JP2010020921A - Power storage cell, and power storage cell module - Google Patents

Power storage cell, and power storage cell module Download PDF

Info

Publication number
JP2010020921A
JP2010020921A JP2008177991A JP2008177991A JP2010020921A JP 2010020921 A JP2010020921 A JP 2010020921A JP 2008177991 A JP2008177991 A JP 2008177991A JP 2008177991 A JP2008177991 A JP 2008177991A JP 2010020921 A JP2010020921 A JP 2010020921A
Authority
JP
Japan
Prior art keywords
storage cell
electrode
power generation
power
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008177991A
Other languages
Japanese (ja)
Inventor
Yasuo Suzuki
靖生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2008177991A priority Critical patent/JP2010020921A/en
Publication of JP2010020921A publication Critical patent/JP2010020921A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power storage element which is usable for different usages such as high output, high capacity, low temperature and high temperature, and high in degree of freedom of installment by having an integrated structure. <P>SOLUTION: In a power storage cell 41, electrode laminates (81, 82) in which one unit of power generation elements (30a, 30b) wherein a sheet-like positive electrode 10p and negative electrode 10n are opposingly arranged via a separator 20 are plurally laminated is airtightly sealed in an outer case 60 of a laminate film together with an electrolytic solution containing a lithium salt, and lithium ions originated from lithium metal is stored on the negative electrode side in advance, and a plurality kinds of power generation elements different in characteristics exist mixedly in the electrode laminates. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は蓄電セル、および蓄電セルモジュールに関する。具体的には、異なる特性を両立させて使用可能な蓄電セルや蓄電セルモジュールに関する。   The present invention relates to a storage cell and a storage cell module. Specifically, the present invention relates to a power storage cell or a power storage cell module that can be used with different characteristics.

従来から、高容量と高出力、低温環境下と高温環境下など、異なる用途や環境でも使用できる蓄電セルや蓄電セルモジュールが理想とされてきた。しかしながら、その理想は、現在のところ実現されていない。例えば、周知の電気二重層キャパシタは、容量が小さく、高容量にしようとすれば、蓄電セルやそのセルを直列や並列に接続して一体化した蓄電セルモジュールの小型化が困難となる。   Conventionally, storage cells and storage cell modules that can be used in different applications and environments, such as high capacity and high output, low temperature environment and high temperature environment, have been considered ideal. However, that ideal has not been realized at present. For example, a known electric double layer capacitor has a small capacity, and if it is intended to have a high capacity, it is difficult to reduce the size of a power storage cell or a power storage cell module in which the cells are integrated in series or in parallel.

そこで、以下の特許文献に記載されているように、二次電池と電気二重層キャパシタとを混在させた積層型二次電池(特許文献1)やハイブリッド素子(特許文献2)が提案された。また、リチウム二次電池とキャパシタを一つの蓄電セル内に混在させたハイブリッド電源素子(特許文献3)なども提案されている。
特開平8−287970号公報 特開平10−294135号公報 特開2003−100353号公報
Therefore, as described in the following patent document, a stacked secondary battery (Patent Document 1) and a hybrid element (Patent Document 2) in which a secondary battery and an electric double layer capacitor are mixed have been proposed. In addition, a hybrid power supply element in which a lithium secondary battery and a capacitor are mixed in one storage cell (Patent Document 3) has been proposed.
JP-A-8-287970 JP-A-10-294135 Japanese Patent Laid-Open No. 2003-100333

上記の各特許文献に記載された蓄電素子などは、高容量特性と高出力特性という背反する特性を両立させるために提案されたものであり、基本的には、リチウム二次電池などの高容量電池と電気二重層キャパシタなどの高出力用キャパシタを組み合わせたものである。しかしながら、電池は、高温環境下での特性劣化が著しく、例えば、自動車の回生電力の蓄電用途に使用する場合では、高温になるエンジンルーム内に電池とキャパシタを設置することが困難となる。そのため、電池部分とキャパシタ部分を分離し、電池を荷室など他の用途に供される空間に設置したり、あるいは、双方をこれらの空間に設置したりすることになる。これでは、人や荷物を運ぶ、という自動車本来の用途が損なわれる。   The power storage elements described in the above patent documents are proposed in order to satisfy both contradictory characteristics of high capacity characteristics and high output characteristics. Basically, high capacity such as a lithium secondary battery is used. This is a combination of a battery and a high output capacitor such as an electric double layer capacitor. However, the characteristics of the battery are remarkably deteriorated in a high-temperature environment. For example, when the battery is used for storing regenerative electric power of an automobile, it is difficult to install the battery and the capacitor in an engine room where the temperature is high. Therefore, the battery part and the capacitor part are separated, and the battery is installed in a space provided for other uses such as a luggage compartment, or both are installed in these spaces. This impairs the original use of automobiles for carrying people and luggage.

また、電池とキャパシタでは充放電特性が異なる。例えば、図13に示すように、電池の放電特性が、ある時点で急激に電圧が低下し電池として動作しなくなる放電終止電圧に達する(A)のに対し、キャパシタでは徐々に終止電圧に至る放電特性(B)となる。そそのため、電池とキャパシタのそれぞれに充放電のため回路を接続する必要があるとともに、それらの回路はそれぞれの充放電特性に合わせた全く別の設計となる。したがって、電池とキャパシタを組み合わせた蓄電素子では、付加回路に掛かるコストが嵩む、という問題も有していた。   In addition, the battery and the capacitor have different charge / discharge characteristics. For example, as shown in FIG. 13, the discharge characteristic of the battery reaches a discharge end voltage at which the voltage suddenly drops at a certain point and stops operating as a battery (A), whereas the capacitor gradually discharges to the end voltage. Characteristic (B). Therefore, it is necessary to connect a circuit for charging / discharging to each of the battery and the capacitor, and these circuits have completely different designs according to their charging / discharging characteristics. Therefore, the power storage element in which the battery and the capacitor are combined has a problem that the cost required for the additional circuit increases.

そして、近年、電気二重層キャパシタの欠点を解消すべく、リチウムイオンキャパシタと呼ばれる蓄電素子が提案された。この蓄電素子は、シート状の集電体上に、リチウムイオンあるいはアニオンを可逆的に担持可能な正極用電極材を塗布してなるシート状の正極と、リチウムイオンの吸蔵・放出が可能な負極用電極材を塗布してなるシート状の負極とをセパレータを介して対向配置してなる発電要素を1単位として、少なくとも1単位以上の発電要素を積層してなる電極積層体をリチウム塩を含む電解液とともに密封封止するとともに、負極にリチウム金属を起源とするリチウムイオンをあらかじめ拡散してなっている。   In recent years, a power storage element called a lithium ion capacitor has been proposed in order to eliminate the drawbacks of the electric double layer capacitor. This electricity storage device includes a sheet-like positive electrode obtained by applying a positive electrode material capable of reversibly carrying lithium ions or anions on a sheet-like current collector, and a negative electrode capable of inserting and extracting lithium ions. An electrode laminate formed by laminating at least one unit of power generation elements, including a lithium salt, with a power generation element formed by opposing a sheet-like negative electrode formed by applying an electrode material with a separator therebetween, as one unit In addition to hermetically sealing with the electrolyte, lithium ions originating from lithium metal are previously diffused into the negative electrode.

そして、このリチウムイオンキャパシタは、電気二重層キャパシタと同様に急速充電が可能であるとともに、リチウムイオンをあらかじめ負極に吸蔵させるため、負極の電位が下がり、大きな電圧を得ることができ、高いエネルギー容量を得ることができる。そのため、高容量化、または高出力化が可能であり、風力発電の負荷平準化装置、瞬停対策装置、自動車における回生電力の蓄電用途などに利用されることが期待されている。しかしながら、このリチウムイオンキャパシタは、高容量化と高出力化とを両立するものではない。すなわち、高容量化と高出力化とが互いに背反関係にある。   And this lithium ion capacitor can be charged quickly like an electric double layer capacitor, and the lithium ion is occluded in advance in the negative electrode, so the potential of the negative electrode is lowered, a large voltage can be obtained, and a high energy capacity. Can be obtained. Therefore, the capacity can be increased or the output can be increased, and it is expected to be used for a load leveling device for wind power generation, a power failure countermeasure device, a power storage application for regenerative power in an automobile, and the like. However, this lithium ion capacitor does not achieve both high capacity and high output. That is, the increase in capacity and the increase in output are mutually contradictory.

本発明は、以上の背景や課題に鑑みなされたものであり、その目的は、リチウムイオンキャパシタの技術を基本とした蓄電セルや蓄電セルモジュールにおいて、高出力と高容量、低温と高温など、異なる用途での使用を可能とし、かつ一体的な構造を有して設置の自由度を高めることにある。   The present invention has been made in view of the background and problems described above, and its purpose is different in storage cells and storage cell modules based on lithium ion capacitor technology, such as high output and high capacity, low temperature and high temperature. The purpose of this is to make it possible to use it for various purposes and to increase the degree of freedom of installation by having an integral structure.

本発明者は、上記目的を達成するために、まず、背反する特性を一つの発電要素で両立させようとすることをあきらめ、背反する特性を共存させる、というように発想に転換した。そして、リチウムイオンキャパシタを発電要素単体で見たとき、電極材料や電極構造に応じて特性をある程度柔軟に設定できることに着目した。そして、上記発想や当該着目点に基づいて本発明を創作した。   In order to achieve the above object, the present inventor first gave up trying to make contradictory characteristics compatible with one power generation element, and changed to the idea of coexisting contradictory characteristics. When the lithium ion capacitor is viewed as a single power generation element, attention is paid to the fact that the characteristics can be set flexibly to some extent according to the electrode material and electrode structure. And this invention was created based on the said idea and the said attention point.

本発明は、シート状の正極と負極とがセパレータを介して対向配置してなる1単位の発電要素を複数積層してなる電極積層体をリチウム塩を含む電解液とともにラミネートフィルムの外装体内に密封封止するとともに、負極側にリチウム金属を起源とするリチウムイオンをあらかじめ吸蔵させてなる蓄電セルであって、
前記電極積層体には、特性が異なる複数種類の発電要素が混在している蓄電セルとしている。
According to the present invention, an electrode laminate formed by laminating a plurality of one unit of power generation elements in which a sheet-like positive electrode and a negative electrode are arranged to face each other via a separator is sealed in an outer package of a laminate film together with an electrolyte containing a lithium salt. A storage cell that is sealed and previously occluded lithium ions originating from lithium metal on the negative electrode side,
The electrode stack is a storage cell in which a plurality of types of power generation elements having different characteristics are mixed.

上記蓄電セルにおいて、電極積層体における正負両極の電極が、それぞれ、同じ特性の発電要素毎に一括して電極端子に接続されるとともに、特性が異なるそれぞれの種類の発電要素に接続されている電極端子が個別に外装体外に導出されていることとしてもよい。   In the above storage cell, the positive and negative electrodes in the electrode stack are connected to the electrode terminals collectively for each power generation element having the same characteristics, and are connected to each type of power generation element having different characteristics. The terminals may be individually led out of the exterior body.

前記特性が異なる複数種類の発電要素には、相対的に高容量特性を有する発電要素と高出力特性を有する発電要素の2種類が含まれている蓄電セルとすることもできる。   The plurality of types of power generation elements having different characteristics may be power storage cells including two types of power generation elements having relatively high capacity characteristics and power generation elements having high output characteristics.

または、前記特性が異なる複数種類の発電要素には、相対的に低温特性に優れた低温用発電要素と高温特性に優れた高温用発電要素の2種類が含まれていることとしてもよい。そして、前記低温用発電要素は、負極材料がチタン酸リチウムであればより好ましい。   Alternatively, the plurality of types of power generation elements having different characteristics may include two types of power generation elements for low temperature having relatively low temperature characteristics and power generation elements for high temperature having excellent high temperature characteristics. In the low-temperature power generation element, the negative electrode material is more preferably lithium titanate.

上記いずれかの蓄電セルは、電極積層体における正負両極の電極が、それぞれ、同じ特性の発電要素毎に一括して電極端子に接続されるとともに、特性が異なるそれぞれの種類の発電要素に接続されている電極端子が個別に外装体外に導出されている蓄電セルとすることもできる。   In any of the above storage cells, the positive and negative electrodes in the electrode stack are connected to the electrode terminals collectively for each power generation element having the same characteristics, and connected to each type of power generation element having different characteristics. It can also be set as the electrical storage cell from which the electrode terminal currently led out | leaded out of the exterior body separately.

なお、上記電極端子が個別に外装体外に導出されている蓄電セルを所定数スタックして一体化するとともに、同じ特性の前記発電要素同士を直列に接続するとともに、当該直列接続されている発電要素毎に個別の充放電回路が接続されている蓄電セルモジュールも本発明の範囲である。   In addition, a predetermined number of storage cells from which the electrode terminals are individually led out of the exterior body are stacked and integrated, and the power generation elements having the same characteristics are connected in series, and the power generation elements connected in series A storage cell module to which an individual charge / discharge circuit is connected is also within the scope of the present invention.

本発明の範囲には、上記蓄電セルモジュールに加え、シート状の正極と負極とがセパレータを介して対向配置してなる1単位の発電要素を1単位以上積層してなる電極積層体をリチウム塩を含む電解液とともにラミネートフィルムの外装体内に密封封止するとともに、負極側にリチウム金属を起源とするリチウムイオンをあらかじめ吸蔵させてなる蓄電セルを所定数スタックして一体化した蓄電セルモジュールで、特性が異なる複数種類の蓄電セルが混在している蓄電セルモジュールも含んでいる。   In the scope of the present invention, in addition to the above-mentioned power storage cell module, an electrode laminate in which one unit of power generation elements in which a sheet-like positive electrode and a negative electrode are arranged to face each other via a separator is laminated with a lithium salt In an energy storage cell module in which a predetermined number of energy storage cells in which lithium ions originating from lithium metal are preliminarily occluded are stacked and integrated on the negative electrode side, together with an electrolyte solution containing A power storage cell module in which a plurality of types of power storage cells having different characteristics are mixed is also included.

そして、当該蓄電セルモジュールにおいて、前記特性が異なる複数種類の蓄電セルには、相対的に高容量特性を有する発電要素で構成された電極積層体を備えた蓄電セルと、高出力特性を有する発電要素で構成された電極積層体を備えた蓄電セルの2種類が含まれていることとしてもよい。   And in the said electrical storage cell module, the electrical storage cell provided with the electrode laminated body comprised with the electrical power generation element which has a relatively high capacity | capacitance element in multiple types of electrical storage cell from which the said characteristic differs, and electric power generation which has a high output characteristic It is good also as two types of electrical storage cells provided with the electrode laminated body comprised by the element are included.

前記特性が異なる複数種類の蓄電セルには、相対的に低温特性に優れた発電要素で構成された電極積層体を備えた低温用蓄電セルと高温特性に優れた発電要素で構成された電極積層体を備えた高温用蓄電素子の2種類が含まれている蓄電セルモジュールとすることもできる。より好ましくは、前記発電要素における負極材料をチタン酸リチウムとすることである。   The plurality of types of power storage cells having different characteristics include a low temperature power storage cell having a power stack composed of power generation elements having relatively excellent low-temperature characteristics and an electrode stack composed of power generation elements having excellent high-temperature characteristics. It can also be set as the electrical storage cell module containing two types of the electrical storage element for high temperature provided with the body. More preferably, the negative electrode material in the power generation element is lithium titanate.

また、同じ特性の発電要素で構成された電極積層体を備えた蓄電セル同士を直列に接続して蓄電セル群を構成し、各蓄電セル群毎に個別の充放電回路が接続される蓄電セルモジュールとすることもできる。   In addition, an electricity storage cell in which electricity storage cells each having an electrode stack composed of power generation elements having the same characteristics are connected in series to constitute an electricity storage cell group, and an individual charge / discharge circuit is connected to each electricity storage cell group It can also be a module.

本発明の蓄電セルや蓄電セルモジュールによれば、異なる特性を両立させるとともに、一体的な設置形態を採用することが可能となる。また、充放電回路などの付加回路を特性毎に大きく変更する必要がなく、付加回路に掛かるコストアップを抑止することができる。   According to the electricity storage cell or the electricity storage cell module of the present invention, different characteristics can be achieved at the same time, and an integral installation form can be adopted. Further, it is not necessary to greatly change the additional circuit such as the charge / discharge circuit for each characteristic, and it is possible to suppress an increase in cost of the additional circuit.

===リチウムイオンキャパシタの特性===
上述したリチウムイオンキャパシタと呼ばれる蓄電素子は、高容量化と高出力化の何れか一方であれば、その特性を実現することができる。そして、図1に示すように、高容量タイプのリチウムイオンキャパシタの放電特性(A)と、高出力タイプのリチウムイオンキャパシタの放電特性(B)は同じで、放電に伴って電圧が徐々に低下し緩やかに終止電圧に向かっていく。また、高温環境下では放電電圧を下げるだけで、安全性を確保した上で安定して電力供給を維持させることも可能となる。
=== Characteristics of lithium ion capacitor ===
The above-described power storage element called a lithium ion capacitor can realize its characteristics as long as it has one of high capacity and high output. As shown in FIG. 1, the discharge characteristic (A) of the high capacity type lithium ion capacitor is the same as the discharge characteristic (B) of the high output type lithium ion capacitor, and the voltage gradually decreases with discharge. Then, gradually go to the end voltage. In addition, in a high temperature environment, it is possible to maintain power supply stably while ensuring safety by simply lowering the discharge voltage.

===蓄電セルの基本的な構造===
図2(A)(B)に、本発明の対象であるリチウムイオンキャパシタの基本構成である1単位分の発電要素(電極体)の構造を示した。(A)は電極体30の平面図であり、(B)は(A)におけるa−a矢視断面の拡大図である。なお、この図では、リチウムイオンを負極10nに吸蔵させるための構造については明示していないが、リチウムイオンの吸蔵方式については、例えば、特許第3485935号公報や、本発明者が先に出願した特願2007−293265などに記載されている方式が考えられる。
=== Basic structure of storage cell ===
FIGS. 2A and 2B show the structure of a power generation element (electrode body) for one unit, which is the basic configuration of the lithium ion capacitor that is the subject of the present invention. (A) is a top view of the electrode body 30, (B) is an enlarged view of the aa arrow cross section in (A). In addition, in this figure, although the structure for occluding lithium ions in the negative electrode 10n is not clearly shown, for example, Japanese Patent No. 3485935 and the present inventor filed earlier regarding the method of occluding lithium ions. A method described in Japanese Patent Application No. 2007-293265 is conceivable.

電極体30は、略矩形のシート状の集電体(11p,11n)上にそれぞれの電極材料(12p,12n)を塗布してなる正極10pと負極10nとをセパレータ20を介して積層した構造となっている。また、略矩形の集電体シート(11p、11n)の一辺には、充放電に際して電流の出入り口として電極材料が塗布されていない凸形状の領域(外部端子部:13p,13n)が形成されている。そして、この電極体を1単位として数十単位積層して電極積層体を構成し、その電極積層体を電解液とともに、ラミネートフィルムの外装体内に密封したものが蓄電セルと呼ばれるものである。   The electrode body 30 has a structure in which a positive electrode 10p and a negative electrode 10n obtained by coating each electrode material (12p, 12n) on a substantially rectangular sheet-shaped current collector (11p, 11n) are stacked with a separator 20 interposed therebetween. It has become. In addition, a convex region (external terminal portions: 13p, 13n) where an electrode material is not applied as a current entrance / exit at the time of charging / discharging is formed on one side of the substantially rectangular current collector sheet (11p, 11n). Yes. An electrode laminate is configured by laminating several tens of units with this electrode body as one unit, and the electrode laminate is sealed together with an electrolytic solution in an outer package of a laminate film, which is called a storage cell.

図3に蓄電セルの一例を示した。ラミネートフィルムの外装体60内に電極積層体と電解液とが密封されているとともに、当該蓄電セル40を充電したり、当該セル40に蓄えられた電気を取り出したりするための端子となる金属平板からなる電極端子板50が外装体60外に露出している。   FIG. 3 shows an example of the storage cell. The electrode laminate and the electrolyte solution are sealed in a laminate film outer package 60, and a metal flat plate serving as a terminal for charging the electricity storage cell 40 or taking out the electricity stored in the cell 40. The electrode terminal board 50 which consists of is exposed out of the exterior body 60.

図4の(A)と(B)に、それぞれ、電極積層体の側断面図と、外装体60内における電極端子板50の接続構造の概略とを示した。電極積層体80は複数の電極体30が積層された構造であり、各電極体30における外部端子(13p,13n)は、同じ極同士で積層され、その積層状態にあるそれぞれの極の外部端子部(13p、または13n)が超音波溶接や熱融着などによって上記電極端子板50に一括して接続される。そして、その電極端子板50の先端が外装体60の外に露出されるようになっている。   4A and 4B show a side sectional view of the electrode laminate and an outline of the connection structure of the electrode terminal plate 50 in the exterior body 60, respectively. The electrode laminate 80 has a structure in which a plurality of electrode bodies 30 are laminated, and the external terminals (13p, 13n) in each electrode body 30 are laminated with the same poles, and the external terminals of the respective poles in the laminated state. The parts (13p or 13n) are collectively connected to the electrode terminal plate 50 by ultrasonic welding or heat fusion. And the front-end | tip of the electrode terminal board 50 is exposed outside the exterior body 60. As shown in FIG.

===第1の実施形態===
本発明における第1の実施形態は、1つの外装体内に異なる特性の電極体を混在させた蓄電セルである。図5(A)(B)にその蓄電セルにおける電極積層体を例示した。この例では、二つの異なる特性の電極体(30a,30b)が混在している電極積層体(81,82)を示した。(A)は、二つの異なる特性の電極体(30a,30b)が、それぞれ、積層電極体81中で分離されている構造であり、各特性の電極体(30a,30b)がそれぞれ積層されて二つの電極体群(80a,80b)が構成され、この二つの電極体群(80a,80b)がさらに積層されて電極積層体81が構成されている。なお、異なる特性の電極体群(80a,80b)同士は、その層間dに絶縁層を設けるなどして電気的に分離すればよい。
=== First Embodiment ===
1st Embodiment in this invention is an electrical storage cell which mixed the electrode body of a different characteristic in one exterior body. 5A and 5B illustrate the electrode stack in the electricity storage cell. In this example, the electrode laminated body (81, 82) in which two electrode bodies (30a, 30b) having different characteristics are mixed is shown. (A) is a structure in which two different electrode bodies (30a, 30b) are separated in the laminated electrode body 81, and the electrode bodies (30a, 30b) having the respective characteristics are laminated. Two electrode body groups (80a, 80b) are formed, and the two electrode body groups (80a, 80b) are further stacked to form an electrode stacked body 81. The electrode body groups (80a, 80b) having different characteristics may be electrically separated by providing an insulating layer between the layers d.

(B)は一体的な電極積層体82に異なる特性の電極体(30a,30b)が積層されている構造であり、集電体(11p,11n)の表裏で電極構造を変えたり、塗布する電極材料(12p,12n)を変えたりするなどして、異なる特性の電極体(30a,30b)を一つの電極積層体82内に混在させている。   (B) is a structure in which electrode bodies (30a, 30b) having different characteristics are laminated on an integrated electrode laminate 82, and the electrode structure is changed or applied on the front and back of the current collectors (11p, 11n). The electrode bodies (30a, 30b) having different characteristics are mixed in one electrode laminated body 82 by changing the electrode material (12p, 12n) or the like.

===第2の実施形態===
本発明における第2の実施形態を図6に示した。当該第2の実施形態は、複数の蓄電セル(40a,40b)をスタックして筐体2内に収納するなどして一体化した蓄電セルモジュール1であり、一つの外装体60内に収納されている電極積層体が全て同じ特性の発電要素で構成されている。この例では、特性が異なる2種類の蓄電セル(40a,40b)が混在する蓄電セルモジュール1を示している。なお、ここでは、各蓄電セル(40a,40b)が直列に接続され、1対の正負極に対応する端子板3が筐体2外に導出されている蓄電セルモジュール1を示した。
=== Second Embodiment ===
A second embodiment of the present invention is shown in FIG. The second embodiment is a storage cell module 1 that is integrated by stacking a plurality of storage cells (40a, 40b) and storing them in a housing 2, and is stored in one exterior body 60. All the electrode stacks are made up of power generation elements having the same characteristics. In this example, a storage cell module 1 in which two types of storage cells (40a, 40b) having different characteristics are mixed is shown. Here, the storage cell module 1 in which the storage cells (40a, 40b) are connected in series and the terminal plate 3 corresponding to a pair of positive and negative electrodes is led out of the housing 2 is shown.

===外部端子の接続について===
例えば、異なる特性の電極体や蓄電セルが混在していても、低出力で長時間放電するような用途では、異なる特性毎に電極体や蓄電セルの電極を区別し、充放電回路を個別に接続する必要はない。したがって、図2と図3に示した従来の蓄電セル40のように、外部端子部(13p,13n)を正負極ごとに一括して電極端子50に接続したり、第2の実施形態の一例として図6に示した蓄電セルモジュール1のように全ての蓄電セル(40a,40b)を直列接続したりすればよい。
=== External terminal connection ===
For example, even in the case where electrode bodies and storage cells with different characteristics are mixed, in applications where discharge is performed for a long time at low output, the electrodes of the electrode bodies and storage cells are distinguished for each different characteristic, and the charge / discharge circuit is individually set. There is no need to connect. Therefore, as in the conventional power storage cell 40 shown in FIGS. 2 and 3, the external terminal portions (13p, 13n) are collectively connected to the electrode terminal 50 for each positive and negative electrode, or an example of the second embodiment. As shown in FIG. 6, all the storage cells (40a, 40b) may be connected in series as in the storage cell module 1 shown in FIG.

しかし、高容量用途と高出力用途の電極体や蓄電セルを混在させる場合などでは、個別の回路でそれぞれの用途の電極体や蓄電セルを充電したり放電させたりすることが考えられる。第2の実施形態のように、一つの蓄電セル(40a,40b)が同じ特性の電極体で構成されている場合では、図7に示すように、同じ特性同士の蓄電セル(40a,40b)については直列に接続して蓄電セル群(41a,41b)を構成するとともに、その直列接続毎に正負両極の端子板(3a,3b)を設ければよい。そして、特性毎のそれぞれの端子板(3a,3b)に個別の充放電回路(100a,100b)を接続すればよい。ここでは、各充放電回路(100a,100b)が制御回路110を介して負荷や充電用電源120に接続され、その制御回路110が、充放電の対象となる蓄電セル群(41a,41b)に応じて、充電電源側(負荷側)120と対応の充放電回路(100a,100b)との経路を切り替える動作を行う構成を示した。   However, in the case where electrode bodies and storage cells for high capacity use and high output use are mixed, it is conceivable to charge or discharge the electrode bodies and storage cells for each use with individual circuits. In the case where one power storage cell (40a, 40b) is composed of electrode bodies having the same characteristics as in the second embodiment, as shown in FIG. 7, the power storage cells (40a, 40b) having the same characteristics as each other. Is connected in series to form a storage cell group (41a, 41b), and a positive and negative terminal plate (3a, 3b) may be provided for each series connection. And what is necessary is just to connect an individual charging / discharging circuit (100a, 100b) to each terminal board (3a, 3b) for every characteristic. Here, each charging / discharging circuit (100a, 100b) is connected to a load or a power source for charging 120 via a control circuit 110, and the control circuit 110 is connected to a storage cell group (41a, 41b) to be charged / discharged. Accordingly, the configuration is shown in which the operation of switching the path between the charging power source side (load side) 120 and the corresponding charging / discharging circuit (100a, 100b) is performed.

一方、第1の実施形態では、異なる特性の電極体(30a,30b)が一つの電極積層体(81,82)内に混在しており、外部端子部(13p,13n)の突出方向や電極端子50の接続方法などに工夫を要する。電極端子50を特性の異なる電極体(30a,30b)毎に接続する場合について、その電極端子50の接続構造を図8に示した。この例では、異なる特性の2種類の電極体(30a,30b)における外部端子部(13p,13n)がそれぞれ個別の電極端子(50a,50b)に接続されている(A)。また、各電極体(30a,30b)における正負極それぞれの外部端子部(13p,13n)が反対方向に突設されているので、異なる特性の電極体(30a,30b)は、それぞれの外部端子部(13p,13n)の突設方向が直交するように積層すれば、異なる特性の電極体(30a,30b)における外部端子部(13p,13n)やそれらに接続されている電極端子(50a,50b)が互いに接触しない。そして、その電極積層体(81,82)を外装体60内に収納した蓄電素子41では、各特性の電極体(30a,30b)に接続されている電極端子(50a,50b)をそれぞれ矩形袋状の外装体60の4辺から外部へ導出すればよい(B)。   On the other hand, in the first embodiment, electrode bodies (30a, 30b) having different characteristics are mixed in one electrode laminate (81, 82), and the protruding direction of the external terminal portions (13p, 13n) and the electrodes Some ideas are required for the connection method of the terminal 50 and the like. FIG. 8 shows the connection structure of the electrode terminals 50 when the electrode terminals 50 are connected to the electrode bodies (30a, 30b) having different characteristics. In this example, the external terminal portions (13p, 13n) in the two types of electrode bodies (30a, 30b) having different characteristics are respectively connected to the individual electrode terminals (50a, 50b) (A). In addition, since the external terminal portions (13p, 13n) of the positive and negative electrodes in each electrode body (30a, 30b) are projected in opposite directions, the electrode bodies (30a, 30b) having different characteristics are connected to the respective external terminals. If the layers (13p, 13n) are stacked so that the projecting directions thereof are orthogonal, the external terminal portions (13p, 13n) in the electrode bodies (30a, 30b) having different characteristics and the electrode terminals (50a, 50b) do not touch each other. And in the electrical storage element 41 which accommodated the electrode laminated body (81, 82) in the exterior body 60, the electrode terminal (50a, 50b) connected to the electrode body (30a, 30b) of each characteristic is a rectangular bag, respectively. What is necessary is just to derive | lead-out from 4 sides of the shaped exterior body 60 (B).

また、第1の実施形態では、図9の平面図(A)と側断面図(B)に示したように、電極体31における正極と負極の外部端子部(13p,13n)が同方向に突出する構造も考えられる。このような場合でも、図10に示すように、異なる特性の電極体(31a,31b)のそれぞれの外部端子部(13p,13n)が異なる方向に突出するように電極積層体83を構成するとともに、その各特性の電極体(31a,31b)毎に外部端子部(13p,13n)に電極端子(50a,50b)を接続する(A)。そして、その電極積層体82を外装体60内に収納するとともに、各特性の電極体(31a,31b)に対応する電極端子(50a,50b)を矩形袋状の外装体60における対辺など、異なる方向へ導出して蓄電セル42を構成すればよい。   Further, in the first embodiment, as shown in the plan view (A) and the side sectional view (B) of FIG. 9, the positive and negative external terminal portions (13p, 13n) in the electrode body 31 are in the same direction. A protruding structure is also conceivable. Even in such a case, as shown in FIG. 10, the electrode laminate 83 is configured such that the external terminal portions (13p, 13n) of the electrode bodies (31a, 31b) having different characteristics protrude in different directions. The electrode terminals (50a, 50b) are connected to the external terminal portions (13p, 13n) for each of the electrode bodies (31a, 31b) having the characteristics (A). The electrode laminated body 82 is housed in the exterior body 60, and the electrode terminals (50a, 50b) corresponding to the electrode bodies (31a, 31b) having different characteristics are different from each other in the opposite sides of the rectangular bag-shaped exterior body 60. What is necessary is just to comprise in the direction and comprise the electrical storage cell 42. FIG.

なお、図8(B)や図10に示した蓄電セル(41,42)は、第2の実施例と同様に、複数の蓄電セルをスタックして蓄電セルモジュールの状態で使用されるのが普通である。したがって、これらの蓄電セル(41,42)を複数スタックして蓄電セルモジュールを構成する際には、各特性の電極体(30a,30b)毎に外装体60外に導出される電極端子(50a,50b)同士を直列接続すればよい。   The storage cells (41, 42) shown in FIG. 8B and FIG. 10 are used in the state of a storage cell module by stacking a plurality of storage cells, as in the second embodiment. It is normal. Therefore, when a plurality of these storage cells (41, 42) are stacked to form a storage cell module, the electrode terminals (50a) led out of the exterior body 60 for each electrode body (30a, 30b) of each characteristic. 50b) may be connected in series.

===高容量特性と高出力特性について===
高容量と高出力の背反する2つの特性を両立させるためには、例えば、高容量用途に対応する電極体や蓄電セル(高容量部)では、より多くの電荷を蓄えることができるように、正極に比表面積が大きな活性炭を電極材料として使用し、負極材料には黒鉛などを使用すればよい。そして、電極材料の塗布量を多くすればよい。
=== About high capacity characteristics and high output characteristics ===
In order to reconcile the two contradictory characteristics of high capacity and high output, for example, in an electrode body or a storage cell (high capacity part) corresponding to a high capacity application, more charges can be stored. Activated carbon having a large specific surface area is used as the electrode material for the positive electrode, and graphite or the like may be used for the negative electrode material. And what is necessary is just to increase the application quantity of an electrode material.

一方、高出力用途に対応する電極体や蓄電セル(高出力部)では、電極材料を薄く塗布するなどして電極の厚みを薄くしたり、電極材料の粒子径を細かくしたりすることが望ましい。なお、高出力部では、不可逆容量分のリチウムイオンをあらかじめ負極に吸蔵させておくなどして、0Vまで電圧を下げられるようにすることが必要である。また、電極材料中に集電体を這わせたりして電気の出入口となる集電体と電極材料との間の抵抗を小さくしたりすることも考えられる。   On the other hand, in electrode bodies and energy storage cells (high output portions) corresponding to high output applications, it is desirable to reduce the thickness of the electrode by thinly applying the electrode material or to reduce the particle diameter of the electrode material. . In the high output portion, it is necessary to reduce the voltage to 0 V by, for example, preliminarily storing the irreversible capacity of lithium ions in the negative electrode. It is also conceivable to reduce the resistance between the current collector that serves as the entrance and exit of electricity and the electrode material by placing a current collector in the electrode material.

なお、高容量部と高出力部では、高出力部から放電が開始され、高容量部に蓄えられている電力を余すことなく使用する前に終止電圧に至り、以後の放電が停止してしまう。したがって、高容量部と高出力部を混在させる場合にはそれぞれの特性に応じた充放電回路、すなわち各電極体や蓄電素子の充電電圧が均一になるように充電するためのセルバランス回路を個別に設けた方が望ましい。   In the high-capacity part and the high-power part, the discharge starts from the high-power part, reaches the end voltage before using the power stored in the high-capacity part, and the subsequent discharge stops. . Therefore, when a high capacity part and a high output part are mixed, a charge / discharge circuit corresponding to each characteristic, that is, a cell balance circuit for charging so that the charging voltage of each electrode body and power storage element becomes uniform is individually provided. It is desirable to provide in.

図11に、高出力部と高容量部のそれぞれに接続される一般的なセルバランス回路を示した。なお、放電時には、これらの回路には充電用電源に接続される入力端120に負荷が接続される。また、この図では所定数の電極体や一つの蓄電セルを一単位(単位セル)として、4つの単位セル(c1〜c4)を充放電する回路を示した。(A)は、高容量部用のセルバランス回路であり、各単位セル(c1〜c4)のそれぞれに対応するMOSFET(t1〜t4)をマイコン130からの制御信号に応じてオン/オフさせ、そのオン/オフに応じて各単位セル(c1〜c4)の蓄電容量を抵抗(R1〜R4)を介して相互に充放電させて各単位セル(c1〜c4)の電圧を揃えている。なお、負荷側(充電電源側)120からの経路に挿入されている2つのMOSFET(t5,t6)は保護ICの制御によりオン/オフする過電圧保護用トランジスタ(t5)と低電圧保護用トランジスタ(t6)である。   FIG. 11 shows a general cell balance circuit connected to each of the high output unit and the high capacity unit. At the time of discharging, a load is connected to the input terminal 120 connected to the charging power source in these circuits. In addition, this figure shows a circuit that charges and discharges four unit cells (c1 to c4) with a predetermined number of electrode bodies and one storage cell as one unit (unit cell). (A) is a cell balance circuit for a high-capacity part, and turns on / off MOSFETs (t1 to t4) corresponding to the respective unit cells (c1 to c4) according to a control signal from the microcomputer 130; Depending on the on / off state, the storage capacities of the unit cells (c1 to c4) are mutually charged / discharged through the resistors (R1 to R4), thereby aligning the voltages of the unit cells (c1 to c4). The two MOSFETs (t5, t6) inserted in the path from the load side (charging power source side) 120 are an overvoltage protection transistor (t5) and a low voltage protection transistor (t5) that are turned on / off by the control of the protection IC. t6).

一方、(B)は高出力部用のセルバランス回路であり、四つの単位セル(c1〜c4)を二つ一組(c1とc2、およびc3とc4)にして、各組における二つの単位セル(c1とc2、およびc3とc4)間で電圧を揃えるようにしている。この例では、基準パルス150のH/Lの2状態に応じて相補的にオン/オフする二つのMOSFET(t1とt2、およびt3とt4)によって、一組中の二つ単位セル(c1とc2、およびc3とc4)の蓄電容量がインダクタ(L1,L2)を介して相互に充放電される。なお、過電圧保護用トランジスタ(t5)と低電圧保護用トランジスタ(t6)は、保護ICからの制御信号や基準電圧との比較などによってオン/オフさせればよい。   On the other hand, (B) is a cell balance circuit for a high output unit, and four unit cells (c1 to c4) are grouped into two groups (c1 and c2, and c3 and c4), and two units in each group. The voltages are made uniform between the cells (c1 and c2, and c3 and c4). In this example, two MOSFETs (t1 and t2, and t3 and t4) that are complementarily turned on / off according to the two H / L states of the reference pulse 150 are used as two unit cells (c1 and c1) in a set. The storage capacities of c2, and c3 and c4) are mutually charged and discharged via the inductors (L1, L2). Note that the overvoltage protection transistor (t5) and the low voltage protection transistor (t6) may be turned on / off by comparison with a control signal from the protection IC or a reference voltage.

もちろん、例示した回路に限らず、充放電回路の構成は適宜に変更することができる。また、高容量と高出力の特性を両立させるための他の回路構成としては、高出力部のみを負荷に接続し、高容量部を高出力部に電力を補給する電源として用いる構成なども考えられる。   Needless to say, the configuration of the charge / discharge circuit is not limited to the illustrated circuit, and can be changed as appropriate. As another circuit configuration for achieving both high capacity and high output characteristics, a configuration in which only the high output portion is connected to the load and the high capacity portion is used as a power source for supplying power to the high output portion is also considered. It is done.

===低温特性と高温特性について===
高容量と高出力の他に、背反する2つの特性としては、低温環境下での特性に優れている低温特性と、高温環境下でも安定して出力可能な高温特性とがある。図12に低温特性に優れた電極体やその電極体で構成した蓄電セル(低温部)と高温特性に優れた電極体やその電極体で構成した蓄電セル(高温部)についての放電特性を示した。この図では、各温度での容量が、25℃における容量を100%としたときとの比で示されている。(A)は低温部と高温部のそれぞれの特性であり、(B)は低温部と高温部の双方を備えた蓄電セルや蓄電セルモジュールの特性である。低温部と高温部とを混在させることで、低温から高温までの広い温度範囲で安定的に動作することわかる。
=== Low temperature characteristics and high temperature characteristics ===
In addition to high capacity and high output, the two contradictory characteristics are a low temperature characteristic that excels in characteristics in a low temperature environment and a high temperature characteristic that enables stable output even in a high temperature environment. Fig. 12 shows the discharge characteristics of an electrode body excellent in low-temperature characteristics and a storage cell (low temperature part) composed of the electrode body, an electrode body excellent in high temperature characteristics and a power storage cell (high temperature part) composed of the electrode body. It was. In this figure, the capacity at each temperature is shown as a ratio with respect to the capacity at 25 ° C. being 100%. (A) is a characteristic of each of the low temperature part and the high temperature part, and (B) is a characteristic of the electricity storage cell or the electricity storage cell module provided with both the low temperature part and the high temperature part. By mixing the low temperature part and the high temperature part, it can be seen that it operates stably over a wide temperature range from low temperature to high temperature.

なお、低温特性にすぐれた電極体を得るためには、チタン酸リチウムを負極に用いることが考えられる。チタン酸リチウムは、リチウム金属に対する電位を1.5v以上とすることができ、低温時での充放電においてもリチウム金属が析出しにくく、安全性を確保することができる。また、正負極間の電圧が3.8vであり、炭素材料を用いた従来のリチウムイオンキャパシタの3.5vとほぼ同様である。そのため、高温部と低温部を同じ充放電回路に接続して使用しても、実用上問題はない。もちろん、高温部と低温部ごとに電極端子を個別に接続するとともに、周辺温度を測定する回路と、測定した温度に応じて充放電の対象を高温部と低温部とに切り替える回路とを付加してもよい。   In order to obtain an electrode body with excellent low-temperature characteristics, it is conceivable to use lithium titanate for the negative electrode. Lithium titanate can have a potential with respect to lithium metal of 1.5 V or more, and lithium metal is difficult to deposit even during charge and discharge at low temperatures, thus ensuring safety. The voltage between the positive and negative electrodes is 3.8 v, which is almost the same as 3.5 v of a conventional lithium ion capacitor using a carbon material. Therefore, there is no practical problem even if the high temperature part and the low temperature part are connected to the same charge / discharge circuit. Of course, the electrode terminals are individually connected to each of the high temperature part and the low temperature part, and a circuit for measuring the ambient temperature and a circuit for switching the charge / discharge target between the high temperature part and the low temperature part according to the measured temperature are added. May be.

なお、当該低温特性と高温特性や、上記高容量と高出力など、互いに背反する二つの特性は、必ずしも絶対的な基準があるわけではなく、相対的なものである。すなわち、高容量と高出力を両立させるための蓄電セルや蓄電モジュールであれば、容量が多い電極体や蓄電セルを高容量部に分類し、より高い電流での充放電が可能な電極体や蓄電セルを高出力部に分類すればよい。   Note that the two characteristics, which are contradictory to each other, such as the low temperature characteristic and the high temperature characteristic, and the high capacity and high output, are not necessarily absolute standards but are relative. That is, in the case of a power storage cell or a power storage module for achieving both high capacity and high output, an electrode body or power storage cell having a large capacity is classified as a high capacity portion, and an electrode body capable of charging / discharging at a higher current or What is necessary is just to classify an electrical storage cell into a high output part.

===その他の実施例===
本発明では、3種類以上の異なる特性を混在させた蓄電セルや蓄電セルモジュールも想定している。また、異なる特性としては、上述した高出力、高容量、高温、低温に限らず他の様々な特性(サイクル特性など)が考えられる。また、一つの電極積層体に混在させる異なる特性の電極体や一つの蓄電セルモジュールにおける異なる特性の蓄電セルの数は同じでなくてもよい。例えば、高容量部に含まれる電極体や蓄電セルの数より、高出力部に含まれるそれらの数を相対的に多くして高容量部の総容量と高出力部の総容量を揃えることなどが考えられる。
=== Other Embodiments ===
In this invention, the electrical storage cell and electrical storage cell module which mixed 3 or more types of different characteristics are also assumed. Further, as the different characteristics, not only the above-described high output, high capacity, high temperature, and low temperature but also various other characteristics (cycle characteristics, etc.) can be considered. In addition, the number of electrode bodies having different characteristics mixed in one electrode stack or the number of storage cells having different characteristics in one storage cell module may not be the same. For example, rather than the number of electrode bodies and storage cells included in the high-capacity part, the number of those included in the high-power part is relatively increased so that the total capacity of the high-capacity part and the total capacity of the high-power part are aligned. Can be considered.

リチウムイオンキャパシタの放電特性図である。It is a discharge characteristic figure of a lithium ion capacitor. 上記リチウムイオンキャパシタの基本構成となる発電要素の平面図(A)と側断面図(B)である。It is the top view (A) and side sectional view (B) of the electric power generation element used as the basic composition of the said lithium ion capacitor. 一般的な蓄電セルの外観図である。It is an external view of a general electrical storage cell. 上記発電要素を多層構造にした電極積層体の概略構造図(A)と当該積層体における外部端子部の末端構造の拡大図(B)である。It is the schematic structure figure (A) of the electrode laminated body which made the said electric power generation element the multilayer structure, and the enlarged view (B) of the terminal structure of the external terminal part in the said laminated body. 本発明の第1の実施例における蓄電セルが備える電極積層体の概略構造図である。It is a schematic structure figure of the electrode layered product with which the electrical storage cell in the 1st example of the present invention is provided. 本発明の第2の実施例における蓄電セルモジュールの概略構造図である。It is a schematic structure figure of the electrical storage cell module in the 2nd example of the present invention. 上記第2の実施例の蓄電セルモジュールにおける充放電回路の接続例を示す図である。It is a figure which shows the example of a connection of the charging / discharging circuit in the electrical storage cell module of the said 2nd Example. 上記第1の実施例の蓄電セルにおける外部端子部と電極端子との接続例を示す図である。It is a figure which shows the example of a connection of the external terminal part and electrode terminal in the electrical storage cell of the said 1st Example. 上記発電要素の変形例を示す図である。It is a figure which shows the modification of the said electric power generation element. 上記発電要素の変形例を上記第1の実施例に適用した蓄電セルにおける外部端子部と電極端子との接続例を示す図である。It is a figure which shows the example of a connection of the external terminal part and electrode terminal in the electrical storage cell which applied the modification of the said electric power generation element to the said 1st Example. 異なる特性の蓄電セルや発電要素のそれぞれに接続される充放電回路の概略図であり、(A)は高容量特性に対応する回路図であり、(B)は高出力特性に対応する回路図である。It is the schematic of the charging / discharging circuit connected to each of the electrical storage cell and electric power generation element of a different characteristic, (A) is a circuit diagram corresponding to a high capacity | capacitance characteristic, (B) is a circuit diagram corresponding to a high output characteristic It is. 低温特性と高温特性のそれぞれに優れた蓄電セルや蓄電セルモジュールの放電特性図(A)と、低温特性と高温特性を両立した蓄電セルや蓄電セルモジュールの放電特性図(B)である。FIG. 2 is a discharge characteristic diagram (A) of an energy storage cell or an energy storage cell module excellent in low temperature characteristics and a high temperature property, and a discharge characteristic diagram (B) of an energy storage cell or an energy storage cell module having both low temperature characteristics and high temperature characteristics. 二次電池の放電特性図(A)とキャパシタの放電特性図(B)である。It is the discharge characteristic figure (A) of a secondary battery, and the discharge characteristic figure (B) of a capacitor.

符号の説明Explanation of symbols

1 蓄電セルモジュール
2 筐体
3 端子板
10p 正極
10n 負極
11p、11n 集電体
12p 正極用電極材
12n 負極用電極材
13p、13n 外部端子部
20 セパレータ
30、30a、30b 31 発電要素(電極体)
40〜42 蓄電セル
50、50a、50b 電極端子
80〜82 電極積層体
DESCRIPTION OF SYMBOLS 1 Storage cell module 2 Housing | casing 3 Terminal board 10p Positive electrode 10n Negative electrode 11p, 11n Current collector 12p Electrode material for positive electrodes 12n Electrode material for negative electrodes 13p, 13n External terminal part 20 Separator 30, 30a, 30b 31 Power generation element (electrode body)
40-42 Power storage cell 50, 50a, 50b Electrode terminal 80-82 Electrode laminate

Claims (12)

シート状の正極と負極とがセパレータを介して対向配置してなる1単位の発電要素を複数積層してなる電極積層体をリチウム塩を含む電解液とともにラミネートフィルムの外装体内に密封封止するとともに、負極側にリチウム金属を起源とするリチウムイオンをあらかじめ吸蔵させてなる蓄電セルであって、
前記電極積層体には、特性が異なる複数種類の発電要素が混在していることを特徴とする蓄電セル。
While sealing and sealing the electrode laminate formed by laminating a plurality of one-unit power generation elements in which a sheet-like positive electrode and a negative electrode are arranged opposite to each other with a separator interposed therebetween, together with an electrolyte containing a lithium salt, A storage cell in which lithium ions originating from lithium metal are previously occluded on the negative electrode side,
A power storage cell comprising a plurality of types of power generation elements having different characteristics mixed in the electrode laminate.
電極積層体における正負両極の電極は、それぞれ、同じ特性の発電要素毎に一括して電極端子に接続されるとともに、特性が異なるそれぞれの種類の発電要素に接続されている電極端子が個別に外装体外に導出されていることを特徴とする請求項1に記載の蓄電セル。   The positive and negative electrodes in the electrode stack are connected to the electrode terminals for each power generation element having the same characteristics, and the electrode terminals connected to each type of power generation element having different characteristics are individually packaged. The electrical storage cell according to claim 1, wherein the electrical storage cell is led out of the body. 前記特性が異なる複数種類の発電要素には、相対的に高容量特性を有する発電要素と高出力特性を有する発電要素の2種類が含まれていることを特徴とする請求項1に記載の蓄電セル。   The power storage device according to claim 1, wherein the plurality of types of power generation elements having different characteristics include power generation elements having relatively high capacity characteristics and power generation elements having high output characteristics. cell. 前記特性が異なる複数種類の発電要素には、相対的に低温特性に優れた低温用発電要素と高温特性に優れた高温用発電要素の2種類が含まれていることを特徴とする請求項1に記載の蓄電セル。   The plurality of types of power generation elements having different characteristics include two types of power generation elements for low temperature having relatively low temperature characteristics and power generation elements for high temperature having excellent high temperature characteristics. The electrical storage cell as described in. 前記低温用発電要素は、負極材料がチタン酸リチウムであることを特徴とする請求項4に記載の蓄電セル。   The electricity storage cell according to claim 4, wherein the low-temperature power generation element has a negative electrode material made of lithium titanate. 電極積層体における正負両極の電極は、それぞれ、同じ特性の発電要素毎に一括して電極端子に接続されるとともに、特性が異なるそれぞれの種類の発電要素に接続されている電極端子が個別に外装体外に導出されていることを特徴とする請求項1〜5に記載の蓄電セル。   The positive and negative electrodes in the electrode stack are connected to the electrode terminals for each power generation element having the same characteristics, and the electrode terminals connected to each type of power generation element having different characteristics are individually packaged. The electrical storage cell according to claim 1, wherein the electrical storage cell is derived outside the body. 請求項6に記載の蓄電セルを所定数スタックして一体化するとともに、同じ特性の前記発電要素同士を直列に接続するとともに、当該直列接続されている発電要素毎に個別の充放電回路が接続されていることを特徴とする蓄電セルモジュール。   A predetermined number of power storage cells according to claim 6 are stacked and integrated, and the power generation elements having the same characteristics are connected in series, and a separate charge / discharge circuit is connected to each power generation element connected in series An electricity storage cell module characterized by being made. シート状の正極と負極とがセパレータを介して対向配置してなる1単位の発電要素を1単位以上積層してなる電極積層体をリチウム塩を含む電解液とともにラミネートフィルムの外装体内に密封封止するとともに、負極側にリチウム金属を起源とするリチウムイオンをあらかじめ吸蔵させてなる蓄電セルを所定数スタックして一体化した蓄電セルモジュールであって、特性が異なる複数種類の蓄電セルが混在していることを特徴とする蓄電セルモジュール。   An electrode laminate formed by laminating one unit or more of a power generation element in which a sheet-like positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween is hermetically sealed in an outer package of a laminate film together with an electrolyte containing a lithium salt. In addition, a power storage cell module in which a predetermined number of power storage cells in which lithium ions originating from lithium metal are previously occluded is stacked and integrated on the negative electrode side, and a plurality of types of power storage cells having different characteristics are mixed. A storage cell module characterized by comprising: 前記特性が異なる複数種類の蓄電セルには、相対的に高容量特性を有する発電要素で構成された電極積層体を備えた蓄電セルと、高出力特性を有する発電要素で構成された電極積層体を備えた蓄電セルの2種類が含まれていることを特徴とする請求項8に記載の蓄電セルモジュール。 The plurality of types of power storage cells having different characteristics include a power storage cell including an electrode stack composed of power generation elements having relatively high capacity characteristics, and an electrode stack composed of power generation elements having high output characteristics. The power storage cell module according to claim 8, wherein two types of power storage cells including: 前記特性が異なる複数種類の蓄電セルには、相対的に低温特性に優れた発電要素で構成された電極積層体を備えた低温用蓄電セルと高温特性に優れた発電要素で構成された電極積層体を備えた高温用蓄電素子の2種類が含まれていることを特徴とする請求項8に記載の蓄電セルモジュール。   The plurality of types of power storage cells having different characteristics include a low temperature power storage cell having a power stack composed of power generation elements having relatively excellent low-temperature characteristics and an electrode stack composed of power generation elements having excellent high-temperature characteristics. The power storage cell module according to claim 8, comprising two types of high-temperature power storage elements including a body. 前記低温用蓄電セルは、前記発電要素における負極材料がチタン酸リチウムであることを特徴とする請求項10に記載の蓄電セルモジュール。   The power storage cell module according to claim 10, wherein the low-temperature power storage cell is configured such that a negative electrode material in the power generation element is lithium titanate. 同じ特性の発電要素で構成された電極積層体を備えた蓄電セル同士を直列に接続して蓄電セル群を構成し、各蓄電セル群毎に個別の充放電回路が接続されることを特徴とする請求項8〜11に記載の蓄電セルモジュール。   A storage cell group is formed by connecting storage cells each having an electrode stack composed of power generation elements having the same characteristics to form a storage cell group, and an individual charge / discharge circuit is connected to each storage cell group. The storage cell module according to claim 8 to 11.
JP2008177991A 2008-07-08 2008-07-08 Power storage cell, and power storage cell module Pending JP2010020921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177991A JP2010020921A (en) 2008-07-08 2008-07-08 Power storage cell, and power storage cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177991A JP2010020921A (en) 2008-07-08 2008-07-08 Power storage cell, and power storage cell module

Publications (1)

Publication Number Publication Date
JP2010020921A true JP2010020921A (en) 2010-01-28

Family

ID=41705617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177991A Pending JP2010020921A (en) 2008-07-08 2008-07-08 Power storage cell, and power storage cell module

Country Status (1)

Country Link
JP (1) JP2010020921A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160639A (en) * 2010-02-04 2011-08-18 Fuji Electric Co Ltd Instantaneous voltage drop countermeasure apparatus
JP2014007107A (en) * 2012-06-26 2014-01-16 Mitsubishi Motors Corp Secondary battery
KR101423595B1 (en) * 2011-07-13 2014-07-25 주식회사 엘지화학 Secondary Battery Pack with Battery Cell Having Improved Low Temperature Property
JP2015518257A (en) * 2012-05-07 2015-06-25 エルジー・ケム・リミテッド Electrode laminate and lithium secondary battery including the same
WO2016123176A1 (en) * 2015-01-30 2016-08-04 Corning Incorporated Integrated energy and power device
WO2023062473A1 (en) * 2021-10-15 2023-04-20 株式会社半導体エネルギー研究所 Battery control system and vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271209A (en) * 1991-02-25 1992-09-28 Hino Motors Ltd Power supply regulation circuit for vehicle
JPH08510088A (en) * 1994-02-28 1996-10-22 モトローラ・インコーポレイテッド Electric energy storage device and charging and discharging method thereof
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor
JP2003282154A (en) * 2002-03-26 2003-10-03 Nissan Motor Co Ltd Power supply device
JP2004031269A (en) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd Secondary battery
JP2004055541A (en) * 2002-05-31 2004-02-19 Hitachi Maxell Ltd Compound energy element
JP2006079987A (en) * 2004-09-10 2006-03-23 Nissan Motor Co Ltd Hybrid battery system
JP2009123385A (en) * 2007-11-12 2009-06-04 Fuji Heavy Ind Ltd Power storage device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271209A (en) * 1991-02-25 1992-09-28 Hino Motors Ltd Power supply regulation circuit for vehicle
JPH08510088A (en) * 1994-02-28 1996-10-22 モトローラ・インコーポレイテッド Electric energy storage device and charging and discharging method thereof
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor
JP2003282154A (en) * 2002-03-26 2003-10-03 Nissan Motor Co Ltd Power supply device
JP2004055541A (en) * 2002-05-31 2004-02-19 Hitachi Maxell Ltd Compound energy element
JP2004031269A (en) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd Secondary battery
JP2006079987A (en) * 2004-09-10 2006-03-23 Nissan Motor Co Ltd Hybrid battery system
JP2009123385A (en) * 2007-11-12 2009-06-04 Fuji Heavy Ind Ltd Power storage device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160639A (en) * 2010-02-04 2011-08-18 Fuji Electric Co Ltd Instantaneous voltage drop countermeasure apparatus
KR101423595B1 (en) * 2011-07-13 2014-07-25 주식회사 엘지화학 Secondary Battery Pack with Battery Cell Having Improved Low Temperature Property
JP2015518257A (en) * 2012-05-07 2015-06-25 エルジー・ケム・リミテッド Electrode laminate and lithium secondary battery including the same
US9831520B2 (en) 2012-05-07 2017-11-28 Lg Chem, Ltd. Electrode assembly and lithium secondary battery comprising the same
JP2014007107A (en) * 2012-06-26 2014-01-16 Mitsubishi Motors Corp Secondary battery
WO2016123176A1 (en) * 2015-01-30 2016-08-04 Corning Incorporated Integrated energy and power device
US10014704B2 (en) 2015-01-30 2018-07-03 Corning Incorporated Integrated energy and power device
WO2023062473A1 (en) * 2021-10-15 2023-04-20 株式会社半導体エネルギー研究所 Battery control system and vehicle

Similar Documents

Publication Publication Date Title
JP5943243B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
JP5779828B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
EP3223357B1 (en) Secondary battery module having a cooling plate
US9660296B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
JP6136027B2 (en) Electrode assembly, battery cell and device including the same
JP5002188B2 (en) Power storage device and power storage cell
US7589955B2 (en) Electric double layer capacitor and aggregation thereof
KR20200068019A (en) Composite battery cell
JP2007026734A (en) Bipolar battery, battery pack, and vehicle mounting them
US10446803B2 (en) Lead tab for battery terminal
JP2010020921A (en) Power storage cell, and power storage cell module
KR102173142B1 (en) Battery module and battery pack including the same
JP2020024922A (en) Horizontal composite power-feeding structure
CN109075269A (en) multi-chamber battery module
US11189886B2 (en) Stack-type nonaqueous electrolyte secondary battery
WO2020176581A1 (en) Contact plate arrangement with three or more contact plate layers
US11381098B2 (en) Energy storage system
KR20150092572A (en) Battery Module Provided with Safety Member Containing Insulating Liquid Material on Outermost Surface and Battery Pack Comprising the Same
US11901762B2 (en) Energy storage system
JP6754111B2 (en) Stacked storage battery and storage battery system using it
US10122008B2 (en) Electricity charging/discharging device with insulation package enclose member having electrode plate pair with multiple-sided electric conductive terminals
JP2020074320A (en) Stacked storage battery and storage battery system including the same
US20190051945A1 (en) Stack-type nonaqueous electrolyte secondary battery
KR100644528B1 (en) Method for manufacturing stack type electric double layer capacitor
CN113193307B (en) Battery and electric equipment thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204