JPH06302474A - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JPH06302474A
JPH06302474A JP8661593A JP8661593A JPH06302474A JP H06302474 A JPH06302474 A JP H06302474A JP 8661593 A JP8661593 A JP 8661593A JP 8661593 A JP8661593 A JP 8661593A JP H06302474 A JPH06302474 A JP H06302474A
Authority
JP
Japan
Prior art keywords
capacitor
unit
double layer
electric double
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8661593A
Other languages
Japanese (ja)
Other versions
JP2716339B2 (en
Inventor
Kazuhiko Sato
和彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5086615A priority Critical patent/JP2716339B2/en
Publication of JPH06302474A publication Critical patent/JPH06302474A/en
Application granted granted Critical
Publication of JP2716339B2 publication Critical patent/JP2716339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PURPOSE:To prevent a short-mode fault in a multilayer capacitor as a whole without increasing a leakage current and a protective-circuit current by a method wherein Zener diodes and resistances are connected in series with respective unit electric double layer capacitors and a protective circuit is connected in parallel. CONSTITUTION:Six unit capacitors 5 are laminated, and a laminated body 6 is formed. When they are laminated, copper sheets 7 are interposed and inserted between the individual unit capacitors 5 and on both the upper and lower edges of the laminated body 6. Leads 7a which have been installed at the copper plates interposed and inserted in the laminated body 6 are connected to a polyimide-resin flexible wiring board 8. Then, six sets of protective circuits 11 in which resistors 9 and Zener diodes 10 have been connected in series are installed on the wiring board 8 so as to be parallel to the respective unit capacitors 5. Thereby, even when a fault in an open mode or a short mode is caused, a short fault is not caused in a multilayer (electric double layer) capacitor as a whole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気二重層コンデンサ
に関し、特に、積層型の電気二重層コンデンサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor, and more particularly to a laminated type electric double layer capacitor.

【0002】[0002]

【従来の技術】この種の電気二重層(以後、積層コンデ
ンサと記す)コンデンサは、積層の単位となる電気二重
層コンデンサ(以後、単位コンデンサと記す)を複数個
直列に一体化接続した構造を持つ。積層数は通常、使用
電圧に応じて決められる。単位コンデンサの耐電圧は、
その単位コンデンサの構成要素である電解質および溶媒
の電気分解電圧で決まり、例えば、硫酸あるいは水酸化
カリウム等を電解質とする水溶液系の電解液の場合は、
単位コンデンサの耐電圧は約1.2Vである。また、プ
ロピレンカーボネート、γ(ガンマ)−ブチロラクトン
などの有機溶媒を用いる有機系電解液では、使用する塩
イオンの分解電圧にもよるが、耐電圧は2.8〜3.0
V程度である。この単位コンデンサに溶媒の分解電圧以
上の電圧を印加すると、コンデンサ機能は破壊される。
このため、コンデンサの使用電圧として単位コンデンサ
の分解電圧以上の電圧が要求される場合には、単位コン
デンサを必要数だけ積層し直列に接続して、単位コンデ
ンサ当りの分担電圧をその単位コンデンサの耐電圧以下
におさえて使用する。
2. Description of the Related Art This type of electric double layer (hereinafter referred to as a laminated capacitor) capacitor has a structure in which a plurality of electric double layer capacitors (hereinafter referred to as unit capacitors), which are units of lamination, are integrally connected in series. To have. The number of stacked layers is usually determined according to the operating voltage. The withstand voltage of the unit capacitor is
Determined by the electrolysis voltage of the electrolyte and solvent that are the constituent elements of the unit capacitor, for example, in the case of an aqueous solution containing sulfuric acid or potassium hydroxide as the electrolyte,
The withstand voltage of the unit capacitor is about 1.2V. Further, in an organic electrolyte solution using an organic solvent such as propylene carbonate or γ (gamma) -butyrolactone, the withstand voltage is 2.8 to 3.0, although it depends on the decomposition voltage of the salt ion used.
It is about V. When a voltage higher than the decomposition voltage of the solvent is applied to this unit capacitor, the function of the capacitor is destroyed.
For this reason, when a voltage higher than the decomposition voltage of a unit capacitor is required as the working voltage of the capacitor, stack the required number of unit capacitors and connect them in series to set the shared voltage per unit capacitor to the withstand voltage of that unit capacitor. Use it below the voltage.

【0003】このような積層コンデンサに直流電圧を印
加するとそれぞれの単位コンデンサには、印加電圧が各
単位コンデンサの絶縁抵抗に比例配分された電圧が加わ
る。この場合、単位コンデンサの絶縁抵抗のばらつきが
大きいと各単位コンデンサに加わる電圧のばらつきも大
きくなる。従ってそのばらつきの度合いによっては、積
層コンデンサに加えられる電圧がたとえ定格以内であっ
ても、単位コンデンサ個々についてみると耐電圧以上の
電圧が加わって破壊を起す単位コンデンサが生じ、ひい
ては積層コンデンサ全体としての機能を失うことがあ
る。
When a DC voltage is applied to such a multilayer capacitor, a voltage is applied to each unit capacitor in which the applied voltage is proportionally distributed to the insulation resistance of each unit capacitor. In this case, if the variation in the insulation resistance of the unit capacitors is large, the variation in the voltage applied to each unit capacitor is also large. Therefore, depending on the degree of variation, even if the voltage applied to the multilayer capacitor is within the rated range, looking at each unit capacitor, a unit capacitor in which a voltage higher than the withstand voltage is applied to cause destruction occurs, and as a result, the multilayer capacitor as a whole. May lose its functionality.

【0004】上記の各単位コンデンサの特性ばらつきに
起因する積層コンデンサの破壊の防止策として、特公昭
62−4848号公報に示されたように、各単位コンデ
ンサに抵抗値の等しい複数の抵抗体を並列に挿入して各
単位コンデンサに印加される電圧のばらつきを小さくす
る手段や、実開平4−26522号公報に示されたよう
に、各単位コンデンサに対して並列にツェナーダイオー
ドと導線とヒートシンク及びスプリングからなる過電圧
保護回路を接続し、各単位コンデンサの分担電圧をツェ
ナー電圧以下に抑える手段がある。
As a measure for preventing the destruction of the multilayer capacitor due to the characteristic variation of each unit capacitor, as shown in JP-B-62-4848, each unit capacitor is provided with a plurality of resistors having the same resistance value. A means for reducing the variation of the voltage applied to each unit capacitor by inserting them in parallel, or a Zener diode, a conductor wire, a heat sink, and a heat sink in parallel with each unit capacitor, as shown in Japanese Utility Model Laid-Open No. 4-26522. There is a means of connecting an overvoltage protection circuit composed of a spring and suppressing the shared voltage of each unit capacitor to a Zener voltage or less.

【0005】[0005]

【発明が解決しようとする課題】従来の積層コンデンサ
の上記破壊の防止策として、特公昭62−4848号公
報に示されている手段では、単位コンデンサに抵抗値の
等しい複数の抵抗体を並列に挿入して各単位コンデンサ
への印加電圧のばらつきを小さくするためには、同公報
に記載されているように、それぞれ各単位コンデンサの
絶縁抵抗値の1/5〜1/10の抵抗を挿入する必要が
ある。この結果、この従来技術によれば積層コンデンサ
全体としての漏れ電流が抵抗体を挿入しない場合の5倍
〜10倍に増大しロスが非常に大きくなるという問題点
があった。
As a measure for preventing the above-mentioned destruction of a conventional multilayer capacitor, in the means disclosed in Japanese Patent Publication No. 62-4848, a unit capacitor is provided with a plurality of resistors having the same resistance value in parallel. In order to reduce the variation of the applied voltage to each unit capacitor by inserting it, as described in the same publication, insert a resistor of 1/5 to 1/10 of the insulation resistance value of each unit capacitor. There is a need. As a result, according to this conventional technique, there has been a problem that the leakage current of the whole multilayer capacitor is increased to 5 to 10 times as much as when the resistor is not inserted, and the loss becomes very large.

【0006】一方、上記実開平4−26522号公報記
載の積層コンデンサでは、積層された一つの単位コンデ
ンサが故障すると、他の単位コンデンサが連鎖的に破壊
されることがある。すなわち、上記公報記載の積層コン
デンサの等価回路を示す図6を参照すると、この積層コ
ンデンサでは、三つの単位コンデンサC1 ,C2 および
3 が直列に積層されており、それぞれの単位コンデン
サにはツェナーダイオードDZ1,DZ2およびDZ3がそれ
ぞれ並列に接続されている。尚、それぞれの単位コンデ
ンサに並列接続された抵抗R1 ,R2 およびR3 は、単
位コンデンサの絶縁抵抗を表す。上記三つのツェナーダ
イオードには、ツェナー電圧VZ が単位コンデンサの耐
電圧以下のものが用いられている。
On the other hand, in the multilayer capacitor described in Japanese Utility Model Laid-Open No. 4-26522, when one laminated unit capacitor fails, other unit capacitors may be broken in a chain. That is, referring to FIG. 6 showing an equivalent circuit of the multilayer capacitor described in the above publication, in this multilayer capacitor, three unit capacitors C 1 , C 2 and C 3 are stacked in series, and each unit capacitor has Zener diodes D Z1 , D Z2 and D Z3 are respectively connected in parallel. The resistors R 1 , R 2 and R 3 connected in parallel to the respective unit capacitors represent the insulation resistance of the unit capacitors. A Zener voltage V Z that is equal to or lower than the withstand voltage of the unit capacitor is used for the three Zener diodes.

【0007】図6において、いま、単位コンデンサC1
がオープンモードの故障を起したものとする。また、他
の二つの単位コンデンサC2 およびC3 が未充電または
放電後の状態にあるものとする。この状態で端子19と
端子20との間に外部から電圧が加えられると、これら
二つの単位コンデンサC2 およびC3 が充電されるまで
充電電流が流れる。この場合、電気二重層コンデンサは
ファラッド(F)オーダーの非常に大きな静電容量を持
っているので、上記電圧印加の直後は特に大きな充電電
流が流れ、単位コンデンサC2 およびC3 は等価的に短
絡状態にある。そのため、端子19/20間に加えられ
た電圧が単位コンデンサC1 に並列に設けられたツェナ
ーダイオードDZ1に全て掛かることになるので、このツ
ェナーダイオードDZ1は許容損失を超える電流により焼
損し短絡を起す。このような状態になると、端子19/
20に加えられた電圧が残りの二つの単位コンデンサC
2/C3 の直列接続回路に掛かることになるので、これ
ら二つの単位コンデンサは分担電圧が耐電圧を越え次々
と連鎖的に破壊を起し、最終的に積層コンデンサ全体が
短絡状態になってしまう。
In FIG. 6, the unit capacitor C 1 is now
Caused an open mode failure. Further, it is assumed that the other two unit capacitors C 2 and C 3 are in a state after being uncharged or discharged. When a voltage is externally applied between the terminals 19 and 20 in this state, a charging current flows until these two unit capacitors C 2 and C 3 are charged. In this case, since the electric double layer capacitor has a very large capacitance of the farad (F) order, a particularly large charging current flows immediately after the voltage application, and the unit capacitors C 2 and C 3 are equivalent. There is a short circuit. Therefore, the voltage applied between the terminals 19/20 is applied to the Zener diode D Z1 provided in parallel with the unit capacitor C 1 , and the Zener diode D Z1 is burned out by a current exceeding the allowable loss and short-circuited. Cause When this happens, the terminal 19 /
The voltage applied to 20 is the remaining two unit capacitors C
Since it will be applied to the 2 / C 3 series connection circuit, the sharing voltage of these two unit capacitors will exceed the withstand voltage and will be destroyed in a chained manner, eventually causing the entire multilayer capacitor to be short-circuited. I will end up.

【0008】以上の説明は、単位コンデンサの一つがオ
ープンモードの故障を起した場合に関するものである
が、ある一つの単位コンデンサがショートモードで故障
した場合でも、残りの他の単位コンデンサの分担電圧が
耐電圧を超えて連鎖的に破壊され、最終的に積層コンデ
ンサの短絡に至る。
The above description relates to the case where one of the unit capacitors fails in the open mode. However, even if one unit capacitor fails in the short mode, the shared voltage of the other unit capacitors remains. Are exceeded in withstand voltage and are broken in a chain, eventually leading to short circuit of the multilayer capacitor.

【0009】[0009]

【課題を解決するための手段】第1の発明の電気二重層
コンデンサは、積層の単位となる単位電気二重層コンデ
ンサを複数個直列に積層してなる積層構造の電気二重層
コンデンサにおいて、前記単位電気二重層コンデンサの
それぞれに、それぞれツェナーダイオードと抵抗とを直
列に接続してなる保護回路を並列に接続したことを特徴
とする。
The electric double layer capacitor of the first invention is an electric double layer capacitor having a laminated structure in which a plurality of unit electric double layer capacitors serving as a unit of lamination are laminated in series. It is characterized in that a protection circuit formed by connecting a Zener diode and a resistor in series is connected in parallel to each of the electric double layer capacitors.

【0010】又、第2の発明の電気二重層コンデンサ
は、第1の発明の電気二重層コンデンサにおいて、前記
保護回路がそれぞれ、同一のフレキシブル配線基板に組
み込まれていることを特徴とする。
The electric double layer capacitor of the second invention is the electric double layer capacitor of the first invention, characterized in that the protection circuits are respectively incorporated in the same flexible wiring board.

【0011】[0011]

【実施例】次に、本発明の好適な実施例について図面を
参照して説明する。図1は、本発明の一実施例における
本発明関連部分、すなわち、単位コンデンサを積層した
積層体6と保護回路11の部分とを示す模式的断面図で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a portion related to the present invention in one embodiment of the present invention, that is, a laminated body 6 in which unit capacitors are laminated and a portion of a protection circuit 11.

【0012】図1を参照して、本実施例における単位コ
ンデンサ5は、直径28mmで厚さ0.2mmの電子伝
導性の導電性ゴムからなる集電体1と、表面積1500
〜2500m2 /g(BET法)で平均粒径1.5〜
4.0μmの粉末活性端と希硫酸とからなるカーボンペ
ースト電極2と、二つのカーボンペースト電極間の導通
を防止するために設けたイオン透過性のポリオレフィン
系の多孔性セパレータ3と、カーボンペースト電極を保
持しかつ外界から遮断するために設けた外径28mm厚
さ1mmの非導電性ゴムによるガスケット4とからな
る。したがって、単位コンデンサ5は、外径28mmで
厚さ1.4mmであり、その耐電圧は1.2V(=水の
電気分解電圧)である。本実施例では積層コンデンサを
作成するために、上記の単位コンデンサを6個積層し積
層体6とした。この積層時に、各単位コンデンサ間およ
び積層体6の上下両端面に厚さ0.1mmの銅板7を介
挿した。この積層体6の公称耐電圧は5.5Vであり、
静電容量は0.47Fである。
Referring to FIG. 1, a unit capacitor 5 in this embodiment has a current collector 1 made of an electroconductive rubber having a diameter of 28 mm and a thickness of 0.2 mm, and a surface area 1500.
~ 2500 m 2 / g (BET method) average particle size 1.5 ~
Carbon paste electrode 2 composed of 4.0 μm powder active end and dilute sulfuric acid, ion-permeable polyolefin-based porous separator 3 provided to prevent conduction between two carbon paste electrodes, and carbon paste electrode And a gasket 4 made of a non-conductive rubber having an outer diameter of 28 mm and a thickness of 1 mm, which is provided for holding and shielding from the outside. Therefore, the unit capacitor 5 has an outer diameter of 28 mm and a thickness of 1.4 mm, and its withstand voltage is 1.2 V (= electrolytic voltage of water). In this embodiment, in order to manufacture a laminated capacitor, six unit capacitors described above are laminated to form a laminated body 6. At the time of this lamination, a copper plate 7 having a thickness of 0.1 mm was inserted between each unit capacitor and both upper and lower end surfaces of the laminated body 6. The nominal withstand voltage of this laminate 6 is 5.5 V,
The capacitance is 0.47F.

【0013】積層体6に介挿した銅板7に設けられたリ
ード7aは、ポリイミド樹脂性のフレキシブルな配線基
板8に接続される。配線基板8には、抵抗体9とツェナ
ーダイオード10とを直列接続した6組の保護回路11
がそれぞれ単位コンデンサ5に並列になるように設けら
れている。
The leads 7a provided on the copper plate 7 inserted in the laminate 6 are connected to a flexible wiring board 8 made of a polyimide resin. The wiring board 8 has six sets of protection circuits 11 in which a resistor 9 and a Zener diode 10 are connected in series.
Are arranged in parallel with the unit capacitors 5, respectively.

【0014】図2に、保護回路を含む積層体の等価回路
を示す。図2を参照してこの積層体6には、積層体6が
積層構造であることによる単位コンデンサ間の接触抵抗
と単位コンデンサ内部のカーボンペースト電極を構成す
る活性炭粒子間の接触抵抗とに起因する内部抵抗RS1
…,RS6が存在する。積層コンデンサはこれらの内部抵
抗を下げ安定化させる為に、通常、積層体6の上下から
数10kg/cm2 程度の圧力を加え保持する構造にす
る。
FIG. 2 shows an equivalent circuit of the laminated body including the protection circuit. Referring to FIG. 2, this laminated body 6 is caused by the contact resistance between the unit capacitors due to the laminated body 6 having a laminated structure and the contact resistance between the activated carbon particles forming the carbon paste electrodes inside the unit capacitors. Internal resistance R S1 ,
..., R S6 exists. In order to lower and stabilize the internal resistance of the multilayer capacitor, the multilayer capacitor usually has a structure in which a pressure of several tens kg / cm 2 is applied and held from above and below the multilayer body 6.

【0015】加圧構造にした本実施例の積層コンデンサ
の断面図を示す図3を参照して、本実施例では、リード
7aに接続した配線基板8を積層体6に絶縁性の粘着テ
ープ12で固定し、金属製の外装ケース13に収納す
る。その後、リード端子を有する電極板14Aと電極板
14Bと絶縁ケース16とが予めアセンブリされた組立
電極17を被せ、外装ケース13の周端部13aをかし
めることにより加圧し保持している。
Referring to FIG. 3 showing a cross-sectional view of the laminated capacitor of this embodiment having a pressure structure, in this embodiment, the wiring board 8 connected to the leads 7a is attached to the laminated body 6 and the insulating adhesive tape 12 is used. Then, it is fixed in and housed in a metal outer case 13. After that, the electrode plate 14A having the lead terminals, the electrode plate 14B, and the insulating case 16 are covered with the assembled electrode 17 in advance, and the peripheral end portion 13a of the outer case 13 is crimped and held.

【0016】次に、抵抗体9及びツェナーダイオード1
0の選定について説明する。図4(a)は、前述の保護
回路を持たない積層体における充電電流の時間的変化の
様子を示す図である。又、図4(b)は、各単位コンデ
ンサの分担電圧を、保護回路あり(本実施例)と保護回
路なしとで比較した図である。図4(a)において、充
電電流は、直流電圧5.0Vを公称定格0.47F,
5.5Vの電気二重層コンデンサに加えた時の電流を、
直列接続した測定用の抵抗器(1000Ω)によりモニ
ターした結果を示すものである。図4(a)によれば、
充電電流は充電開始後150時間経過するとほぼ平坦に
なり、約1μAの漏れ電流が流れる。
Next, the resistor 9 and the Zener diode 1
The selection of 0 will be described. FIG. 4A is a diagram showing how the charging current changes with time in the laminate without the protection circuit described above. In addition, FIG. 4B is a diagram comparing the shared voltage of each unit capacitor with and without the protection circuit (this embodiment). In FIG. 4 (a), the charging current is DC voltage 5.0V, nominal rating 0.47F,
The current when applied to a 5.5V electric double layer capacitor,
It shows the results of monitoring with a measuring resistor (1000Ω) connected in series. According to FIG. 4 (a),
The charging current becomes almost flat after 150 hours from the start of charging, and a leakage current of about 1 μA flows.

【0017】図4(b)は、充電開始150時間経過
後、すなわち積層コンデンサの漏れ電流がほぼ1μAと
なった時の、各単位コンデンサの電圧分担状態を示して
いる。各単位コンデンサの絶縁抵抗RP1,…,RP6は、
分担電圧を漏れ電流約1μAで除した値となる。図4
(b)によれば本実施例の場合、これらの絶縁抵抗の平
均値が0.83MΩとなることから、保護回路11の抵
抗体9の抵抗値を、平均絶縁抵抗値の約1/10の80
KΩとした。
FIG. 4B shows the voltage sharing state of each unit capacitor after the lapse of 150 hours from the start of charging, that is, when the leakage current of the multilayer capacitor becomes approximately 1 μA. The insulation resistance R P1 , ..., R P6 of each unit capacitor is
It is a value obtained by dividing the shared voltage by the leakage current of about 1 μA. Figure 4
According to (b), in the case of the present embodiment, the average value of these insulation resistances is 0.83 MΩ, so the resistance value of the resistor 9 of the protection circuit 11 is about 1/10 of the average insulation resistance value. 80
It was set to KΩ.

【0018】ツェナーダイオード10は、単位コンデン
サの耐電圧が約1.2Vであることから、電流の立ち上
がりが図5にその一例を示すような、1V以下のツェナ
ー電圧特性を示すものでなければならない。しかも積層
体に接続して上記外装ケース13内に収容することから
形状的にも小さいものでなければならない。このような
ツェナーダイオードとして、例えば、日本電気(株)製
RD2.2Sなどは、ツェナー特性が図5に示した通り
1V以下であり、形状が長さ1.7mm,幅1.25m
m,厚み0.9mmであるので、本実施例の単位コンデ
ンサが積層体への加圧により厚みが当初の2.4mmよ
り圧縮されたとしても十分挿入できる。また抵抗体9も
1.0〜2.0mmの寸法の形状を選択する。
Since the unit capacitor of the Zener diode 10 has a withstand voltage of about 1.2 V, the rising current must have a Zener voltage characteristic of 1 V or less as shown in FIG. . Moreover, since it is connected to the laminate and accommodated in the outer case 13, it must be small in shape. As such a Zener diode, for example, RD2.2S manufactured by NEC Corporation has a Zener characteristic of 1 V or less as shown in FIG. 5, a shape of 1.7 mm in length, and a width of 1.25 m.
Since m and the thickness are 0.9 mm, the unit capacitor of the present embodiment can be sufficiently inserted even if the thickness is compressed from the initial 2.4 mm by the pressure applied to the laminated body. The resistor 9 is also selected to have a size of 1.0 to 2.0 mm.

【0019】尚、本実施例の場合、単位コンデンサ5の
外壁を形作っているガスケット4がゴム製であるので完
成後の積層体6は、上記の加圧によって図3に示すよう
な中央部がふくらんだビール樽状の形状となっている。
しかし、保護回路11が組み込まれたフレキシブル配線
基板8がその積層体6の形状変化になじんで変形するの
で、保護回路11と積層体6との間の接触は確実に確保
される。
In the present embodiment, since the gasket 4 forming the outer wall of the unit capacitor 5 is made of rubber, the completed laminated body 6 has a central portion as shown in FIG. It has a puffed beer barrel shape.
However, since the flexible wiring board 8 in which the protection circuit 11 is incorporated adapts to the shape change of the laminated body 6 and is deformed, the contact between the protective circuit 11 and the laminated body 6 is reliably ensured.

【0020】次に、保護回路11の保護動作を説明す
る。図4(b)に、本実施例における各単位コンデンサ
毎の分担電圧を示した。保護回路がなかった場合に比べ
分担電圧のばらつきが抑制されている。
Next, the protection operation of the protection circuit 11 will be described. FIG. 4B shows the shared voltage for each unit capacitor in this embodiment. The variation in the shared voltage is suppressed as compared with the case without the protection circuit.

【0021】保護回路11を流れる電流は、ツェナーダ
イオード10の逆方向電流である。図4(b)により単
位コンデンサの平均分担電圧値を0.83Vとし、図5
の横軸(ツェナー電圧)に0.83Vを取り縦軸(ツェ
ナー電流)に0.83V/80kΩ=10.4μAを取
って直線を引く。ツェナー特性との交点より保護回路1
1のツェナー電流を読み取ると約1μAであるので、保
護回路なしのときの約1μAと合せても約2μAであ
る。すなわち本実施例では保護回路11を設けることに
より漏れ電流が2倍に増えるだけである。これに対し
て、特公昭62−4848号公報に開示された保護抵抗
だけを単位コンデンサに並列に挿入した積層コンデンサ
では、漏れ電流が約10倍にも増える。
The current flowing through the protection circuit 11 is the reverse current of the Zener diode 10. According to FIG. 4B, the average shared voltage value of the unit capacitors is set to 0.83V, and
A straight line is drawn by taking 0.83 V on the horizontal axis (Zener voltage) and 0.83 V / 80 kΩ = 10.4 μA on the vertical axis (Zener current). Protection circuit 1 from the intersection with Zener characteristics
When the Zener current of 1 is read, it is about 1 μA. Therefore, it is about 2 μA when combined with about 1 μA without the protection circuit. That is, in this embodiment, the provision of the protection circuit 11 only doubles the leakage current. On the other hand, in the multilayer capacitor in which only the protective resistor disclosed in Japanese Patent Publication No. 62-4848 is inserted in parallel with the unit capacitor, the leakage current increases about 10 times.

【0022】一方、実開平4−26522号公報で示さ
れたツェナーダイオードだけを各単位コンデンサ毎に並
列接続した積層コンデンサでは、単位コンデンサのいず
れかにオープンモードやショートモードの故障が発生す
ると、オープンモードの故障時には、オープンモード故
障を起した単位コンデンサに並列となっている保護回路
にコンデンサ端子電圧全てが印加されて他の単位コンデ
ンサが連鎖的に破壊するが、本実施例では、このような
ことは起らない。
On the other hand, in the multilayer capacitor shown in Japanese Utility Model Laid-Open No. 4-26522, in which only the Zener diode is connected in parallel for each unit capacitor, if an open mode or short mode failure occurs in any of the unit capacitors, the open capacitor is opened. When a mode failure occurs, the entire capacitor terminal voltage is applied to the protection circuit that is in parallel with the unit capacitor in which the open mode failure has occurred, and other unit capacitors are broken in a chain. Things will not happen.

【0023】すなわち、本実施例においてある一つの単
位コンデンサがオープンモードの故障を起したとする。
この場合、他の単位コンデンサが放電状態であると、外
部から電極板14A/14B間に加えられた電圧5.0
Vは前述のように、これら他の単位コンデンサが充電さ
れるまでの間、故障した単位コンデンサに並列な保護回
路の両端に加わることになり、充電電流はこの保護回路
のツェナーダイオードを通して流れる。このときツェナ
ーダイオードに流れる電流の大きさは、図5の横軸(ツ
ェナー電圧)に5.0Vを取り、縦軸(ツェナー電流)
に5.0V/80kΩ=62.5μAを取り各々の点を
直線で結ぶと、ツェナー特性曲線との交点より電圧印加
直後の最大電流時でも48μA迄しか流れないことが判
る。その後単位コンデンサが充電されて行くに従って充
電電流は徐々に減り、最終的には漏れ電流として全単位
コンデンサの絶縁抵抗と保護回路電流により決まる。す
なわち約2μA近辺で安定する。よって本実施例ではツ
ェナーダイオード10の過電流による焼損や単位コンデ
ンサの連鎖的破壊は起らない。
That is, it is assumed that one unit capacitor in this embodiment has a failure in the open mode.
In this case, when the other unit capacitors are in a discharged state, the voltage of 5.0 applied from the outside between the electrode plates 14A / 14B
As described above, V will be applied across the protection circuit in parallel with the failed unit capacitor until these other unit capacitors are charged, and the charging current will flow through the Zener diode of this protection circuit. At this time, the magnitude of the current flowing through the Zener diode is 5.0 V on the horizontal axis (Zener voltage) of FIG. 5, and the vertical axis (Zener current)
When 5.0 V / 80 kΩ = 62.5 μA is taken and each point is connected by a straight line, it can be seen from the intersection with the Zener characteristic curve that the current flows only up to 48 μA even at the maximum current immediately after the voltage application. After that, the charging current gradually decreases as the unit capacitors are charged, and finally the leakage current is determined by the insulation resistance of all unit capacitors and the protection circuit current. That is, it stabilizes in the vicinity of about 2 μA. Therefore, in this embodiment, burnout due to overcurrent of the Zener diode 10 and chain breakdown of the unit capacitors do not occur.

【0024】また、単位コンデンサのいずれかがショー
トモードの故障を起した場合は、他の単位コンデンサの
分担電圧が上昇するが、保護回路の電圧制限作用により
それら他の単位コンデンサが故障することはない。又、
万一その分担電圧の上昇によって他の単位コンデンサが
破壊されたときは、単位コンデンサの構造からしてその
故障モードは常にオープンモードの故障であるので、最
悪の場合二つの電極板14A/14B間の全電圧をこの
オープンモードの故障を起した単位コンデンサの保護回
路が分担することになる。しかし、そのときその保護回
路に流れる電流は上述のとおり最大でも48μAでしか
ないので、ツェナーダイオードが焼損を起してショート
状態になることはない。つまり、本実施例においては、
ある一つの単位コンデンサがショートモードで故障した
場合でも他の単位コンデンサあるいは保護回路が連鎖的
に短絡状態になることはなく、したがって積層コンデン
サ全体として、このコンデンサを用いる電子回路にとっ
て最悪の状態であるショートモードの故障が避けられ
る。
When any one of the unit capacitors fails in the short mode, the shared voltage of the other unit capacitors rises, but the voltage limiting action of the protection circuit prevents the other unit capacitors from failing. Absent. or,
In the unlikely event that another unit capacitor is destroyed due to the rise in the shared voltage, the failure mode is always an open mode failure due to the structure of the unit capacitor, so in the worst case, it is between the two electrode plates 14A / 14B. The entire protection circuit of the unit capacitor which caused the failure in the open mode will be responsible for all the voltage. However, at that time, since the maximum current flowing through the protection circuit is only 48 μA as described above, the zener diode is not burned and is not short-circuited. That is, in this embodiment,
Even if one unit capacitor fails in the short mode, the other unit capacitors or the protection circuit will not be short-circuited in a chain, therefore the multilayer capacitor as a whole is the worst state for the electronic circuit using this capacitor. Short mode failure can be avoided.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば直
列に接続された単位(電気二重層)コンデンサのそれぞ
れに、ツェナーダイオードと抵抗体とを直列に繋いだ保
護回路を並列に接続することにより、積層コンデンサの
漏れ電流及び保護回路に流れる電流を従来の保護抵抗の
並列接続の如く増大させることなく、しかも単位コンデ
ンサのいずれかにオープンモードやショートモードの故
障が生じた場合でも積層(電気二重層)コンデンサの保
護回路も含めた回路全体としてショート故障を起こさな
いようにすることができる。
As described above, according to the present invention, a protection circuit in which a Zener diode and a resistor are connected in series is connected in parallel to each unit (electric double layer) capacitor connected in series. Therefore, the leakage current of the multilayer capacitor and the current flowing in the protection circuit are not increased unlike the conventional parallel connection of protection resistors, and even when an open mode or short mode failure occurs in any of the unit capacitors, It is possible to prevent a short circuit from occurring in the entire circuit including the protection circuit for the electric double layer capacitor.

【0026】更に、保護回路をフレキシブル配線基板に
組み込むことによって、外装ケース内に内蔵しやすくす
ることができる。
Further, by incorporating the protection circuit into the flexible wiring board, it is possible to easily incorporate the protection circuit into the outer case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による積層構造電気二重層コ
ンデンサの本発明関連部分の模式的断面図である。
FIG. 1 is a schematic cross-sectional view of a portion related to the present invention of a laminated structure electric double layer capacitor according to an embodiment of the present invention.

【図2】本発明の実施例の積層構造電気二重層コンデン
サの等価回路図である。
FIG. 2 is an equivalent circuit diagram of a laminated structure electric double layer capacitor according to an embodiment of the present invention.

【図3】本発明の実施例の積層構造電気二重層コンデン
サの断面図である。
FIG. 3 is a sectional view of an electric double layer capacitor having a laminated structure according to an embodiment of the present invention.

【図4】分図(a)は、保護回路を用いない積層構造電
気二重層コンデンサにおける充電電流の時間的変化を示
す図である。分図(b)は、本発明の実施例および保護
回路なしの積層構造電気二重層コンデンサにおける各単
位コンデンサの分担電圧の分布状態を示す図である。
FIG. 4A is a diagram showing a temporal change of a charging current in a laminated structure electric double layer capacitor which does not use a protection circuit. FIG. 6B is a diagram showing a distribution state of the shared voltage of each unit capacitor in the laminated electric double layer capacitor without the protection circuit according to the embodiment of the present invention.

【図5】本発明の実施例に用いたツェナーダイオードの
ツェナー特性を示す図である。
FIG. 5 is a diagram showing a Zener characteristic of a Zener diode used in an example of the present invention.

【図6】従来の保護回路を備えた積層構造電気二重層コ
ンデンサの一例の等価回路図である。
FIG. 6 is an equivalent circuit diagram of an example of a multilayer electric double layer capacitor including a conventional protection circuit.

【符号の説明】[Explanation of symbols]

1 集電体 2 カーボンペースト電極 3 多孔性セパーレータ 4 ガスケット 5 単位コンデンサ 6 積層体 7 銅板 7a リード 8 配線基板 9 抵抗体 10 ツェナーダイオード 11 保護回路 12 粘着テープ 13 外装ケース 13a 外装ケース周端 14A,14B 電極板 16 絶縁ケース 17 組立電極 19,20 端子 1 Current Collector 2 Carbon Paste Electrode 3 Porous Separator 4 Gasket 5 Unit Capacitor 6 Laminated Body 7 Copper Plate 7a Lead 8 Wiring Board 9 Resistor 10 Zener Diode 11 Protective Circuit 12 Adhesive Tape 13 Exterior Case 13a Exterior Case Edge 14A, 14B Electrode plate 16 Insulation case 17 Assembly electrode 19, 20 terminals

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 積層の単位となる単位電気二重層コンデ
ンサを複数個直列に積層してなる積層構造の電気二重層
コンデンサにおいて、 前記単位電気二重層コンデンサのそれぞれに、それぞれ
ツェナーダイオードと抵抗とを直列に接続してなる保護
回路を並列に接続したことを特徴とする積層構造の電気
二重層コンデンサ。
1. An electric double layer capacitor having a laminated structure in which a plurality of unit electric double layer capacitors each serving as a unit of lamination are laminated in series, and a zener diode and a resistor are respectively provided in each of the unit electric double layer capacitors. An electric double layer capacitor having a laminated structure, in which protective circuits connected in series are connected in parallel.
【請求項2】 請求項1記載の電気二重層コンデンサに
おいて、 前記保護回路はそれぞれ、同一のフレキシブル配線基板
に組み込まれていることを特徴とする電気二重層コンデ
ンサ。
2. The electric double layer capacitor according to claim 1, wherein each of the protection circuits is incorporated in the same flexible wiring board.
JP5086615A 1993-04-14 1993-04-14 Electric double layer capacitor Expired - Lifetime JP2716339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5086615A JP2716339B2 (en) 1993-04-14 1993-04-14 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5086615A JP2716339B2 (en) 1993-04-14 1993-04-14 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH06302474A true JPH06302474A (en) 1994-10-28
JP2716339B2 JP2716339B2 (en) 1998-02-18

Family

ID=13891932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5086615A Expired - Lifetime JP2716339B2 (en) 1993-04-14 1993-04-14 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2716339B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851445A2 (en) * 1996-12-20 1998-07-01 Asahi Glass Company Ltd. Electric double layer capacitor and an assembled cell type power source device
JP2003532277A (en) * 1999-12-06 2003-10-28 エイブイエックス コーポレイション Ultra-thin electrochemical energy storage device
EP1593135A1 (en) * 2003-02-13 2005-11-09 Energy Storage Systems Pty, Ltd A resistive balance for an energy storage device
DE19922948B9 (en) * 1998-05-15 2006-01-12 Nec Corp. Electric double layer capacitor with short circuit function
WO2008138699A2 (en) * 2007-05-10 2008-11-20 Siemens Ag Österreich Circuit arrangement comprising at least two capacitors that are connected in series
JP2009135335A (en) * 2007-11-30 2009-06-18 Nichicon Corp Capacitor unit
JP2010045220A (en) * 2008-08-13 2010-02-25 Nissan Diesel Motor Co Ltd Electric double layer capacitor and power supply system configured using the same
WO2011029767A1 (en) * 2009-09-11 2011-03-17 Sma Solar Technology Ag Topology surveying a series of capacitors
US8975899B2 (en) 2009-09-11 2015-03-10 Sma Solar Technology Ag Inverter device comprising a topology surveying a series of capacitors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426522U (en) * 1990-06-27 1992-03-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426522U (en) * 1990-06-27 1992-03-03

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851445A2 (en) * 1996-12-20 1998-07-01 Asahi Glass Company Ltd. Electric double layer capacitor and an assembled cell type power source device
EP0851445A3 (en) * 1996-12-20 1998-08-26 Asahi Glass Company Ltd. Electric double layer capacitor and an assembled cell type power source device
DE19922948B9 (en) * 1998-05-15 2006-01-12 Nec Corp. Electric double layer capacitor with short circuit function
JP2003532277A (en) * 1999-12-06 2003-10-28 エイブイエックス コーポレイション Ultra-thin electrochemical energy storage device
EP1593135A1 (en) * 2003-02-13 2005-11-09 Energy Storage Systems Pty, Ltd A resistive balance for an energy storage device
EP1593135A4 (en) * 2003-02-13 2009-11-25 Cap Xx Ltd A resistive balance for an energy storage device
WO2008138699A3 (en) * 2007-05-10 2009-02-12 Siemens Ag Oesterreich Circuit arrangement comprising at least two capacitors that are connected in series
WO2008138699A2 (en) * 2007-05-10 2008-11-20 Siemens Ag Österreich Circuit arrangement comprising at least two capacitors that are connected in series
US20100085667A1 (en) * 2007-05-10 2010-04-08 Jalal Hallak Circuit arrangement comprising at least two capacitors connected in series
US8705214B2 (en) 2007-05-10 2014-04-22 Siemens Aktiengesellschaft Circuit arrangement comprising at least two capacitors connected in series
JP2009135335A (en) * 2007-11-30 2009-06-18 Nichicon Corp Capacitor unit
JP2010045220A (en) * 2008-08-13 2010-02-25 Nissan Diesel Motor Co Ltd Electric double layer capacitor and power supply system configured using the same
WO2011029767A1 (en) * 2009-09-11 2011-03-17 Sma Solar Technology Ag Topology surveying a series of capacitors
US8253424B2 (en) 2009-09-11 2012-08-28 Sma Solar Technology Ag Topology surveying a series of capacitors
US8975899B2 (en) 2009-09-11 2015-03-10 Sma Solar Technology Ag Inverter device comprising a topology surveying a series of capacitors

Also Published As

Publication number Publication date
JP2716339B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
JP3661725B2 (en) Power supply
US7589955B2 (en) Electric double layer capacitor and aggregation thereof
TW430834B (en) Solid electrolytic capacitor and method of manufacturing the same
US7145763B2 (en) High-voltage electric double layer capacitor
US7859820B2 (en) Multilayer capacitor with capacitor element body having laminated insulator layers
KR20040101555A (en) Capacitor module and capacitor battery comprising the same
US20100010562A1 (en) Electrolytic capacitor interconnect
JP2716339B2 (en) Electric double layer capacitor
JP4732897B2 (en) Power storage device and wiring pattern
JP2010020921A (en) Power storage cell, and power storage cell module
JP2009135335A (en) Capacitor unit
JP7303177B2 (en) energy storage system
JP4798478B2 (en) Electrolytic capacitor
US6430111B1 (en) Electronic timepiece
US6400557B1 (en) Capacitor with folded end plate tab configuration
CN217720723U (en) Multi-gap surge protector
US8310814B2 (en) Stacked capacitor with positive multi-pin structure
JPH1174151A (en) Power capacitor
JP2007189127A (en) Electric double-layer capacitor
JPH10144576A (en) Electric double layer capacitor bank
JP2001319839A (en) Large capacitance capacitor
KR20160125061A (en) Composite capacitor module and power supply comprising the same
CN113162205A (en) Energy storage system
JP2001284176A (en) Laminated electric double-layer capacitor
CN116635961A (en) Laminated ceramic capacitor package for electronic device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960702