JP2020074320A - Stacked storage battery and storage battery system including the same - Google Patents

Stacked storage battery and storage battery system including the same Download PDF

Info

Publication number
JP2020074320A
JP2020074320A JP2020011612A JP2020011612A JP2020074320A JP 2020074320 A JP2020074320 A JP 2020074320A JP 2020011612 A JP2020011612 A JP 2020011612A JP 2020011612 A JP2020011612 A JP 2020011612A JP 2020074320 A JP2020074320 A JP 2020074320A
Authority
JP
Japan
Prior art keywords
storage battery
laminated
storage batteries
stacked
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020011612A
Other languages
Japanese (ja)
Inventor
均 桝谷
Hitoshi Masutani
均 桝谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020011612A priority Critical patent/JP2020074320A/en
Publication of JP2020074320A publication Critical patent/JP2020074320A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To provide a thin stacked storage battery capable of being rapidly charged and discharged and capable of achieving a high output voltage, and a storage battery system in which the stacked storage battery is used.SOLUTION: A stacked storage battery 1 includes at least one storage battery module, and the storage battery module includes a series circuit of a plurality of single cells 5. In the series circuit of a plurality of single cells 5, at least one of a negative electrode active material 12 and a positive electrode active material 11 is formed by coating or printing on at least one of one main surface and the other main surface of an electrode plate 15, respectively, and two or more electrode plates 15 are stacked with a separator 10 sandwiched therebetween.SELECTED DRAWING: Figure 1

Description

本発明は、積層型蓄電池及びこれを用いた蓄電池システムに関し、特に、薄型の単電池を積み上げて多層構造にした積層型蓄電池及びこれを用いた蓄電池システムに関する。   The present invention relates to a laminated storage battery and a storage battery system using the same, and more particularly to a laminated storage battery in which thin unit cells are stacked to form a multilayer structure and a storage battery system using the same.

蓄電池(二次電池)は、最初の電車や自動車のエネルギー源に採用されるなど、長い歴史を持っている。やがて、より大容量のエネルギーを移動体に供給するため、電車は架線・第三軌道を通じた給電に、自動車は化石燃料による熱機関に取って代わられたが、最近の電池性能の向上により、回収電力により走行する電車や、ハイブリッド自動車、電気自動車など、再び電池が移動体に搭載されて、これらの高効率化、省エネルギーに貢献するようになってきた。パーソナルコンピューターや携帯電話などの電子機器も含めた移動体のエネルギー源として、電池はいまや中心的な役割を示している。   Storage batteries (secondary batteries) have a long history of being adopted as the first energy source for trains and automobiles. Eventually, in order to supply a larger amount of energy to the moving body, the electric train was replaced by the electric power supply via the overhead line and the third track, and the car was replaced by the fossil fuel heat engine, but due to the recent improvement in battery performance, Batteries such as electric trains, hybrid cars, electric cars, etc., which are driven by the recovered electric power are mounted on moving bodies again to contribute to higher efficiency and energy saving. Batteries are now playing a central role as energy sources for mobile devices, including electronic devices such as personal computers and mobile phones.

一方、固定点での電力供給には、交流変圧を前提とした電力系統が一般化した。しかしながら最近のパワーエレクトロニクスの発展により直流変圧が可能になったため、送電損失が少なく耐圧も低い直流送電が高電圧領域で進展してきている。常に発電量と消費量の平衡を保っておくべき電力系統では、短時間の大きな電力消費または供給の変動に対応することができず、恒常的な過剰供給体制をとるなど効率的な運転ができないことが問題となっているため、ここでも直流電池による大電力(短時間大電流)供給・蓄電に、高効率化と省エネルギーの期待が寄せられている。   On the other hand, for power supply at a fixed point, a power system based on AC transformation has been generalized. However, the recent development of power electronics has enabled DC transformation, and DC transmission with low transmission loss and low withstand voltage has advanced in the high voltage region. A power system that should always balance power generation and consumption cannot cope with large power consumption or supply fluctuations in a short time, and cannot operate efficiently, such as by taking a permanent oversupply system. Since this is a problem, there is a high expectation for high efficiency and energy saving in supplying and storing large electric power (short-time large electric current) using a DC battery.

このように効用が高く、普及・発展してきた電池の利点として、二次電池として蓄電できることのほか、大電流を短時間に充放電できる、すなわち大電力を供給し、かつ受け入れられることが挙げられる。二次電池は、例えば小さな電力を長時間にわたって蓄電し、大きな電力として短時間に放電する、電力変換の機能を有している。   The advantages of batteries with such high utility and popularization / development are that they can store electricity as secondary batteries and can charge and discharge large currents in a short time, that is, they can supply and receive large amounts of power. .. The secondary battery has, for example, a power conversion function of storing a small amount of electric power for a long time and discharging a large amount of electric power in a short time.

しかしながら、従来の電池では単位時間当たりの電流により電力が変わるが、その電圧は変換されない。ここで、電力と電圧を自由に変換利用できる電池があれば、電池の応用範囲がさらに広がることとなろう。   However, in the conventional battery, the power is changed by the current per unit time, but the voltage is not converted. If there is a battery that can freely convert and use electric power and voltage, the range of application of the battery will be further expanded.

従来の一般的な二次電池は、シート状の正極板、セパレータ、負極板を順に重ねたものをコイル状に巻くか、あるいは繰り返し折り曲げることによって構成され、その容量はシートの面積に比例する。しかしこのような構造では、巻回構造の中心部や折り曲げ構造の内部の温度が上昇し、大電力充放電により爆発する危険がある。また広いシート面全域でセパレータ品質を保たないと、短絡等により火災につながるおそれもある。各種の放熱対策や、品質管理の徹底が試みられているものの、従来型の二次電池構造では、電池が本来持つ大電力充放電の機能を極限まで発揮することができないと考えられる。   A conventional general secondary battery is constructed by stacking a sheet-shaped positive electrode plate, a separator, and a negative electrode plate in this order and winding them in a coil or repeatedly bending them, and the capacity thereof is proportional to the area of the sheet. However, in such a structure, there is a risk that the temperature of the central portion of the winding structure and the inside of the bending structure rises and the battery explodes due to high-power charging / discharging. Moreover, if the separator quality is not maintained over a wide sheet surface, a fire may occur due to a short circuit or the like. Although various measures against heat dissipation and thorough quality control have been tried, it is considered that the conventional secondary battery structure cannot fully exert the high-power charging / discharging function inherent in the battery.

上記のように平面構造の電池の面積に依存する従来型の二次電池から発展し、立体構造の体積によって容量を確保しようとする「三次元」電池も知られている。例えば、特許文献1には、セパレータを介して負極セル、正極セルが設けられ、負極セルには電解質溶液と共に負極活物質が装填され、正極セルには電解質溶液と共に正極活物質が装填され、それらセルの中に集電器が設けられた電池構造が示されている。この「三次元」電池は、従来型二次電池に比べて放熱性能が高いため、大電力充放電での安全が確保されることに加えて、活物質となる粉末に導電性フィラーと樹脂を加えて硬化させた活物質成形体がセパレータ、隔壁、集電体の少なくとも一つと一体化された三次元電極構造を有するので、電池作成時の組み立て時間やコストの問題を解決することが可能となる。しかしながら、この電池は三次元構造を持つため、単電池を直列接続して高圧化するためには、さらに大きな容積が必要となり小型・軽量化に支障をきたすほか、製造コストが高くなるおそれがある。   There is also known a “three-dimensional” battery that develops from a conventional secondary battery that depends on the area of a planar battery as described above and tries to secure capacity by the volume of a three-dimensional structure. For example, in Patent Document 1, a negative electrode cell and a positive electrode cell are provided via a separator, a negative electrode cell is loaded with a negative electrode active material together with an electrolyte solution, and a positive electrode cell is loaded with an electrolyte solution together with a positive electrode active material. A battery structure is shown with a current collector in the cell. Since this “three-dimensional” battery has higher heat dissipation performance than conventional secondary batteries, in addition to ensuring safety during high-power charging and discharging, conductive powder and resin are added to the powder that becomes the active material. In addition, since the cured active material molded body has a three-dimensional electrode structure integrated with at least one of a separator, a partition wall, and a current collector, it is possible to solve the problems of assembly time and cost during battery production. Become. However, since this battery has a three-dimensional structure, in order to connect cells in series to increase the voltage, a larger volume is required, which hinders size and weight reduction and may increase the manufacturing cost. ..

国際公開第2003/028142号パンフレットInternational Publication No. 2003/028142 Pamphlet

電力と電圧を自由に変換利用できる電池を実現するために、まず電池が本来持つ大電力充放電の機能を極限まで発揮することを可能にする構造が必要であるが、従来の一般的な二次電池は、大面積の正極薄膜及び負極薄膜をコイル状に巻くか、あるいは繰り返し折り曲げることによって構成されているため、内部の温度上昇や、薄膜同士の短絡・破壊などにより、大電力での急速充放電で破壊ないし焼損する危険がある。   In order to realize a battery that can freely convert and use electric power and voltage, it is necessary to first have a structure that allows the battery's original high-power charging / discharging function to be exhibited to the maximum. Since the secondary battery is constructed by winding a large area of positive electrode thin film and negative electrode thin film in a coil shape or by repeatedly bending it, rapid increase of power consumption due to internal temperature rise and short circuit / breakage of thin film There is a risk of destruction or burning due to charge and discharge.

また特許文献1に記載された「三次元」電池は、活物質を粒子状にしてそれぞれの表面積での化学反応を利用すると共に、蓄電池の容量は粒子の表面積の総計、すなわち粒子群の容積に比例するので、大容量化(大容積化)しても熱集中する部分がなく、大電力での急速充放電が可能である。しかしながら、一定の容量を確保するための容積が大きく、小型・軽量が求められる分野には不向きで、かつ電圧を自由に変換利用するために直列高圧化しようとすると、さらに大きく重くなる難点がある。   In addition, the “three-dimensional” battery described in Patent Document 1 makes the active material into particles and utilizes the chemical reaction at each surface area, and the capacity of the storage battery is the total surface area of the particles, that is, the volume of the particle group. Since they are proportional to each other, there is no portion where heat is concentrated even if the capacity is increased (increased in volume), and rapid charge / discharge with large power is possible. However, the volume for securing a certain capacity is large, and it is not suitable for the field where small size and light weight are required, and there is a problem that it becomes larger and heavier when trying to increase the series voltage in order to freely convert and use the voltage. ..

そのため、本発明が解決しようとする第一の課題は、電力と電圧を自由に変換利用でき、大電力での急速充放電に耐え、かつ積層可能な数に、容積・重量・コスト面から見た制約が小さく、容易に高電圧化が可能な積層型蓄電池を提供することである。   Therefore, the first problem to be solved by the present invention is that the power and voltage can be freely converted and used, the battery can withstand rapid charge / discharge with large power, and the number of stackable units can be considered in terms of volume, weight, and cost. It is an object of the present invention to provide a stacked type storage battery which has small restrictions and can easily achieve high voltage.

医療用・工業用のX線発生装置や、直流送電で用いられる直流は、数万ボルト以上と電圧が高いため、まず交流を変圧器で昇圧し、さらに整流器で直流に変換している。斯様な分野では電池の応用が難しく、効率的・経済的にエネルギーを利用する機会が阻まれている。   The direct current used in medical and industrial X-ray generators and direct current power transmission has a high voltage of tens of thousands of volts or more. Therefore, the alternating current is first stepped up by a transformer and then converted to direct current by a rectifier. In such fields, the application of batteries is difficult and the opportunity to use energy efficiently and economically is blocked.

電池電源を昇圧する方法としては、直流をインバータで交流にし、変圧器で昇圧し、整流器でさらに直流に戻す方法と、DC/DCコンバータで直接昇圧する方法がある。前者は無駄が多く、後者は、電流をチョッピングするパワーデバイスに電流と電圧の制限があるため、並列接続により電流を上げ、直列接続により電圧を上げるなど、コストが高い方法である。   As a method of boosting the battery power source, there are a method of converting direct current into alternating current by an inverter, a transformer to boost it, and a rectifier to return it to direct current, and a method of directly boosting with a DC / DC converter. The former is wasteful, and the latter is a high cost method such as increasing the current by parallel connection and increasing the voltage by series connection because the power device that chops the current has the limitation of current and voltage.

そのため、本発明が解決しようとする第二の課題は、非効率な交流変換をせず、高価なパワーデバイスを多用することなく、高電圧で大きな電流を直接作ることができ、電力と電圧を自由に変換利用できる蓄電池システムを提供することである。   Therefore, the second problem to be solved by the present invention is to make a large current directly at a high voltage without performing inefficient AC conversion and without frequently using expensive power devices, thereby reducing power and voltage. It is to provide a storage battery system that can be freely converted and used.

上記第一の課題を解決するため、本発明による積層型蓄電池は、少なくとも一つの蓄電池モジュールを備え、前記蓄電池モジュールは、複数の単電池の直列回路を含み、前記複数の単電池の直列回路は、電極板の一方及び他方の主面の少なくとも一方に負極活物質及び正極活物質の少なくとも一方を塗布又は印刷によりそれぞれ形成し、セパレータを挟んで前記電極板を2枚以上積層してなることを特徴とする。   In order to solve the first problem, the stacked storage battery according to the present invention includes at least one storage battery module, the storage battery module includes a series circuit of a plurality of cells, the series circuit of the plurality of cells is And forming at least one of a negative electrode active material and a positive electrode active material on at least one of the one and the other main surfaces of the electrode plate by coating or printing, and stacking two or more electrode plates with a separator interposed therebetween. Characterize.

本発明によれば、正極活物質又は負極活物質が電極板の表面に塗布又は印刷により形成され、電極板でセパレータを挟んだ積層構造とすることで単電池を直列に接続した構造を有するので、非常に薄型であるにもかかわらず出力電圧が高い積層型蓄電池を提供することができる。   According to the present invention, the positive electrode active material or the negative electrode active material is formed by coating or printing on the surface of the electrode plate, and has a structure in which the unit cells are connected in series by forming a laminated structure in which the separator is sandwiched between the electrode plates. It is possible to provide a laminated storage battery having a high output voltage despite being extremely thin.

本発明において、前記単電池は、積層方向に隣接する第1及び第2の電極板間に配置された前記セパレータと、前記第1の電極板に形成された前記負極活物質と、前記セパレータを介して前記負極活物質と対向するように前記第2の電極板に形成された前記正極活物質と、前記第1及び第2の電極板に挟まれた空間を封止して前記セパレータ、前記負極活物質及び前記正極活物質を閉空間内に閉じ込めるパッキンと、前記セパレータ、前記負極活物質及び前記正極活物質と共に前記閉空間内に装填された電解液とを含むことが好ましい。   In the present invention, the unit cell includes the separator disposed between the first and second electrode plates adjacent to each other in the stacking direction, the negative electrode active material formed on the first electrode plate, and the separator. The positive electrode active material formed on the second electrode plate so as to face the negative electrode active material via the space between the first and second electrode plates to seal the separator, It is preferable to include packing for confining the negative electrode active material and the positive electrode active material in the closed space, and an electrolytic solution loaded in the closed space together with the separator, the negative electrode active material and the positive electrode active material.

本発明において、前記積層方向の一方の端部の電極板は、他方の主面に負極活物質のみが形成され一方の主面に正極活物質が形成されていない負極集電体を構成しており、前記積層方向の他方の端部の電極板は、一方の主面に正極活物質のみが形成され他方の主面に負極活物質が形成されていない正極集電体を構成しており、前記正極集電体と前記負極集電体との間に位置する電極板は、前記積層方向に隣接する2つの単電池間に配置された隔壁を構成しており、前記隔壁の他方の主面に前記負極活物質が形成され、前記隔壁の一方の主面に正極活物質が形成されていることが好ましい。   In the present invention, the electrode plate at one end in the stacking direction constitutes a negative electrode current collector in which only the negative electrode active material is formed on the other main surface and the positive electrode active material is not formed on one main surface. The electrode plate at the other end in the stacking direction constitutes a positive electrode current collector in which only a positive electrode active material is formed on one main surface and a negative electrode active material is not formed on the other main surface, The electrode plate located between the positive electrode current collector and the negative electrode current collector constitutes a partition wall disposed between two unit cells adjacent to each other in the stacking direction, and the other main surface of the partition wall. It is preferable that the negative electrode active material is formed on the first surface and the positive electrode active material is formed on one main surface of the partition wall.

本発明による積層型蓄電池は、前記積層方向に積層されてかつ互いに並列接続された複数の前記蓄電池モジュールを有することが好ましい。この構成によれば、パワーデバイスを多用することなく高電圧で大きな直流電流を作ることができ、これによりコストダウン、変換効率の向上、システムの簡素化を図ることができる。   The stack type storage battery according to the present invention preferably has a plurality of the storage battery modules stacked in the stacking direction and connected in parallel with each other. According to this configuration, a large direct current can be generated at a high voltage without using a large number of power devices, which can reduce costs, improve conversion efficiency, and simplify the system.

本発明による積層型蓄電池は、前記積層方向に隣接する2つの蓄電池モジュールの反対極性の集電体どうしが絶縁板を介して対面するように各蓄電池モジュールの向きが同一の向きに設定されていることが好ましい。   In the laminated storage battery according to the present invention, the respective storage battery modules are oriented in the same direction so that the current collectors of opposite polarities of the two storage battery modules adjacent to each other in the stacking direction face each other through the insulating plate. Preferably.

本発明による積層型蓄電池は、前記積層方向に隣接する2つの蓄電池モジュールの同一極性の外部電極どうしが対面するように各蓄電池モジュールの向きが交互に反転して設定されることもまた好ましい。   In the laminated storage battery according to the present invention, it is also preferable that the orientations of the respective storage battery modules are alternately inverted so that the external electrodes having the same polarity of the two storage battery modules adjacent to each other in the stacking direction face each other.

本発明による積層型蓄電池は、前記2つの蓄電池モジュールの境界位置において、一方の蓄電池モジュールを構成する負極活物質が形成されている負極集電体と、他方の蓄電池モジュールを構成する正極活物質が形成されている正極集電体とが共通化されて一枚の電極板で構成されていることもまた好ましい。   In the laminated storage battery according to the present invention, at the boundary position between the two storage battery modules, a negative electrode current collector having a negative electrode active material forming one storage battery module and a positive electrode active material forming the other storage battery module are provided. It is also preferable that the formed positive electrode current collector is made common and is composed of one electrode plate.

本発明において、前記電極板はニッケル箔又はニッケル鋼板からなり、前記負極活物質は亜鉛、鉄又は水素吸蔵合金からなり、前記正極活物質は水酸化ニッケル又はオキシ水酸化マンガンからなることが好ましい。   In the present invention, it is preferable that the electrode plate is made of nickel foil or a nickel steel plate, the negative electrode active material is made of zinc, iron or a hydrogen storage alloy, and the positive electrode active material is made of nickel hydroxide or manganese oxyhydroxide.

また、上記第二の課題を解決するため、本発明による蓄電池システムは、上記特徴を有する複数の積層型蓄電池と、前記複数の積層型蓄電池の各々を充電する充電回路と、前記複数の積層型蓄電池を直列接続するための直列回路配線と、前記複数の積層型蓄電池の各々の外部端子の接続先を切り換えるリレースイッチアレイとを備えることを特徴とする。   In order to solve the second problem, the storage battery system according to the present invention is a plurality of stacked storage batteries having the above characteristics, a charging circuit that charges each of the plurality of stacked storage batteries, and the plurality of stacked batteries. It is characterized by comprising a series circuit wiring for connecting the storage batteries in series, and a relay switch array for switching the connection destination of each external terminal of the plurality of laminated storage batteries.

本発明において、前記リレースイッチアレイは、前記リレースイッチアレイは、前記複数の積層型蓄電池の放電動作時に、前記複数の積層型蓄電池の各々の外部端子を直列回路配線に接続して、前記複数の積層型蓄電池の直列回路を構成し、前記複数の積層型蓄電池の第1の充電動作時に、前記複数の積層型蓄電池の各々の外部端子を前記充電回路に接続して、前記複数の積層型蓄電池の直列回路の出力電圧よりも低い電圧で前記複数の積層型蓄電池の各々を個別に充電することが好ましい。本発明によれば、電力を取り出す際に高圧電源となり、また充電時には低圧充電が可能である。したがって、薄型で急速充放電が可能であり、高い出力電圧を実現することが可能な蓄電池システムを提供することができる。   In the present invention, the relay switch array is configured such that the relay switch array connects the external terminals of each of the plurality of laminated storage batteries to a series circuit wiring during the discharging operation of the plurality of laminated storage batteries, A series circuit of a laminated storage battery is configured, and at the time of the first charging operation of the plurality of laminated storage batteries, the external terminals of each of the plurality of laminated storage batteries are connected to the charging circuit to provide the plurality of laminated storage batteries. It is preferable to individually charge each of the plurality of stacked type storage batteries with a voltage lower than the output voltage of the series circuit. According to the present invention, a high-voltage power supply is used when power is taken out, and low-voltage charging is possible when charging. Therefore, it is possible to provide a storage battery system which is thin and capable of rapid charge / discharge and which can realize a high output voltage.

本発明において、前前記リレースイッチアレイは、前記複数の積層型蓄電池の第2の充電動作時に、前記複数の積層型蓄電池の各々の外部端子を前記直列回路配線に接続して、前記複数の積層型蓄電池の各々の出力電圧よりも高い低圧で前記複数の積層型蓄電池の直列回路を充電することもまた好ましい。本発明によれば、低圧充電のみならず高圧充電にも対応することが可能である。   In the present invention, the relay switch array is configured such that the external terminals of the plurality of laminated storage batteries are connected to the series circuit wiring during the second charging operation of the plurality of laminated storage batteries, and It is also preferable to charge the series circuit of the plurality of stacked rechargeable batteries at a low voltage higher than the output voltage of each of the rechargeable batteries. According to the present invention, not only low voltage charging but also high voltage charging can be supported.

本発明によれば、電力と電圧を自由に変換利用でき、大電力での急速充放電に耐え、かつ積層可能な数に、容積・重量・コスト面から見た制約が小さく、容易に高電圧化が可能な積層型蓄電池を実現することができる。また本発明によれば、非効率な交流変換をせず、高価なパワーデバイスを多用することなく、二次電池を使って直接、高電圧で大きな電流を作ることができ、電力と電圧を自由に変換利用できる蓄電池システムを実現することができる。   According to the present invention, it is possible to freely convert and use electric power and voltage, withstand rapid charging / discharging with large electric power, and the number of stackable layers is small in terms of volume, weight, and cost, and high voltage can be easily applied It is possible to realize a stackable storage battery that can be realized. Further, according to the present invention, it is possible to directly generate a large current with a high voltage by using a secondary battery without performing inefficient AC conversion and without frequently using expensive power devices. It is possible to realize a storage battery system that can be converted into and used.

図1は、本発明の第1の実施の形態による積層型蓄電池の構造の一例を示す分解斜視図を示している。FIG. 1 is an exploded perspective view showing an example of the structure of the laminated storage battery according to the first embodiment of the present invention. 図2は、図1の積層型蓄電池の側面断面図である。FIG. 2 is a side sectional view of the laminated storage battery of FIG. 図3(a)〜(c)は、本発明の第2の実施の形態による積層型蓄電池の構造を模式的に説明するための断面図である。FIGS. 3A to 3C are cross-sectional views for schematically explaining the structure of the laminated storage battery according to the second embodiment of the present invention. 図4は、上記積層型蓄電池を用いて構成された蓄電池システムの構成を示すブロック図である。FIG. 4 is a block diagram showing a configuration of a storage battery system configured by using the above-mentioned laminated storage battery.

以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の第1の実施の形態による積層型蓄電池の構造の一例を示す分解斜視図を示している。また図2は、図1の積層型蓄電池の側面断面図である。   FIG. 1 is an exploded perspective view showing an example of the structure of the laminated storage battery according to the first embodiment of the present invention. FIG. 2 is a side sectional view of the laminated storage battery of FIG.

図1及び図2に示すように、本実施形態による積層型蓄電池1は3層積層タイプであり、3個の単電池5(5A,5B,5C)が直接接続されたものである。単電池5はセパレータ10を介して互いに対向する正極セル5pと負極セル5nとを備え、正極セル5p内には電解液13と共に正極活物質11が装填されており、負極セル5n内には電解液13と共に負極活物質12が装填されている。   As shown in FIGS. 1 and 2, the laminated storage battery 1 according to the present embodiment is a three-layer laminated type, in which three unit cells 5 (5A, 5B, 5C) are directly connected. The unit cell 5 includes a positive electrode cell 5p and a negative electrode cell 5n that face each other with a separator 10 in between. The positive electrode cell 5p is loaded with the electrolytic solution 13 and the positive electrode active material 11, and the negative electrode cell 5n is electrolyzed. The negative electrode active material 12 is loaded together with the liquid 13.

積層型蓄電池1の積層方向(Z軸方向)の一方及び他方の端部にある電極板15,15は正極集電体15A及び負極集電体15Bをそれぞれ構成するものである。そのため、正極集電体15Aの他方の主面(下面)には正極活物質11が形成されているが、その一方の主面(上面)には活物質が形成されておらず、正極側の外部端子面を構成するだけである。また負極集電体15Bの一方の主面(上面)には負極活物質12が形成されているが、その他方の主面(下面)には活物質が形成されておらず、負極側の外部端子面を構成するだけである。   The electrode plates 15 and 15 at one end and the other end of the stack type storage battery 1 in the stacking direction (Z-axis direction) form a positive electrode current collector 15A and a negative electrode current collector 15B, respectively. Therefore, the positive electrode active material 11 is formed on the other main surface (lower surface) of the positive electrode current collector 15A, but no active material is formed on the other main surface (upper surface) of the positive electrode collector 15A. It only constitutes the external terminal surface. Further, the negative electrode active material 12 is formed on one main surface (upper surface) of the negative electrode current collector 15B, but the active material is not formed on the other main surface (lower surface). It only constitutes the terminal surface.

一方、積層型蓄電池1の積層方向の中間位置にある複数の電極板15は、隣接する2つの単電池5,5間の隔壁15Cを構成しており、各単電池5は隔壁15Cを介して直列に接続されている。隔壁15Cは上下の単電池5,5に共通の電極板であり、隔壁15Cの一方の主面(上面)に形成された負極活物質12は、当該隔壁15Cを挟んで上下に隣接する2つの単電池5,5のうちの上側の単電池5の構成要素であり、隔壁15Cの他方の主面(下面)に形成された正極活物質11は、前記2つの単電池5,5のうちの下側の単電池5の構成要素である。このように、隔壁15Cを構成する電極板15の両面を活物質の形成面として利用しているので、非常に薄型な積層型蓄電池1を容易に製造することができる。   On the other hand, the plurality of electrode plates 15 at the intermediate position in the stacking direction of the stacked storage battery 1 constitutes a partition wall 15C between two adjacent single cells 5 and 5, and each single cell 5 is separated by the partition wall 15C. It is connected in series. The partition wall 15C is an electrode plate common to the upper and lower cells 5 and 5, and the negative electrode active material 12 formed on one main surface (upper surface) of the partition wall 15C is vertically adjacent to the partition wall 15C. The positive electrode active material 11 that is a constituent element of the upper unit cell 5 of the unit cells 5 and 5 and is formed on the other main surface (lower surface) of the partition wall 15C is one of the two unit cells 5 and 5. It is a constituent element of the lower unit cell 5. As described above, since both surfaces of the electrode plate 15 constituting the partition wall 15C are used as the active material formation surface, the very thin laminated storage battery 1 can be easily manufactured.

上下に隣接する2つの電極板15,15に挟まれた空間はパッキン14によって封止されており、単電池5を構成する正極活物質11、セパレータ10、負極活物質12及び電解液13は、上下の電極板15,15及びパッキン14によって形成された閉空間内に閉じ込められている。すなわち、正極集電体15Aと隔壁15Cとの間、負極集電体15Bと隔壁15Cとの間、及び2つの隔壁15C,15C間が単電池5の形成空間となっている。   The space sandwiched between the two vertically adjacent electrode plates 15 and 15 is sealed with packing 14, and the positive electrode active material 11, the separator 10, the negative electrode active material 12 and the electrolytic solution 13 that form the unit cell 5 are It is enclosed in a closed space formed by the upper and lower electrode plates 15 and 15 and the packing 14. That is, the space between the positive electrode current collector 15A and the partition wall 15C, the negative electrode current collector 15B and the partition wall 15C, and the space between the two partition walls 15C and 15C is the space for forming the unit cell 5.

正極活物質11としては、例えば水酸化ニッケル、オキシ水酸化マンガンを使用することができ、負極活物質12としては、亜鉛、鉄、水素吸蔵合金を使用することができる。セパレータ10はアルカリ電解液中で腐食など変質せず、電気的絶縁が可能でイオンが通過する物質からなり、素焼、イオン交換樹脂膜、高分子繊維等が用いられる。より詳細には、四フッ化エチレン樹脂、ポリエチレン、ポリプロピレン、ナイロンなどの織物や不織布又はメンブレンフィルタなどを使用可能である。   As the positive electrode active material 11, for example, nickel hydroxide or manganese oxyhydroxide can be used, and as the negative electrode active material 12, zinc, iron or hydrogen storage alloy can be used. The separator 10 is made of a substance that can be electrically insulated without deterioration such as corrosion in an alkaline electrolyte and allows ions to pass therethrough, and is made of unglazed, ion-exchange resin film, polymer fiber or the like. More specifically, a woven or non-woven fabric such as tetrafluoroethylene resin, polyethylene, polypropylene, nylon, or a membrane filter can be used.

正極活物質11及び負極活物質12は、正極集電体15A、負極集電体15B又は隔壁15Cを構成する電極板15の表面に塗布又は印刷により形成されている。特に、隔壁15Cを構成する電極板15の一方の主面には負極活物質12が形成され、他方の主面には正極活物質11が形成される。電極板15は、アルカリ電解液中で腐食など変質せず、イオンが通過しなくて導電性がある物質からなり、ニッケル金属板、ニッケル金属箔、炭素、鉄にニッケルメッキしたもの、ステンレス鋼にニッケルメッキしたもの(ニッケルメッキ鋼板)、炭素にニッケルメッキしたものなどを使用可能であり、ニッケル金属箔やニッケルメッキ鋼板を用いることが特に好ましい。   The positive electrode active material 11 and the negative electrode active material 12 are formed by coating or printing on the surface of the electrode plate 15 constituting the positive electrode current collector 15A, the negative electrode current collector 15B or the partition wall 15C. In particular, the negative electrode active material 12 is formed on one main surface of the electrode plate 15 constituting the partition wall 15C, and the positive electrode active material 11 is formed on the other main surface. The electrode plate 15 is made of a conductive material that does not change properties such as corrosion in an alkaline electrolyte and does not allow ions to pass through. It is made of nickel metal plate, nickel metal foil, carbon, iron plated with nickel, stainless steel. A nickel-plated product (nickel-plated steel plate), a carbon-nickel-plated product, or the like can be used, and it is particularly preferable to use a nickel metal foil or a nickel-plated steel plate.

本実施形態において電極板15の平面形状は図中X軸方向に細長い短冊状であり、その厚さは8〜10μmであることが好ましい。このような電極板15は、いわゆる膜電池シートよりも硬く粒状電池隔壁よりも柔らかい。そしてこのような蓄電池モジュールをZ軸方向に積層することにより蓄電池の出力電圧の高圧化が図られている。   In this embodiment, the planar shape of the electrode plate 15 is a strip shape elongated in the X-axis direction in the drawing, and the thickness thereof is preferably 8 to 10 μm. Such an electrode plate 15 is harder than a so-called membrane battery sheet and softer than a granular battery partition. The output voltage of the storage battery is increased by stacking such storage battery modules in the Z-axis direction.

また本実施形態による正極活物質11及び負極活物質12は、従来のような導電性フィラーと樹脂とを加えて硬化させた粉状、粒状又は板状の成形体ではなく、活物質の微粒子を含むスラリーを塗布又は印刷することにより、電極板15の表面に非常に薄く均一に形成された薄膜である。このような構造により、蓄電池全体の薄型化、超積層化による高圧化及び大容量化などが可能である。また平面を重ねた積層構造であるため大容量化(大容積化)しても熱集中する部分がなく、大容量化及び充放電特性の向上が可能である。   In addition, the positive electrode active material 11 and the negative electrode active material 12 according to the present embodiment are not powdered, granular, or plate-shaped moldings obtained by adding a conductive filler and a resin and curing the same, but fine particles of the active material. It is a thin film that is formed very thin and uniform on the surface of the electrode plate 15 by applying or printing the containing slurry. With such a structure, it is possible to reduce the thickness of the storage battery as a whole and to increase the pressure and capacity by super stacking. Further, since the flat structure is a laminated structure, there is no portion where heat is concentrated even if the capacity is increased (increased volume), and it is possible to increase the capacity and improve the charge / discharge characteristics.

本実施形態による蓄電池の各層の厚さの一例をより具体的に説明すると、正極活物質11、セパレータ10、負極活物質12、電極板15(負極集電体15B又は隔壁15C)の厚さはそれぞれ、53.5μm、8μm、23.5μm、8μmである。したがって、単電池5の厚さは93μmとなり、3層積層タイプの場合には93×3+8=287μmとなる。なお追加の8μmは、一方の端部の電極板15(正極集電体15A)の厚さである。このように、本実施形態による積層型蓄電池1は非常に薄型な構造を有している。   Explaining more specifically an example of the thickness of each layer of the storage battery according to the present embodiment, the thicknesses of the positive electrode active material 11, the separator 10, the negative electrode active material 12, and the electrode plate 15 (negative electrode current collector 15B or partition 15C) are as follows. They are 53.5 μm, 8 μm, 23.5 μm and 8 μm, respectively. Therefore, the thickness of the unit cell 5 is 93 μm, which is 93 × 3 + 8 = 287 μm in the case of the three-layer laminated type. The additional 8 μm is the thickness of the electrode plate 15 (positive electrode collector 15A) at one end. Thus, the laminated storage battery 1 according to the present embodiment has a very thin structure.

単電池5の電圧が例えば1.2Vである場合、3層積層タイプの出力電圧は3.6Vとなる。積層型蓄電池1を応用して一般家電用途の二次電池を作製する場合、単電池から得られる1.2Vを、既に普及しているリチウムイオン電池の出力電圧(3.7V)に近づける必要があるが、このように3セル積層構造にすることでリチウムイオン電池と同等の一般家庭用途の二次電池を実現することができる。   When the voltage of the unit cell 5 is 1.2V, for example, the output voltage of the three-layer laminated type is 3.6V. When applying the laminated storage battery 1 to produce a secondary battery for general household appliances, it is necessary to bring 1.2V obtained from a single battery close to the output voltage (3.7V) of a lithium ion battery which is already popular. However, a secondary battery for general household use, which is equivalent to a lithium ion battery, can be realized by using such a three-cell laminated structure.

また例えば単電池5の出力電圧が1.2Vである場合において、積層型蓄電池1に600Vの高い出力電圧を要求する場合には、500個の単電池5を直列接続する必要がある。この場合、積層型蓄電池1の全体の厚さは、93×500+8≒46.5mmとなる。このように、本実施形態による積層型蓄電池1は、高い出力電圧を非常に薄型な構造により実現可能である。   Further, for example, when the output voltage of the unit cells 5 is 1.2V and when the stacked storage battery 1 requires a high output voltage of 600V, it is necessary to connect 500 unit cells 5 in series. In this case, the total thickness of the laminated storage battery 1 is 93 × 500 + 8≈46.5 mm. As described above, the stacked storage battery 1 according to the present embodiment can realize a high output voltage with a very thin structure.

本実施形態による積層型蓄電池1の製造では、まずニッケルメッキ鋼板などの電極板の一方の主面に負極活物質12を塗布等により形成してなる負極集電体15Bを用意し、この負極集電体15Bの一方の主面に枠型のパッキン14を取り付ける。そしてパッキン14内にセパレータ10を装填した後、パッキン14の上部開口に隔壁15Cを被せる。隔壁15Cは、電極板15の一方及び他方の主面に負極活物質12及び正極活物質11がそれぞれ形成されており、正極活物質11の形成面が下向きとなるように被せられる。以上により1つの単電池が完成する。   In the manufacture of the laminated storage battery 1 according to the present embodiment, first, a negative electrode current collector 15B formed by coating the negative electrode active material 12 on one main surface of an electrode plate such as a nickel-plated steel plate is prepared. The frame-type packing 14 is attached to one main surface of the electric body 15B. After the separator 10 is loaded in the packing 14, the upper opening of the packing 14 is covered with the partition wall 15C. The partition wall 15C has the negative electrode active material 12 and the positive electrode active material 11 formed on one and the other main surfaces of the electrode plate 15, respectively, and is covered so that the surface on which the positive electrode active material 11 is formed faces downward. By the above, one unit cell is completed.

その後、パッキン14の取り付け、セパレータ10の装填及び隔壁15Cの取り付けを繰り返すことにより、単電池の積層化が行われる。そして計画の積層数に達した後、他方の主面に正極活物質11のみが形成された電極板からなる正極集電体15Aを最上層のパッキン14の上部開口に被せる。電解液は個々の単電池の組み立て時に充填してもよく、すべての単電池を組み立てた後に各パッキン14に設けた充填孔から充填してもよい。   After that, the packing 14 is attached, the separator 10 is loaded, and the partition 15C is repeatedly attached to stack the cells. Then, after reaching the planned number of stacked layers, the positive electrode current collector 15A made of an electrode plate having only the positive electrode active material 11 formed on the other main surface is covered on the upper opening of the packing 14 of the uppermost layer. The electrolytic solution may be filled at the time of assembling the individual unit cells, or may be filled through a filling hole provided in each packing 14 after assembling all the unit cells.

以上説明したように、本実施形態による積層型蓄電池1は、一方及び他方の主面に正極活物質11及び負極活物質12がそれぞれ塗布又は印刷により形成された複数枚の電極板15を用意し、セパレータ10を挟んで電極板15を多層化することで単電池5を直列に接続した構造を有するので、非常に薄型で出力電圧が高い蓄電池を実現することができる。   As described above, the laminated storage battery 1 according to the present embodiment is provided with a plurality of electrode plates 15 each having the positive electrode active material 11 and the negative electrode active material 12 formed on one and the other main surfaces by coating or printing. Since it has a structure in which the unit cells 5 are connected in series by forming the electrode plates 15 in multiple layers with the separator 10 sandwiched between them, it is possible to realize an extremely thin storage battery having a high output voltage.

図3(a)〜(c)は、本発明の第2の実施の形態による積層型蓄電池の構造を模式的に説明するための断面図である。   FIGS. 3A to 3C are cross-sectional views for schematically explaining the structure of the laminated storage battery according to the second embodiment of the present invention.

本実施形態による積層型蓄電池2A〜2Cの特徴は、例えば図1に示した3セル積層構造の積層型蓄電池1を1つの蓄電池モジュール4とし、単電池5の積層化と同様に4つの蓄電池モジュール4を積層化すると共に、それらの蓄電池モジュール4の並列接続により蓄電池全体の大容量化を図ったものである。なお蓄電池モジュール4の積層数は、積層型蓄電池2A〜2Cに求められる出力容量によって定まるものであり、3層に限定されるものではなく何層であってもよい。   The features of the laminated storage batteries 2A to 2C according to the present embodiment are, for example, that the laminated storage battery 1 having the three-cell laminated structure shown in FIG. 4 is stacked and the storage battery modules 4 are connected in parallel to increase the capacity of the entire storage battery. Note that the number of stacked storage battery modules 4 is determined by the output capacity required for the stacked storage batteries 2A to 2C, and is not limited to three layers and may be any number.

図3(a)に示す積層型蓄電池2Aは、単電池の積層方向(Z軸方向)に積層されてなる複数の蓄電池モジュール4と、複数の蓄電池モジュール4の各々の正極集電体15Aどうしを接続する正極短絡配線19Aと、複数の蓄電池モジュール4の各々の負極集電体15Bどうしを接続する負極短絡配線19Bとを備えており、すべての蓄電池モジュール4を同じ向きで積層化したものである。   The stacked storage battery 2A shown in FIG. 3 (a) includes a plurality of storage battery modules 4 stacked in the stacking direction (Z-axis direction) of the single cells and the positive electrode current collectors 15A of the storage battery modules 4 respectively. It is provided with a positive electrode short circuit wire 19A to be connected and a negative electrode short circuit wire 19B to connect the negative electrode current collectors 15B of each of the plurality of storage battery modules 4, and all the storage battery modules 4 are laminated in the same direction. ..

各蓄電池モジュール4の正極集電体15Aは正極短絡配線19Aを介して相互に接続されており、負極集電体15Bは負極短絡配線19Bを介して相互に接続されており、複数の蓄電池モジュール4は正極短絡配線19A及び負極短絡配線19Bを介して並列接続されている。上下に隣接する2つの蓄電池モジュール4,4の反対の極性を持つ外部電極どうし、つまり正極集電体15Aと負極集電体15Bとが絶縁板18を介して対面するように、各蓄電池モジュール4は同一の向きに設定されている。このように、上下の蓄電池モジュール4,4間に絶縁板18を介在させることで両者を絶縁分離することができる。   The positive electrode current collectors 15A of each storage battery module 4 are connected to each other via the positive electrode short-circuit wiring 19A, and the negative electrode current collectors 15B are connected to each other via the negative electrode short-circuit wiring 19B. Are connected in parallel via a positive electrode short circuit wire 19A and a negative electrode short circuit wire 19B. Each of the storage battery modules 4 is arranged such that the two externally adjacent storage battery modules 4 and 4 having opposite polarities, that is, the positive electrode current collector 15A and the negative electrode current collector 15B face each other via the insulating plate 18. Are set in the same direction. In this way, by interposing the insulating plate 18 between the upper and lower storage battery modules 4 and 4, the two can be insulated and separated.

本実施形態による積層型蓄電池2Aは、図1に示した積層型蓄電池の4倍の電池容量を確保することができる。また電池容量を増加させるために単電池の電極面積を広げる必要がないので、活物質の面内品質の不均一化による蓄電池の品質の低下を防止することができる。電極板15と直交する方向に電気が通るようになり、電極板15間をつなぐ正極短絡配線19A及び負極短絡配線19Bを電極板15と直交する方向に延設するので、断面積が大きく、長さが極めて短い配線を用いることができ、これにより大電流を流すことができる。   The laminated storage battery 2A according to the present embodiment can ensure a battery capacity four times that of the laminated storage battery shown in FIG. Further, since it is not necessary to increase the electrode area of the unit cell in order to increase the battery capacity, it is possible to prevent the deterioration of the quality of the storage battery due to the non-uniformity of the in-plane quality of the active material. Since electricity flows in the direction orthogonal to the electrode plates 15 and the positive electrode short-circuit wiring 19A and the negative electrode short-circuit wiring 19B connecting the electrode plates 15 are extended in the direction orthogonal to the electrode plate 15, the cross-sectional area is large and the length is long. It is possible to use a wiring having an extremely short length, which allows a large current to flow.

図3(b)に示す積層型蓄電池2Bは、図3(a)に示した積層型蓄電池2Aの改良であって、隣接する2つの蓄電池モジュール4の同一極性の外部電極どうし(正極集電体15A,15Aどうし、あるいは負極集電体15B,15Bどうし)が対面するように各蓄電池モジュール4の向きが交互に反転して設定されている。すなわち、この積層型蓄電池2Bは、単電池の正負の向きを3セル毎に逆転させて互い違いに積層したものである。この構成によれば、絶縁板18が不要となり、正極短絡配線19A及び負極短絡配線19Bも簡素化することができる。   The laminated storage battery 2B shown in FIG. 3 (b) is an improvement of the laminated storage battery 2A shown in FIG. 3 (a), and the external electrodes of the same polarity of two adjacent storage battery modules 4 (positive electrode collector). 15A, 15A, or the negative electrode current collectors 15B, 15B) face each other so that the orientations of the storage battery modules 4 are alternately inverted. That is, in the laminated storage battery 2B, the positive and negative directions of the unit cells are reversed every three cells and stacked alternately. According to this configuration, the insulating plate 18 is unnecessary, and the positive electrode short circuit wiring 19A and the negative electrode short circuit wiring 19B can be simplified.

図3(c)に示す積層型蓄電池2Cは、図3(b)に示した積層型蓄電池2Bのさらなる改良であって、上下に隣接する2つの蓄電池モジュール4,4の境界位置において、一方の蓄電池モジュール4を構成する負極活物質12が形成されている負極集電体15Bと、他方の蓄電池モジュール4を構成する負極活物質12が形成されている負極集電体15Bとが共通化されて一枚の電極板15で構成されると共に、一方の蓄電池モジュール4を構成する正極活物質11が形成されている正極集電体15Aと、他方の蓄電池モジュール4を構成する正極活物質11が形成されている正極集電体15Aとが共通化されて一枚の電極板15で構成されている点を特徴とするものである。上下の蓄電池モジュール4,4の境界位置にある電極板15の一方及び他方の主面に同一極性の活物質を形成した場合には、電極板を共通化してその数を減らすことができ、並列回路もさらに簡略化することができる。また超積層構造と電圧の組み合わせの自由度を高めることができる。   The laminated storage battery 2C shown in FIG. 3 (c) is a further improvement of the laminated storage battery 2B shown in FIG. 3 (b), in which one of the two vertically adjacent storage battery modules 4 and 4 is at the boundary position. The negative electrode current collector 15B having the negative electrode active material 12 forming the storage battery module 4 and the negative electrode current collector 15B having the negative electrode active material 12 forming the other storage battery module 4 are commonly used. A positive electrode current collector 15A formed of one electrode plate 15 and having a positive electrode active material 11 forming one storage battery module 4, and a positive electrode active material 11 forming the other storage battery module 4 are formed. It is characterized in that the positive electrode current collector 15A is made common and is constituted by one electrode plate 15. When the active material having the same polarity is formed on one and the other main surfaces of the electrode plates 15 at the boundary positions of the upper and lower storage battery modules 4 and 4, the electrode plates can be shared to reduce the number of them. The circuit can be further simplified. In addition, the degree of freedom in combining the super laminated structure and the voltage can be increased.

図4は、上記積層型蓄電池を用いて構成された蓄電池システムの構成を示すブロック図である。   FIG. 4 is a block diagram showing a configuration of a storage battery system configured by using the above-mentioned laminated storage battery.

図4に示すように、本実施形態による蓄電池システム3は、例えば図1に示した積層型蓄電池1を一つの蓄電池モジュール6とし、この蓄電池モジュール6を複数個用いて構成したものである。なお積層型蓄電池1の代わりに積層型蓄電池2A〜2Cを蓄電池モジュール6としてもよい。   As shown in FIG. 4, the storage battery system 3 according to the present embodiment is configured by using, for example, the stacked storage battery 1 shown in FIG. 1 as one storage battery module 6 and using a plurality of the storage battery modules 6. Instead of the stacked storage battery 1, the stacked storage batteries 2A to 2C may be used as the storage battery module 6.

本実施形態による蓄電池システム3は、複数の蓄電池モジュール6を個別に充電する充電回路7と、複数の蓄電池モジュール6を直列接続するための直列回路配線8a,8b,8cと、複数の蓄電池モジュール6の各々の外部端子(正極端子6a及び負極端子6b)の接続先を切り換えるリレースイッチアレイ9とを備えている。   The storage battery system 3 according to the present embodiment includes a charging circuit 7 for individually charging a plurality of storage battery modules 6, series circuit wirings 8a, 8b, 8c for connecting a plurality of storage battery modules 6 in series, and a plurality of storage battery modules 6 And a relay switch array 9 for switching the connection destination of each external terminal (the positive electrode terminal 6a and the negative electrode terminal 6b).

充電回路7は、変圧器20を構成する一次側コイル21及び複数の二次側コイル22と、複数の二次側コイル22の各々に直列接続された複数のダイオード23とを備えている。一次側コイル21は交流電源30に接続されており、二次側コイル22及びダイオード23の直列回路の一端及び他端は、各蓄電池モジュール6の一対の外部端子(正極端子6a及び負極端子6b)に対応する一対の充電端子を構成している。一対の充電端子は、複数の二接点リレースイッチからなるリレースイッチアレイ9を介して蓄電池モジュール6の正極端子6a及び負極端子6bにそれぞれ接続される。   The charging circuit 7 includes a primary coil 21 and a plurality of secondary coils 22 that form a transformer 20, and a plurality of diodes 23 that are connected in series to each of the plurality of secondary coils 22. The primary coil 21 is connected to the AC power supply 30, and one end and the other end of the series circuit of the secondary coil 22 and the diode 23 have a pair of external terminals (a positive electrode terminal 6a and a negative electrode terminal 6b) of each storage battery module 6. And a pair of charging terminals corresponding to. The pair of charging terminals are respectively connected to the positive electrode terminal 6a and the negative electrode terminal 6b of the storage battery module 6 via the relay switch array 9 including a plurality of two-contact relay switches.

リレースイッチアレイ9は、各蓄電池モジュール6の外部端子の接続先を同時に切り換える。蓄電池システム3の放電動作時にはリレースイッチアレイ9が端子a側に接続され、これにより各蓄電池モジュール6の外部端子が直列回路配線8a,8b,8cを介して接続されて各蓄電池モジュール6の直列回路が構成される。したがって、蓄電池システム3の出力電圧は各蓄電池モジュール6の出力電圧の総和となり、非常に高い出力電圧を供給することができる。   The relay switch array 9 simultaneously switches the connection destinations of the external terminals of each storage battery module 6. During the discharging operation of the storage battery system 3, the relay switch array 9 is connected to the terminal a side, whereby the external terminals of each storage battery module 6 are connected via the series circuit wiring 8a, 8b, 8c, and the series circuit of each storage battery module 6 is connected. Is configured. Therefore, the output voltage of the storage battery system 3 is the sum of the output voltages of the storage battery modules 6, and a very high output voltage can be supplied.

また、蓄電池システム3の充電動作時(第1の充電動作時)にはリレースイッチアレイ9が図示のように端子b側に接続され、これにより各蓄電池モジュール6の外部端子が対応する充電回路に接続される。これにより、各蓄電池モジュール6は、それらの直列回路の出力電圧よりも低い低圧で充電される。充電回路7は例えば200Vなどの低電圧の交流電源30に接続されており、この交流電圧を降圧し、整流して例えば50Vの直流電圧を生成する。したがって、各蓄電池モジュールが50Vの直流電圧で充電される。なお蓄電池モジュール6が必ずしも個別に充電される必要はなく、いくつかの蓄電池モジュール6の直列回路ごとに充電することも可能である。この場合、単一の蓄電池モジュール6又は複数の蓄電池モジュール6の直列回路は、600V以下で充電できることが好ましい。   Further, during the charging operation of the storage battery system 3 (during the first charging operation), the relay switch array 9 is connected to the terminal b side as shown in the figure, whereby the external terminal of each storage battery module 6 becomes a corresponding charging circuit. Connected. Thereby, each storage battery module 6 is charged at a low voltage lower than the output voltage of the series circuit. The charging circuit 7 is connected to an AC power source 30 having a low voltage of, for example, 200V, and steps down this AC voltage and rectifies it to generate a DC voltage of, for example, 50V. Therefore, each storage battery module is charged with the DC voltage of 50V. The storage battery modules 6 do not necessarily have to be charged individually, and it is possible to charge each of the series circuits of several storage battery modules 6. In this case, it is preferable that the single storage battery module 6 or the series circuit of the plurality of storage battery modules 6 can be charged at 600 V or less.

本実施形態による蓄電池システム3は高圧充電も可能である。高圧充電動作時(第2の充電動作時)にはリレースイッチアレイ9が端子a側に接続され、蓄電池モジュール6の直列回路の状態で充電が行われる。直列回路の一対の外部端子8p,8p'に充電回路(不図示)を介して高圧電源を接続することにより、直列回路を高圧充電することができる。このように、本実施形態による蓄電池システム3は、低圧充電と高圧充電の両方に対応することが可能である。   The storage battery system 3 according to the present embodiment is also capable of high voltage charging. During the high-voltage charging operation (during the second charging operation), the relay switch array 9 is connected to the terminal a side, and charging is performed in the state of the series circuit of the storage battery module 6. By connecting a high-voltage power supply to the pair of external terminals 8p, 8p 'of the series circuit via a charging circuit (not shown), the series circuit can be charged at high voltage. In this way, the storage battery system 3 according to the present embodiment can support both low voltage charging and high voltage charging.

以上説明したように、本実施形態による蓄電池システム3は、充電時には低圧急速充電が可能であり、また電力を取り出す際に高圧電源となることができる。したがって、例えば出力電圧が50Vの蓄電池モジュール6を2000個用いた場合、10万ボルトの直流電源を構成することができる。また蓄電池システム3は低圧充電のみならず高圧充電も可能である。   As described above, the storage battery system 3 according to the present embodiment can perform low-voltage rapid charging at the time of charging, and can also serve as a high-voltage power source at the time of extracting electric power. Therefore, for example, when 2000 storage battery modules 6 having an output voltage of 50V are used, a DC power supply of 100,000 volts can be constructed. Further, the storage battery system 3 is capable of high voltage charging as well as low voltage charging.

以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。   Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. It goes without saying that it is included in the range.

例えば、上記実施形態においては、3層積層タイプの積層型蓄電池を例に挙げたが、積層数は特に限定されず何層であってもよい。また各実施形態は適宜組み合わせて構成することができる。   For example, in the above-described embodiment, the stacked storage battery of the three-layer stacked type has been described as an example, but the number of stacked layers is not particularly limited and may be any number of layers. Further, the respective embodiments can be appropriately combined and configured.

本発明による積層型蓄電池及びこれを用いた蓄電池システムは、急速充電が効果を発揮する携帯電子端末機器や高電圧を必要とするX線の線源、加速器、電子線源などに好ましく用いることができる。   INDUSTRIAL APPLICABILITY The laminated storage battery and the storage battery system using the same according to the present invention are preferably used for a portable electronic terminal device in which rapid charging is effective, an X-ray source requiring high voltage, an accelerator, an electron beam source, and the like. it can.

1,2A,2B,2C 積層型蓄電池
3 蓄電池システム
4 蓄電池モジュール
5,5A,5B,5C 単電池
5n 負極セル
5p 正極セル
6 蓄電池モジュール
6a 蓄電池モジュールの正極端子
6b 蓄電池モジュールの負極端子
7 充電回路
8a,8b,8c 直列回路配線
9 リレースイッチアレイ
10 セパレータ
11 正極活物質
12 負極活物質
13 電解液
14 パッキン
15 電極板
15A 正極集電体
15B 負極集電体
15C 隔壁
18 絶縁板
19A 正極短絡配線
19B 負極短絡配線
20 変圧器
21 一次側コイル
22 二次側コイル
23 ダイオード
30 交流電源
1, 2A, 2B, 2C Stacked storage battery 3 Storage battery system 4 Storage battery module 5, 5A, 5B, 5C Single battery 5n Negative cell 5p Positive cell 6 Storage battery module 6a Positive terminal 6b of storage battery module Negative terminal 7 of storage battery module 7 Charging circuit 8a , 8b, 8c Series circuit wiring 9 Relay switch array 10 Separator 11 Positive electrode active material 12 Negative electrode active material 13 Electrolyte solution 14 Packing 15 Electrode plate 15A Positive electrode current collector 15B Negative electrode current collector 15C Partition wall 18 Insulating plate 19A Positive electrode short circuit wiring 19B Negative electrode Short-circuit wiring 20 Transformer 21 Primary coil 22 Secondary coil 23 Diode 30 AC power supply

Claims (4)

複数の積層型蓄電池と、
前記複数の積層型蓄電池の各々を充電する充電回路と、
前記複数の積層型蓄電池を直列接続するための直列回路配線と、
前記複数の積層型蓄電池の各々の外部端子の接続先を切り換えるリレースイッチアレイと、を備え、
前記複数の積層型蓄電池のそれぞれは、少なくとも一つの蓄電池モジュールを備え、
前記蓄電池モジュールは、複数の単電池の直列回路を含み、
前記複数の単電池の直列回路は、電極板の一方及び他方の主面の少なくとも一方に負極活物質及び正極活物質の少なくとも一方が形成され、セパレータを挟んで前記電極板を2枚以上積層してなることを特徴とする蓄電池システム。
A plurality of stacked storage batteries,
A charging circuit that charges each of the plurality of stacked storage batteries,
A series circuit wiring for connecting the plurality of laminated storage batteries in series,
A relay switch array for switching the connection destination of each external terminal of the plurality of laminated storage batteries,
Each of the plurality of stacked storage batteries comprises at least one storage battery module,
The storage battery module includes a series circuit of a plurality of cells,
In the series circuit of the plurality of unit cells, at least one of the negative electrode active material and the positive electrode active material is formed on at least one of the main surfaces of one and the other of the electrode plates, and two or more electrode plates are laminated with a separator interposed therebetween. A storage battery system characterized by the following.
前記リレースイッチアレイは、
前記複数の積層型蓄電池の放電動作時に、前記複数の積層型蓄電池の各々の外部端子を前記直列回路配線に接続して、前記複数の積層型蓄電池の直列回路を構成し、
前記複数の積層型蓄電池の第1の充電動作時に、前記複数の積層型蓄電池の各々の外部端子を前記充電回路に接続して、前記複数の積層型蓄電池の直列回路の出力電圧よりも低い電圧で前記複数の積層型蓄電池の各々を個別に充電する、請求項1に記載の蓄電池システム。
The relay switch array is
During the discharging operation of the plurality of laminated storage batteries, each external terminal of the plurality of laminated storage batteries is connected to the series circuit wiring to form a series circuit of the plurality of laminated storage batteries,
A voltage lower than the output voltage of the series circuit of the plurality of stacked type storage batteries by connecting the external terminals of the plurality of stacked type storage batteries to the charging circuit during the first charging operation of the plurality of stacked type storage batteries. The storage battery system according to claim 1, wherein each of the plurality of stacked storage batteries is individually charged with.
前記リレースイッチアレイは、
前記複数の積層型蓄電池の第2の充電動作時に、前記複数の積層型蓄電池の各々の外部端子を前記直列回路配線に接続して、前記複数の積層型蓄電池の各々の出力電圧よりも高い電圧で前記複数の積層型蓄電池の直列回路を充電する、請求項2に記載の蓄電池システム。
The relay switch array is
A voltage higher than the output voltage of each of the plurality of laminated storage batteries by connecting the external terminals of each of the plurality of laminated storage batteries to the series circuit wiring during the second charging operation of the plurality of laminated storage batteries. The storage battery system according to claim 2, wherein the series circuit of the plurality of stacked storage batteries is charged by.
前記複数の積層型蓄電池のそれぞれは、並列接続された複数の前記蓄電池モジュールを含む、請求項1乃至3のいずれか一項に記載の蓄電池システム。   The storage battery system according to any one of claims 1 to 3, wherein each of the plurality of stacked storage batteries includes the plurality of storage battery modules connected in parallel.
JP2020011612A 2020-01-28 2020-01-28 Stacked storage battery and storage battery system including the same Pending JP2020074320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020011612A JP2020074320A (en) 2020-01-28 2020-01-28 Stacked storage battery and storage battery system including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020011612A JP2020074320A (en) 2020-01-28 2020-01-28 Stacked storage battery and storage battery system including the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016064913A Division JP6754111B2 (en) 2016-03-29 2016-03-29 Stacked storage battery and storage battery system using it

Publications (1)

Publication Number Publication Date
JP2020074320A true JP2020074320A (en) 2020-05-14

Family

ID=70610218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020011612A Pending JP2020074320A (en) 2020-01-28 2020-01-28 Stacked storage battery and storage battery system including the same

Country Status (1)

Country Link
JP (1) JP2020074320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061457A1 (en) * 2022-09-21 2024-03-28 Siemens Energy Global GmbH & Co. KG Device for supplying a direct current to electrolysis cells

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340641A (en) * 1995-06-12 1996-12-24 Tokyo R & D:Kk Battery power circuit
JP2001256934A (en) * 2000-03-13 2001-09-21 Osaka Gas Co Ltd Battery module case
JP2005056654A (en) * 2003-08-01 2005-03-03 Nissan Motor Co Ltd Battery pack module management device, and battery pack module provided with management device
JP2006149018A (en) * 2004-11-17 2006-06-08 Matsushita Electric Ind Co Ltd Controller for inverter equipped with accumulator
WO2011145608A1 (en) * 2010-05-19 2011-11-24 日産自動車株式会社 Bipolar secondary battery
JP2013128340A (en) * 2011-12-16 2013-06-27 Toyota Motor Corp Power storage system
JP2014143903A (en) * 2012-12-28 2014-08-07 Semiconductor Energy Lab Co Ltd Control system for power storage device, power storage system, and electric apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340641A (en) * 1995-06-12 1996-12-24 Tokyo R & D:Kk Battery power circuit
JP2001256934A (en) * 2000-03-13 2001-09-21 Osaka Gas Co Ltd Battery module case
JP2005056654A (en) * 2003-08-01 2005-03-03 Nissan Motor Co Ltd Battery pack module management device, and battery pack module provided with management device
JP2006149018A (en) * 2004-11-17 2006-06-08 Matsushita Electric Ind Co Ltd Controller for inverter equipped with accumulator
WO2011145608A1 (en) * 2010-05-19 2011-11-24 日産自動車株式会社 Bipolar secondary battery
JP2013128340A (en) * 2011-12-16 2013-06-27 Toyota Motor Corp Power storage system
JP2014143903A (en) * 2012-12-28 2014-08-07 Semiconductor Energy Lab Co Ltd Control system for power storage device, power storage system, and electric apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061457A1 (en) * 2022-09-21 2024-03-28 Siemens Energy Global GmbH & Co. KG Device for supplying a direct current to electrolysis cells

Similar Documents

Publication Publication Date Title
EP1428286B1 (en) A bipolar battery, a method for manufacturing a bipolar battery and a biplate assembly
KR101642326B1 (en) Heat sink having 2 or more separated cooling way with vertical placemented common gateway
KR20180005456A (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
JPWO2007072781A1 (en) Power storage device
KR101601149B1 (en) Heat sink having 2 or more separated cooling way
KR20150045378A (en) Heat sink having 2 or more separated cooling way with insulation material
CN109075269A (en) multi-chamber battery module
US20140255761A1 (en) Battery cell, manufacturing method thereof, and battery module including the same
JP6754111B2 (en) Stacked storage battery and storage battery system using it
JPWO2020026964A1 (en) Power supply unit, vehicle equipped with it, and shock absorber
JP2020074320A (en) Stacked storage battery and storage battery system including the same
JPH04248274A (en) Layer-built cell
KR101891481B1 (en) Connecting Structure of Secondary Battery Cell
KR101476341B1 (en) Flexible solid electrode body
KR20140029921A (en) Battery cell and battery module
KR20150045245A (en) Heat sink having 2 or more separated cooling way with common gateway
KR102090309B1 (en) Joining Apparatus and Battery Cell Assembly having the same
JP3246636U (en) Soft-pack battery module and its power supply
JP7398489B2 (en) Battery module with cooling cartridge and its battery system
KR101973407B1 (en) Apparatus for storing electric energy and method for manufacturing the same
KR20130001873A (en) Secondary battery and battery pack including the same
KR102325035B1 (en) Battery cell and manufacturing method thereof
CN106058323A (en) Lithium ion battery pack
Klein et al. Bipolar nickel metal hydride battery
JP2024509980A (en) Pouch-type secondary battery, sealing device for the secondary battery, and sealing method for the secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406