optical gain larger than the absorption loss between the two reflecting mirrors. In the semiconductor optical device for oscillating light, an absorption layer having bistability of absorption coefficient with respect to the light is provided between the both reflecting mirrors.

【0009】第2発明に係る半導体光素子は、第1発明
において、前記吸収層が超格子構造であることを特徴と
する。
A semiconductor optical device according to a second invention is characterized in that, in the first invention, the absorption layer has a superlattice structure.

【0010】[0010]

【作用】本発明の半導体光素子では、両側に備える反射
鏡の間に吸収層を備えており、この吸収層は、吸収係数
の双安定性を有する、即ち発振すべき光に対して2通り
の吸収係数α1 ,α2 で安定状態を保つ。この2通りの
安定状態を以下に説明する。図9は、発振する光強度と
吸収係数との関係を示したグラフであり、縦軸は吸収係
数を、横軸は光強度を表している。図から、小さい吸収
係数α1 での安定状態で光強度は増加する。この結果、
大きい吸収係数α2 での安定状態へ遷移し、光強度はL
1 に達してから次第に減少する。この結果、小さい吸収
係数α1 での安定状態へ遷移し、光強度がL2 まで減少
してから次第に増加する。そして、再び大きい吸収係数
α2 での安定状態へ遷移する。このように、前記吸収層
は、光強度により2通りの吸収係数α1 ,α2 での安定
状態を繰り返す。
In the semiconductor optical device of the present invention, the absorption layer is provided between the reflecting mirrors provided on both sides, and this absorption layer has the bistability of the absorption coefficient, that is, it has two types for the light to be oscillated. A stable state is maintained with absorption coefficients α 1 and α 2 . The two stable states will be described below. FIG. 9 is a graph showing the relationship between the oscillating light intensity and the absorption coefficient, where the vertical axis represents the absorption coefficient and the horizontal axis represents the light intensity. From the figure, the light intensity increases in the stable state with a small absorption coefficient α 1 . As a result,
Transition to a stable state with a large absorption coefficient α 2 , and the light intensity is L
It decreases gradually after reaching 1 . As a result, the state transitions to a stable state with a small absorption coefficient α 1 , and the light intensity decreases to L 2 and then gradually increases. Then, the state again transits to a stable state with a large absorption coefficient α 2 . Thus, the absorption layer repeats stable states with two different absorption coefficients α 1 and α 2 depending on the light intensity.

【0011】本発明では、以上のような吸収層に活性層
からの光が吸収される。図10は、垂直共振器型の半導
体光素子の発振特性を示すグラフであり、縦軸は光強度
を横軸は電流値を表している。図中aは、反射鏡間での
吸収損失が少ない場合の、即ち吸収係数が小さい場合の
発振光について示しており、IOPよりも小さい電流値で
2 以上の光強度で発振する。また、bは吸収係数が大
きい場合の発振光について示しており、IOPよりも大き
い電流値でL2 以上の光強度で発振する。このような発
振特性を有する半導体光素子に上述の吸収層を形成する
ことによって、活性層に電流IOPを流すと、光が発振し
て(L1 )大きい吸収係数α2 になり、吸収係数α2
なると光の発振が停止し(L2 )、光の発振が停止する
と、小さい吸収係数α1 になって光を発振する。このよ
うに光の発振,停止を繰り返すことによって、パルス光
が出力する。
In the present invention, the light from the active layer is absorbed by the absorption layer as described above. FIG. 10 is a graph showing the oscillation characteristics of a vertical cavity type semiconductor optical device, in which the vertical axis represents the light intensity and the horizontal axis represents the current value. In the figure, a shows the oscillation light when the absorption loss between the reflecting mirrors is small, that is, when the absorption coefficient is small, and oscillates at a light intensity of L 2 or more at a current value smaller than I OP . Further, b shows oscillation light when the absorption coefficient is large, and it oscillates at a light intensity of L 2 or more at a current value larger than I OP . By forming the above-mentioned absorption layer in the semiconductor optical device having such oscillation characteristics, when a current I OP is passed through the active layer, light oscillates (L 1 ) to have a large absorption coefficient α 2 and the absorption coefficient. When α 2 is reached, the light oscillation stops (L 2 ), and when the light oscillation is stopped, the absorption coefficient α 1 becomes small and the light is emitted. By repeating the oscillation and stop of light in this way, pulsed light is output.

【0012】[0012]

【実施例】以下、本発明をその実施例を示す図面に基づ
き具体的に説明する。図1は、本発明の半導体光素子の
模式的斜視図である。図1に示すように、本発明の光半
導体素子Mは直方体形状の基板部A上に吸収層を備える
吸収部Bが形成されており、吸収層Bは基板部Aよりも
底面積を小さくして基板部Aの一角領域上に積層されて
いる。そして、吸収部B上には活性層を備える略円柱形
状の利得部Cが、吸収部Bの一角領域上に積層されてい
る。そして、利得部B及び基板部A表面に電極17が、
吸収部B及び基板部A表面に電極16が、そして基板部
A表面に電極15が形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. FIG. 1 is a schematic perspective view of a semiconductor optical device of the present invention. As shown in FIG. 1, the optical semiconductor element M of the present invention has an absorption section B having an absorption layer formed on a rectangular parallelepiped substrate section A, and the absorption layer B has a smaller bottom area than the substrate section A. Are stacked on a corner area of the substrate portion A. Then, a substantially columnar gain portion C having an active layer is laminated on the absorber B on a corner area of the absorber B. Then, the electrodes 17 are provided on the surfaces of the gain portion B and the substrate portion A,
An electrode 16 is formed on the surfaces of the absorbing portion B and the substrate portion A, and an electrode 15 is formed on the surface of the substrate portion A.

【0013】図2〜図5は、このような半導体光素子を
製造する過程を示す図1のII−II線から見た模式的断面
図である。半導体光素子Mの構造をさらに具体的に以下
に説明する。図2に示すように、n−GaAsからなる
基板1上に、MBE(分子線エピタキシャル)法によ
り、以下の層が順次積層される。 バッファ層2:n−GaAs DBR3(ブラグ反射鏡):n−GaAs/AlAs
(59nm/73nm)20ペア 第1のクラッド層4:n−Alx Ga1-x As 第2のクラッド層5:Alx Ga1-x As 吸収層6:GaAs/AlAs(8nm/0.49nm)5ペア
の超格子構造 第3のクラッド層7:Alx Ga1-x As 第4のクラッド層8:p−Alx Ga1-x As 第1のコンタクト層9:p−Al0.1 Ga0.9 As(
0.5μm) 第5のクラッド層10:Alx Ga1-x As 活性層11:Al0.3 Ga0.7 As/GaAs(7nm/
9nm)3ペア 第6のクラッド層12:n−Alx Ga1-x As DBR13(ブラグ反射鏡):n−GaAs/AlAs
の20ペア 第2のコンタクト層14:n−GaAs
2 to 5 are schematic sectional views taken along the line II-II in FIG. 1 showing the process of manufacturing such a semiconductor optical device. The structure of the semiconductor optical device M will be described more specifically below. As shown in FIG. 2, the following layers are sequentially stacked on the substrate 1 made of n-GaAs by the MBE (Molecular Beam Epitaxial) method. Buffer layer 2: n-GaAs DBR3 (Bragg reflector): n-GaAs / AlAs
(59 nm / 73 nm) 20 pairs First clad layer 4: n-Al x Ga 1-x As Second clad layer 5: Al x Ga 1-x As Absorption layer 6: GaAs / AlAs (8 nm / 0.49 nm) super lattice structure of 5 pairs third cladding layer 7: Al x Ga 1-x As fourth cladding layer 8: p-Al x Ga 1 -x As first contact layer 9: p-Al 0.1 Ga 0.9 As (
0.5 μm) Fifth clad layer 10: Al x Ga 1-x As active layer 11: Al 0.3 Ga 0.7 As / GaAs (7 nm /
9 nm) 3 pairs sixth cladding layer 12: n-Al x Ga 1 -x As DBR13 ( Bragg reflectors): n-GaAs / AlAs
20 pairs of second contact layer 14: n-GaAs

【0014】このように積層された最上層の第2のコン
タクト層14を、フォトリソグラフィ及びエッチングに
より、DBR13のほぼ中央にDBR13よりも小さい
面積を残存させて除去する。そして、光を出射すべき直
径2μm程度の領域以外の領域に、第5のクラッド層1
0の深さまでのプロトン照射を行い、電流ブロック領域
D,Dを形成する。
The uppermost second contact layer 14 thus laminated is removed by photolithography and etching while leaving an area smaller than that of DBR 13 at approximately the center of DBR 13. Then, the fifth cladding layer 1 is formed in a region other than the region of about 2 μm in diameter from which light should be emitted.
Proton irradiation is performed to a depth of 0 to form current block regions D and D.

【0015】次に、図3に示すように、フォトリソグラ
フィ及び第1のコンタクト層9に到達する深さまでのエ
ッチングにより、第2のコンタクト層14を含めた直径
10μmの円柱形状の利得部Cを残存させて、DBR1
3,第6のクラッド層12,活性層11及び第5のクラ
ッド層10を除去する。次に、図4に示すように、フォ
トリソグラフィ及びバッファ層2に到達する深さまでの
エッチングにより、利得部Cよりも底面積を大きくし
て、吸収部Bを形成する。そして、図5に示すように、
バッファ層2上に電極15を、第1のコンタクト層9上
に電極16を、第2のコンタクト層14上に電極17を
形成する。
Next, as shown in FIG. 3, the diameter including the second contact layer 14 is obtained by photolithography and etching to a depth reaching the first contact layer 9.
Leave the 10 μm cylindrical gain part C
3, the sixth cladding layer 12, the active layer 11 and the fifth cladding layer 10 are removed. Next, as shown in FIG. 4, by photolithography and etching to a depth reaching the buffer layer 2, the bottom area is made larger than that of the gain section C, and the absorption section B is formed. Then, as shown in FIG.
An electrode 15 is formed on the buffer layer 2, an electrode 16 is formed on the first contact layer 9, and an electrode 17 is formed on the second contact layer 14.

【0016】このような構造の半導体光素子Mは、活性
層11の組成が所望する発振光の波長によって設定され
る。また、超格子構造はワニエ・シュタルク局在性を有
し、電界印加時と無印加時とで2準位間エネルギーギャ
ップが大きく変化するので、超格子構造における光の吸
収係数は大きく変化する。このような超格子構造の吸収
層6の組成及び厚みは、前記発振光のエネルギーが、吸
収層6の印加電圧の大小による夫々の2準位間エネルギ
ーギャップの間となるように設定される。
In the semiconductor optical device M having such a structure, the composition of the active layer 11 is set according to the desired wavelength of the oscillation light. In addition, the superlattice structure has Wannier-Stark localization, and the energy gap between the two levels changes greatly when an electric field is applied and when no electric field is applied, so the light absorption coefficient in the superlattice structure changes significantly. The composition and thickness of the absorption layer 6 having such a superlattice structure are set so that the energy of the oscillated light is between the energy gaps between the two levels depending on the magnitude of the applied voltage to the absorption layer 6.

【0017】図6は、以上のように形成された半導体光
素子Mの電極に電源及び抵抗を接続した場合の模式的断
面図である。電極17及び電極16間に電源を設け、電
極15側には電源を電極16側には抵抗Rを、吸収部B
及び抵抗Rが直列接続されるように設ける。このような
構成の面発光レーザ装置においては、吸収部Bに電圧が
印加されて超格子構造の2準位間エネルギーギャップが
高くなり、発振される光に対する吸収係数が小さく(α
1 )なる。このとき、電流が注入された利得部Cでは活
性層11の利得が共振器内の損失を上回り、しきい値を
越えて光を発振させる。
FIG. 6 is a schematic cross-sectional view in the case where a power source and a resistor are connected to the electrodes of the semiconductor optical device M formed as described above. A power supply is provided between the electrodes 17 and 16, a power supply is provided on the electrode 15 side, a resistance R is provided on the electrode 16 side, and an absorption portion B is provided.
And the resistor R are provided so as to be connected in series. In the surface emitting laser device having such a configuration, a voltage is applied to the absorption portion B to increase the energy gap between two levels of the superlattice structure, and the absorption coefficient for oscillated light is small (α
1 ) At this time, in the gain portion C into which the current is injected, the gain of the active layer 11 exceeds the loss in the resonator, exceeds the threshold value, and oscillates light.

【0018】光を発振している状態では、抵抗Rにかか
る電圧が増加して吸収部Bにかかる電圧は減少し、吸収
層6の発振する光に対する吸収係数は大きく(α2 )な
る。このとき、吸収層6での光の吸収が大きくなり、活
性層11の利得に比べ共振器内の損失が低くなって、光
の発振が停止される。光の発振が停止されると吸収部B
にかかる電圧が増加し、吸収層6の吸収係数が小さくな
って(α1 )、再び活性層11の利得が共振器内の損失
を上回り光を発振させる。以上のような動作を繰り返す
ことによって、パルス光が出力する。図7は、発振され
た光の動作特性を示す説明図であり、縦軸は光出力を横
軸は時間を表している。
In the state of oscillating light, the voltage applied to the resistor R increases and the voltage applied to the absorption portion B decreases, and the absorption coefficient of the absorption layer 6 for the oscillated light becomes large (α 2 ). At this time, the absorption of light in the absorption layer 6 becomes large, the loss in the resonator becomes lower than the gain of the active layer 11, and the oscillation of light is stopped. Absorption part B when the light oscillation is stopped
Voltage increases, the absorption coefficient of the absorption layer 6 decreases (α 1 ), and the gain of the active layer 11 again exceeds the loss in the resonator to oscillate light. By repeating the above operation, pulsed light is output. FIG. 7 is an explanatory diagram showing the operating characteristics of the oscillated light, where the vertical axis represents the optical output and the horizontal axis represents the time.

【0019】このようにパルス光を出力する半導体光素
子は、発振する光のビームパターンが円形であり、ま
た、垂直共振器型であるので光の反射率が高く、利得部
Cと吸収部Bとの光の結合効率が良い。また上述のよう
に、吸収層6を超格子構造とすることにより、吸収係数
の変動差が大きくなり、発振光の動作特性を向上させ
る。
As described above, the semiconductor optical device that outputs pulsed light has a circular beam pattern of oscillating light, and since it is a vertical resonator type, it has a high light reflectance, and the gain section C and the absorption section B are high. The light coupling efficiency with is good. Further, as described above, the absorption layer 6 having a superlattice structure increases a variation difference in absorption coefficient and improves the operating characteristics of the oscillated light.

【0020】なお、本実施例では半導体光素子はn型の
基板上に形成された場合を説明しているが、これに限る
ものではなく、p型の基板上に形成されていても良い。
また、半導体光素子の積層構造及び組成は、上述に示さ
れた限りではなく、InGaAs系であっても良いし、
吸収層6での発振光に対して吸収係数が双安定性を保持
するものであれば良い。さらに、本実施例では吸収層6
を超格子構造で形成しているが、これに限るものではな
く、吸収係数の双安定特性を有する組成であれば良い。
In this embodiment, the semiconductor optical device is described as being formed on an n-type substrate, but the present invention is not limited to this, and it may be formed on a p-type substrate.
Further, the laminated structure and composition of the semiconductor optical device are not limited to those shown above, and may be InGaAs-based,
Any material may be used as long as the absorption coefficient of the absorption layer 6 maintains bistability with respect to oscillation light. Further, in this embodiment, the absorption layer 6
Is formed of a superlattice structure, but the invention is not limited to this, and any composition having a bistable characteristic of absorption coefficient may be used.

【0021】また、本実施例では電流狭窄のためにプロ
トン照射を行った場合を説明しているが、これに限るも
のではなく、電流狭窄機能を有する電流ブロック層を形
成した構造のものであっても良い。また、上述の実施例
では吸収部Bに抵抗Rを接続しているが、これに限るも
のではなく、例えばダイオードのようなものでも良い。
Further, although the present embodiment describes the case where the proton irradiation is performed for the current constriction, the present invention is not limited to this, and the current blocking layer having the current constriction function is formed. May be. Further, although the resistor R is connected to the absorbing portion B in the above-mentioned embodiment, the present invention is not limited to this, and may be, for example, a diode.

【0022】[0022]

【発明の効果】以上のように、本発明においては、発振
すべき光に対して吸収係数の双安定性を有する吸収層
を、垂直共振器型の半導体光素子に備えることにより、
光の発振,停止が交互に行われてパルス光が出力し、2
次元集積で小型化できる等、本発明は優れた効果を奏す
るものである。
As described above, in the present invention, by providing the vertical resonator type semiconductor optical device with the absorption layer having the bistability of the absorption coefficient for the light to be oscillated,
Light oscillation and stop are alternately performed, and pulsed light is output.
The present invention has excellent effects such as reduction in size by dimensional integration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体光素子の模式的斜視図である。FIG. 1 is a schematic perspective view of a semiconductor optical device of the present invention.

【図2】本発明の半導体光素子を製造する過程を示す図
1のII−II線から見た模式的断面図である。
FIG. 2 is a schematic sectional view taken along line II-II of FIG. 1 showing a process for manufacturing the semiconductor optical device of the present invention.

【図3】本発明の半導体光素子を製造する過程を示す図
1のII−II線から見た模式的断面図である。
FIG. 3 is a schematic sectional view taken along line II-II of FIG. 1 showing a process of manufacturing the semiconductor optical device of the present invention.

【図4】本発明の半導体光素子を製造する過程を示す図
1のII−II線から見た模式的断面図である。
FIG. 4 is a schematic cross-sectional view taken along the line II-II of FIG. 1 showing a process of manufacturing the semiconductor optical device of the present invention.

【図5】本発明の半導体光素子を製造する過程を示す図
1のII−II線から見た模式的断面図である。
FIG. 5 is a schematic cross-sectional view taken along the line II-II in FIG. 1, showing a process for manufacturing the semiconductor optical device of the present invention.

【図6】本発明の半導体光素子Mの電極に電源及び抵抗
を接続した場合の模式的断面図である。
FIG. 6 is a schematic cross-sectional view when a power source and a resistor are connected to the electrodes of the semiconductor optical device M of the present invention.

【図7】発振された光の動作特性を示す説明図である。FIG. 7 is an explanatory diagram showing operating characteristics of oscillated light.

【図8】パルス光を出力する従来のレーザ装置の構造を
示す模式的断面図である。
FIG. 8 is a schematic cross-sectional view showing the structure of a conventional laser device that outputs pulsed light.

【図9】発振する光強度と吸収係数との関係を示したグ
ラフである。
FIG. 9 is a graph showing the relationship between oscillating light intensity and absorption coefficient.

【図10】垂直共振器型の半導体光素子の発振特性を示
すグラフである。
FIG. 10 is a graph showing oscillation characteristics of a vertical cavity type semiconductor optical device.

【符号の説明】[Explanation of symbols]

1 基板 3,13 多層膜反射鏡 6 吸収層 11 活性層 1 Substrate 3,13 Multilayer Reflector 6 Absorption Layer 11 Active Layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 積層方向に活性層を挟んで両側に反射鏡
を備え、この両反射鏡間での吸収損失より大きな光利得
で積層方向に光を発振させる半導体光素子において、 前記両反射鏡間に、前記光に対して吸収係数の双安定性
を有する吸収層を備えることを特徴とする半導体光素
子。
1. A semiconductor optical device comprising reflection mirrors on both sides of an active layer sandwiched in the stacking direction, and oscillating light in the stacking direction with an optical gain larger than an absorption loss between the two reflectors. A semiconductor optical device having an absorption layer having bistability of absorption coefficient for the light therebetween.
【請求項2】 前記吸収層が超格子構造であることを特
徴とする請求項1記載の半導体光素子。
2. The semiconductor optical device according to claim 1, wherein the absorption layer has a superlattice structure.
JP11222293A 1993-04-14 1993-04-14 Semiconductor optical element Pending JPH06302916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11222293A JPH06302916A (en) 1993-04-14 1993-04-14 Semiconductor optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11222293A JPH06302916A (en) 1993-04-14 1993-04-14 Semiconductor optical element

Publications (1)

Publication Number Publication Date
JPH06302916A true JPH06302916A (en) 1994-10-28

Family

ID=14581315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11222293A Pending JPH06302916A (en) 1993-04-14 1993-04-14 Semiconductor optical element

Country Status (1)

Country Link
JP (1) JPH06302916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716645B1 (en) * 2005-10-31 2007-05-09 서울옵토디바이스주식회사 Light emitting device having vertically stacked light emitting diodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716645B1 (en) * 2005-10-31 2007-05-09 서울옵토디바이스주식회사 Light emitting device having vertically stacked light emitting diodes

Similar Documents

Publication Publication Date Title
JP4919639B2 (en) Surface emitting laser element, surface emitting laser array, surface emitting laser element manufacturing method, surface emitting laser module, electrophotographic system, optical communication system, and optical interconnection system
CA2190843C (en) Long wavelength, vertical cavity surface emitting laser with vertically integrated optical pump
US5229627A (en) Vertical cavity type vertical to surface transmission electrophotonic device
US6792026B2 (en) Folded cavity solid-state laser
US7801197B2 (en) High power laser device
JPH10284806A (en) Vertical resonator laser having photonic band structure
JPH06196681A (en) Light-receiving-and-emitting integrated element
US5383214A (en) Semiconductor laser and a method for producing the same
JPH05283791A (en) Surface emission type semiconductor laser
JP4497859B2 (en) Surface emitting semiconductor laser device, optical transmission module, and optical transmission system
WO2008026721A1 (en) Vertical resonator surface emission laser
US7907653B2 (en) Vertical cavity surface emitting laser device and vertical cavity surface emitting laser array
US20140227007A1 (en) Surface-emitting laser and image forming apparatus using the same
JP2002305354A (en) Surface emission-type semiconductor laser element
JPH04144183A (en) Surface light emitting type semiconductor laser
JPH11186657A (en) Vertical resonance laser having photonic band structure
JP2009246194A (en) Surface-emitting semiconductor laser element
WO2005074080A1 (en) Surface-emitting laser and its manufacturing method
JPH05152674A (en) Surface light emitting semiconductor laser with outer modulator
JP3566184B2 (en) Surface emitting laser
JPH06302916A (en) Semiconductor optical element
JP2004128524A (en) Manufacturing method for surface emitting semiconductor laser device
WO2007102600A1 (en) Surface emitting semiconductor laser element
JP2968255B1 (en) Super lattice semiconductor light emitting device
WO2022097513A1 (en) Vertical resonator type surface-emitting laser element and method for manufacturing vertical resonator type surface-emitting laser element