JPH04248274A - Layer-built cell - Google Patents

Layer-built cell

Info

Publication number
JPH04248274A
JPH04248274A JP3007682A JP768291A JPH04248274A JP H04248274 A JPH04248274 A JP H04248274A JP 3007682 A JP3007682 A JP 3007682A JP 768291 A JP768291 A JP 768291A JP H04248274 A JPH04248274 A JP H04248274A
Authority
JP
Japan
Prior art keywords
plate
battery
active material
batteries
bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3007682A
Other languages
Japanese (ja)
Inventor
Osamu Hamamoto
修 浜本
Masami Yoshitake
吉竹 正実
Zenji Kamio
神尾 善二
Keiichi Watanabe
敬一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP3007682A priority Critical patent/JPH04248274A/en
Publication of JPH04248274A publication Critical patent/JPH04248274A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To laminate primary cells or secondary cells in series. CONSTITUTION:A bipolar plate 1 is composed of electrodes 2 and 3 arranged on both sides of a sheet-form or a plate-form conductive base material. Plural number of the bipolar plates 1 are laminated through diaphragms 8 which have the ion conductivity and/or the electrolyte holding property and frame members 4 to surround the peripheral surfaces of the diaphragms 8, between the bipolar plates, so as to form a laminated body 7. The layer-built cell is composed of such a laminated body 7. The electrodes 2 and 3 are made by holding a cell active material in the collective body of conductive fibers. A large current can be picked up. A light weight and a compact size can be realized, and the energy density can be also improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は積層電池に係り、特に、
一次又は二次電池の直列積層化が可能であることから大
電流を取り出すことができ、また軽量、小型化が可能で
エネルギー密度の向上を容易に実現できる積層電池に関
する。
[Industrial Field of Application] The present invention relates to a stacked battery, and in particular,
The present invention relates to a stacked battery that can extract a large current because primary or secondary batteries can be stacked in series, can be made lighter and smaller, and can easily improve energy density.

【0002】0002

【従来の技術】従来、積層型電池としては、亜鉛−塩素
電池(第28回電池討論会3A14,1987)、亜鉛
−臭素電池(第31回電池討論会3C01,1990)
、レドックス・フロー型電池(同3C10,1990)
などフロー型の電池が中心に開発されてきた。これはフ
ロー型の電池が、複極式電解槽と同じく積層構造をとり
やすいことによっていた。即ち、フロー型でない電池(
二次電池)は単電池の直列接続と同じく充放電を繰返し
ているうちに各単電池の充電深度にバラツキが生じ、経
時的に電池の容量が減少してゆく。このため、一般の鉛
電池は、この問題に対処するため、均等充電という操作
を必要とする。
[Prior Art] Conventionally, as stacked batteries, there are zinc-chlorine batteries (28th Battery Symposium 3A14, 1987) and zinc-bromine batteries (31st Battery Symposium 3C01, 1990).
, redox flow battery (3C10, 1990)
Flow-type batteries such as these have been mainly developed. This is because flow batteries tend to have a stacked structure, similar to bipolar electrolyzers. In other words, non-flow type batteries (
As with the series connection of cells (secondary batteries), as they are repeatedly charged and discharged, the depth of charge of each cell becomes uneven, and the battery capacity decreases over time. For this reason, general lead batteries require an operation called equal charging to deal with this problem.

【0003】フロー型でない二次電池はこのような問題
を抱えているものの、近年の高出力密度に対する要望の
ため、鉛二次電池の積層化が検討されるようになり、次
のような提案がなされている。 特開昭56−149776号「鉛蓄電池」(鉛電池等の
複極板) 実開平2−84265号「バイポーラ型鉛蓄電池用極板
」(活物質塗着板) 実開平2−158057号「バイポーラ型鉛蓄電池用電
極基板」(皮膜形成カーボン板) 実開平2−165562号「鉛蓄電池用極板並にその製
造法」(鉛メッキ非金属シート)
[0003] Non-flow type secondary batteries have these problems, but due to the recent demand for high output density, stacking of lead secondary batteries has been considered, and the following proposals have been made. is being done. JP-A-56-149776 "Lead-acid battery" (Bipolar plate for lead-acid batteries, etc.) JP-A-2-84265 "Polar plate for bipolar type lead-acid battery" (Active material coated plate) JP-A-2-158057 "Bipolar plate" ``Electrode substrate for lead-acid batteries'' (film-formed carbon plate) Utility Model Application No. 2-165562 ``Electrode plate for lead-acid batteries and its manufacturing method'' (lead-plated nonmetallic sheet)

【0004】0004

【発明が解決しようとする課題】しかしながら、現在、
鉛板に代わり得る、十分な耐久性を備える複極板がない
こと、また、鉛板の場合も、活物質との熱膨張率の差な
どによって変形を起こすことなどのため、積層式鉛電池
は実用の段階に至っていないのが現状である。
[Problem to be solved by the invention] However, currently,
There is no bipolar plate with sufficient durability that can replace lead plates, and lead plates also deform due to the difference in thermal expansion coefficient with the active material. Currently, it has not reached the stage of practical use.

【0005】即ち、例えば、鉛板を複極仕切板にして、
これに酸化鉛(主にPbO2 )を正極活物質として装
着すると、充放電に伴なう活物質の大きさの変化のため
、鉛板が変形し、電池全体がゆがんでしまうという問題
があった。また、鉛板では電池そのものが非常に重くな
ってしまっていた。鉛板からグラッシーカーボンなどの
プレートに切換えた場合、電池は軽くなるが、やはり活
物質の充放電に伴なう大きさの変化によりプレートと活
物質が分離してしまい、電池の内部抵抗が著しく増大す
る。このようなことから、鉛板に代る複極板の開発が、
積層式鉛電池の実用化に重大な要件とされている。
That is, for example, by using a lead plate as a bipolar partition plate,
When lead oxide (mainly PbO2) was attached to this as a positive electrode active material, the change in size of the active material during charging and discharging caused the lead plate to deform and distort the entire battery. . In addition, lead plates made the batteries themselves extremely heavy. If you switch from a lead plate to a plate made of glassy carbon, etc., the battery will become lighter, but the plate and active material will separate due to changes in size as the active material charges and discharges, and the internal resistance of the battery will significantly increase. increase For this reason, the development of bipolar plates to replace lead plates was
This is considered an important requirement for the practical application of stacked lead-acid batteries.

【0006】本発明は上記従来の問題点を解決し、化学
的耐久性があり、充放電反応(二次電池の場合)、放電
反応(一次電池)によって非導電性化や形状変形を受け
ない複極板及び活物質の構成により、高特性積層電池を
提供することを目的とする。
The present invention solves the above conventional problems, has chemical durability, and does not become non-conductive or undergo shape deformation due to charge/discharge reactions (in the case of secondary batteries) or discharge reactions (in the case of primary batteries). The purpose of this invention is to provide a high-performance stacked battery using the configuration of bipolar plates and active materials.

【0007】[0007]

【課題を解決するための手段】本発明の積層電池はシー
ト状又はプレート状の導電性基材の両面に電極を設けて
なるバイポーラプレートを、複数個、各バイポーラプレ
ート間にイオン導電性及び/又は電解液保持性を有した
隔膜と該隔膜の外周面を囲む枠材とを介して積層した積
層体を備えてなる積層電池において、前記電極は導電性
繊維の集合体に電池活物質を担持させたものであること
を特徴とする。
[Means for Solving the Problems] The laminated battery of the present invention includes a plurality of bipolar plates each having electrodes on both sides of a sheet-like or plate-like conductive base material, and between each bipolar plate there is an ionic conductivity and/or Alternatively, in a stacked battery comprising a laminate formed by laminating a diaphragm having an electrolyte retaining property and a frame material surrounding the outer peripheral surface of the diaphragm, the electrode has a battery active material supported on an aggregate of conductive fibers. It is characterized in that it is made of

【0008】以下に図面を参照して本発明の積層電池に
ついて詳細に説明する。第1図は本発明の実施例に係る
積層電池の一部破断斜視図、第2図はこの積層電池の積
層構成を示す分解斜視図である。
The laminated battery of the present invention will be explained in detail below with reference to the drawings. FIG. 1 is a partially cutaway perspective view of a laminated battery according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view showing the laminated structure of this laminated battery.

【0009】第2図において、導電性のバイポーラプレ
ート1の一方の面に正極2が設けられ、他方の面に負極
3が設けられている。なお、以下、正極2及び負極3を
電極2,3ということがある。これら電極2,3はバイ
ポーラプレート1に直に接しており、電気的に導通して
いる。また、電極2,3の外周をそれぞれ非導電性の枠
体4で囲んである。各枠体4には電解液の注入孔5が穿
設され、この注入孔5には栓6が挿入されている。
In FIG. 2, a positive electrode 2 is provided on one surface of a conductive bipolar plate 1, and a negative electrode 3 is provided on the other surface. Note that, hereinafter, the positive electrode 2 and the negative electrode 3 may be referred to as electrodes 2 and 3. These electrodes 2 and 3 are in direct contact with the bipolar plate 1 and are electrically conductive. Further, the outer peripheries of the electrodes 2 and 3 are each surrounded by a non-conductive frame 4. Each frame 4 is provided with an electrolyte injection hole 5, and a stopper 6 is inserted into the injection hole 5.

【0010】このバイポーラプレート1、電極2,3及
び枠体4の積重体7は、各積重体7同志の間に隔膜8を
介在させて複数個積層されている。この積層体の第2図
の最上部には、負極3、エンドプレート9及び集電用銅
板10が設置され、図示はしないが、この積層体の第2
図の最下部には、正極2、エンドプレート及び集電用銅
板が設置され、電池ケース11内に格納される。12,
13は、集電用銅板の端部から突出する電池端子である
A plurality of stacks 7 of the bipolar plates 1, electrodes 2, 3, and frame 4 are stacked with a diaphragm 8 interposed between each stack 7. At the top of this laminate in FIG. 2, a negative electrode 3, an end plate 9, and a current collecting copper plate 10 are installed.
At the bottom of the figure, a positive electrode 2, an end plate, and a current collecting copper plate are installed and stored in a battery case 11. 12,
13 is a battery terminal protruding from the end of the current collecting copper plate.

【0011】本発明において、電極は導電性繊維の集合
体に電池活物質を担持させたものである。ここで、導電
性繊維としては、炭素繊維、金属繊維、金属又は金属酸
化物の糸状又は細帯状物、繊維状導電性プラスチック等
が挙げられる。また、これらの導電性繊維の集合体とし
ては、導電性繊維のフェルト(不織布)、クロス(織布
)又は導電性繊維を絡み合わせたもの、或いは、導電性
プレートに導電性繊維をひげ状に付着成長させたもの等
が挙げられる。具体的には、炭素繊維クロスまたは不織
布、金属糸フェルト又はクロスなど、鉛電池には炭素繊
維が良く、アルカリ電池、非水電池には炭素繊維の他、
金属糸も使用することができる。
[0011] In the present invention, the electrode is an aggregate of conductive fibers supporting a battery active material. Here, examples of the conductive fibers include carbon fibers, metal fibers, thread-like or thin strip-like materials of metals or metal oxides, fibrous conductive plastics, and the like. In addition, as an aggregate of these conductive fibers, conductive fiber felt (non-woven fabric), cloth (woven fabric), conductive fibers intertwined, or conductive fibers arranged in whiskers on a conductive plate are used. Examples include those grown by attachment. Specifically, carbon fiber cloth or non-woven fabric, metal thread felt or cloth, carbon fiber is good for lead batteries, and carbon fiber is good for alkaline batteries and non-aqueous batteries.
Metal threads can also be used.

【0012】このような導電性繊維の集合体は、その嵩
密度(見掛け比重)が0.01g/cm3 以上である
ことが好ましい。即ち、導電性繊維の集合体の嵩密度が
小さいと、導電性繊維同志の接触面積が十分に確保する
ことができず、集電効率が不十分となる。従って、この
嵩密度は0.01g/cm3 以上、特に0.03g/
cm3 以上とするのが好ましい。
[0012] The bulk density (apparent specific gravity) of such an aggregate of conductive fibers is preferably 0.01 g/cm3 or more. That is, if the bulk density of the aggregate of conductive fibers is small, a sufficient contact area between the conductive fibers cannot be ensured, resulting in insufficient current collection efficiency. Therefore, this bulk density is 0.01 g/cm3 or more, especially 0.03 g/cm3 or more.
It is preferable to set it as cm3 or more.

【0013】一方、このような導電性繊維の集合体に担
持させる活物質としては特に制限はなく、従来実用的に
用いられている一次電池、二次電池の活物質であればい
ずれも用いることができる。その他、負極活物質として
アルミニウム、二次電池用正極活物質として二酸化マン
ガン、二次電池用負極活物質としてマグネシウム、二次
電池用両極活物質として硫酸鉛などを用いることができ
る。
On the other hand, there are no particular restrictions on the active material supported on such an aggregate of conductive fibers, and any active material for primary batteries or secondary batteries that has been practically used can be used. Can be done. In addition, aluminum can be used as the negative electrode active material, manganese dioxide can be used as the positive electrode active material for secondary batteries, magnesium can be used as the negative electrode active material for secondary batteries, and lead sulfate can be used as the bipolar active material for secondary batteries.

【0014】このような活物質を前記導電性繊維の集合
体に担持させる方法としては、例えば、次のような方法
が挙げられる。■  活物質の溶液又は懸濁液を含浸さ
せる。例えば、リチウム電池の場合、過塩素酸リチウム
(LiClO4 )を炭酸プロピレンに溶解ないし分散
させた液を集合体に含浸させる。■活物質のペーストを
塗布する。例えば、鉛ペースト(Pb−H2 SO4 
)二酸化鉛ペースト(PbO2 −H2 SO4 )又
は二酸化ニッケルペースト(NiO2 −NaOH,K
OH)を集合体に塗布する。■  活物質のペーストを
吹き付ける。例えば、上記■のペーストで、比較的粘性
の低いものを集合体に噴霧する。導電性繊維の集合体へ
の活物質の担持量には特に制限はなく、使用目的等に応
じて適宜決定されるが、通常の場合、導電性繊維の集合
体に対する活物質の担持割合を0.01〜5g−活物質
/cm3 −集合体とするのが好ましい。
[0014] Examples of methods for supporting such an active material on the conductive fiber aggregate include the following methods. ■ Impregnation with a solution or suspension of active material. For example, in the case of a lithium battery, the assembly is impregnated with a solution in which lithium perchlorate (LiClO4) is dissolved or dispersed in propylene carbonate. ■Apply the active material paste. For example, lead paste (Pb-H2 SO4
) Lead dioxide paste (PbO2-H2SO4) or nickel dioxide paste (NiO2-NaOH, K
OH) to the aggregate. ■ Spray the active material paste. For example, a relatively low-viscosity paste of the above (1) is sprayed onto the aggregate. There is no particular limit to the amount of active material supported on the aggregate of conductive fibers, and it is determined appropriately depending on the purpose of use, etc., but in normal cases, the amount of active material supported on the aggregate of conductive fibers is set to 0. .01 to 5 g of active material/cm3 of aggregate is preferred.

【0015】バイポーラプレートのシート状又はプレー
ト状の導電性基材としては、伸縮性或いは柔軟性があっ
て、活物質を担持した導電性繊維集合体、即ち、電極の
変形を吸収するか、もしくは熱膨張の程度が活物質担持
導電性繊維集合体や枠体と同じであることが重要である
。具体的には、カーボンプレート、プラスチック板、金
属板などを用いることができる。
The sheet-like or plate-like conductive base material of the bipolar plate is a conductive fiber aggregate that is stretchable or flexible and supports an active material, that is, absorbs deformation of the electrode, or It is important that the degree of thermal expansion is the same as that of the active material-supporting conductive fiber aggregate and the frame. Specifically, a carbon plate, a plastic plate, a metal plate, etc. can be used.

【0016】枠体としては、独立気泡体の樹脂(軽量)
や伸縮性の大きい(弾性率の大きい)樹脂製のものが好
ましい。特に、バイポーラプレートの基材や電池の導電
性繊維が熱膨張係数の大きい金属の場合、枠体は柔軟な
シリコン系ゴムシートなどが好ましい。また、リチウム
電池など有機溶媒系の電解液を用いる場合は、フッ素樹
脂系の枠体特にその発泡体とすることが好ましい。
[0016] The frame is made of closed cell resin (lightweight)
It is preferable to use resin with high elasticity (high modulus of elasticity). In particular, when the base material of the bipolar plate or the conductive fiber of the battery is a metal with a large coefficient of thermal expansion, the frame is preferably a flexible silicone rubber sheet or the like. Further, when using an organic solvent-based electrolyte such as a lithium battery, it is preferable to use a fluororesin-based frame, especially a foamed body thereof.

【0017】隔膜としては、ガラスマット、高分子微多
孔膜、陽イオン及び/又は陰イオン交換機能を有するイ
オン交換膜、特に、非水系に対しては、フッ素系のイオ
ン交換膜などが好適である。
As the diaphragm, glass mats, microporous polymer membranes, ion exchange membranes having a cation and/or anion exchange function, and especially for non-aqueous systems, fluorine-based ion exchange membranes are suitable. be.

【0018】なお、本発明においては、バイポーラプレ
ートの導電性基材に、電極である活物質を担持した導電
性繊維の集合体を十分な電気的接触が維持できるように
設置することが重要である。このためには、熱融着、導
電性接着剤による接着、焼結などの処理を行なう。
[0018] In the present invention, it is important to install an aggregate of conductive fibers supporting an active material, which is an electrode, on the conductive base material of the bipolar plate in such a way that sufficient electrical contact can be maintained. be. For this purpose, treatments such as thermal fusion, adhesion with a conductive adhesive, and sintering are performed.

【0019】また、このバイポーラプレートの電極に、
枠体が完全に装着されていることが重要である。このた
め、枠体についても、熱融着、接着、焼結などの手段に
よって一体化処理する。これによって、電解液が隣の単
電池(積重体)に回り込むことなく、保持される。この
ことは単電池間の液絡を防止する上で極めて重要である
。即ち、液絡によって、積層電池は内部ショートを起こ
し、出力の低下、効率の低下を起こすが、通常のプレス
型の複極式電解槽のように単にプレート上に枠体を圧着
するだけの方法では、単電池間液絡は防止できない。
[0019] Furthermore, the electrodes of this bipolar plate include
It is important that the frame is fully seated. For this reason, the frame is also integrated by means such as heat fusion, adhesion, and sintering. This allows the electrolyte to be retained without leaking into adjacent cells (stack). This is extremely important in preventing liquid junctions between cells. In other words, a liquid junction causes an internal short circuit in a laminated battery, resulting in a drop in output and efficiency, but this method simply presses the frame onto the plate like a normal press-type bipolar electrolytic cell. In this case, liquid leakage between cells cannot be prevented.

【0020】[0020]

【作用】本発明の積層電池においては、電池は、導電性
繊維の集合体に活物質を担持させた構成とされている。 このように、導電性繊維の集合体内に活物質が担持され
るため、充放電に伴なう活物質の体積変化は導電性繊維
が吸収し、バイポーラプレートの導電性基材と活物質層
とが分離して、電池の内部抵抗が上ってしまうことは全
くない。このため、多数の積重体を積層して、安定かつ
高密度出力の積層電池を構成することが可能とされる。
[Operation] In the laminated battery of the present invention, the battery is constructed such that an aggregate of conductive fibers supports an active material. In this way, since the active material is supported within the aggregate of conductive fibers, the volume change of the active material due to charging and discharging is absorbed by the conductive fibers, and the conductive base material and active material layer of the bipolar plate are There is no possibility that the internal resistance of the battery will increase due to separation. Therefore, it is possible to construct a stable and high-density output stacked battery by stacking a large number of stacks.

【0021】[0021]

【実施例】以下に実施例を挙げて、本発明をより具体的
に説明する。
[Examples] The present invention will be explained in more detail with reference to Examples below.

【0022】実施例1〜4 下記表1に示す構成により、第1,2図に示す本発明の
積層電池(三層積層電池)を製造した。なお、両端にお
いては、エンドプレート(導電性シート)に銅板を導電
性接着剤で取り付けた。
Examples 1 to 4 A laminated battery (three-layer laminated battery) of the present invention shown in FIGS. 1 and 2 was manufactured according to the configuration shown in Table 1 below. In addition, at both ends, copper plates were attached to the end plates (conductive sheets) using a conductive adhesive.

【0023】[0023]

【表1】[Table 1]

【0024】得られた積層電池について、充放電を行な
い、その特性を調べ、結果を表2に示した。表2より、
本発明の積層電池は、従来の一次又は二次電池と比べて
、高い電圧で大きい電流(出力)を取り出せることが明
らかである。因みに、従来の鉛電池の極板における電流
密度は2〜3mA/cm2 程度であり、リチウム二次
電池においても0.1〜1mA/cm2 が上限である
The obtained laminated battery was charged and discharged, and its characteristics were investigated. The results are shown in Table 2. From Table 2,
It is clear that the laminated battery of the present invention can extract a large current (output) at a higher voltage than conventional primary or secondary batteries. Incidentally, the current density in the electrode plates of conventional lead batteries is about 2 to 3 mA/cm2, and even in lithium secondary batteries, the upper limit is 0.1 to 1 mA/cm2.

【0025】[0025]

【表2】[Table 2]

【0026】[0026]

【発明の効果】以上詳述した通り、本発明の積層電池に
よれば、鉛蓄電池、リチウム二次電池、マンガン二次電
池、各種のアルカリ二次,一次電池等の直列積層化が容
易に実現される。その結果、大面積の電極板(本発明で
は活物質を担持した導電性繊維集合体)を備える電池が
構成でき、大きな電流を取り出すことが可能となる。因
みに、電流値としては、例えば従来の鉛、アルカリ二次
電池のような、いわゆる“ドブ漬け”の極板式の電池と
比べて10倍以上の電流を取り出すことができるように
なる。
[Effects of the Invention] As detailed above, according to the stacked battery of the present invention, series stacking of lead-acid batteries, lithium secondary batteries, manganese secondary batteries, various alkaline secondary batteries, primary batteries, etc. can be easily realized. be done. As a result, a battery including a large-area electrode plate (in the present invention, a conductive fiber aggregate supporting an active material) can be constructed, and a large current can be extracted. Incidentally, in terms of current value, it is possible to extract more than 10 times as much current as, for example, a conventional lead or alkaline secondary battery, which is a so-called "drained" plate type battery.

【0027】また、本発明は複極式の電解槽と類似の構
造であることからもわかるように集電のための金属材を
単極式電池或いは電解槽と比べて大きく軽減できるので
、軽量,小型化が図りやすい。すなわち、エネルギー密
度の向上を容易に達成することが可能である。例えば、
鉛蓄電池の場合、体積、重量に対するエネルギー密度の
向上は30〜100%に達する。
Furthermore, as can be seen from the fact that the present invention has a structure similar to a bipolar electrolytic cell, the metal material for current collection can be greatly reduced compared to a monopolar cell or an electrolytic cell, so it is lightweight. , easy to downsize. That is, it is possible to easily achieve an improvement in energy density. for example,
In the case of lead-acid batteries, the improvement in energy density relative to volume and weight reaches 30 to 100%.

【0028】更に、一つの極板(本発明では、シート状
又はプレート状の導電性基材)や電極板の大きさを複極
式の電解槽と同じく数m2 程度にまで大きくすること
もでき、本格的な大容量積層電池として、ロードレベリ
ング用などにも好ましく使用できる。
Furthermore, the size of a single electrode plate (in the present invention, a sheet-like or plate-like conductive base material) or an electrode plate can be increased to about several m2, similar to a bipolar electrolytic cell. As a full-scale large-capacity stacked battery, it can also be preferably used for load leveling.

【0029】本発明の積層電池は、現在の一次電池、二
次電池を用いる分野に極めて有用であり、かつ、本発明
によりこれら電池を用いる分野の拡大が見込める。具体
的には、電気駆動の乗用車、大型バックアップ電源、ロ
ードレベリング用電池など、更に高出力密度を要求され
る分野(例えば、電気自動車、防衛機器)等に極めて有
用である。
The laminated battery of the present invention is extremely useful in fields where current primary batteries and secondary batteries are used, and the field in which these batteries are used is expected to expand by the present invention. Specifically, it is extremely useful in fields that require even higher output density (eg, electric vehicles, defense equipment), etc., such as electrically driven passenger cars, large backup power supplies, and load leveling batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】第1図は本発明の積層電池の一実施例を示す一
部破断斜視図である。
FIG. 1 is a partially cutaway perspective view showing one embodiment of a stacked battery of the present invention.

【図2】第2図は同積層電池の積層構成を示す分野斜視
図である。
FIG. 2 is a field perspective view showing the stacked structure of the stacked battery.

【符号の説明】[Explanation of symbols]

1  バイポーラプレート 2  正極 3  負極 4  枠体 8  隔膜 1 Bipolar plate 2 Positive electrode 3 Negative electrode 4 Frame body 8 Diaphragm

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  シート状又はプレート状の導電性基材
の両面に電極を設けてなるバイポーラプレートを、複数
個、各バイポーラプレート間にイオン導電性及び/又は
電解液保持性を有した隔膜と該隔膜の外周面を囲む枠材
とを介して積層した積層体を備えてなる積層電池におい
て、前記電極は導電性繊維の集合体に電池活物質を担持
させたものであることを特徴とする積層電池。
Claim 1: A plurality of bipolar plates each having electrodes on both sides of a sheet-like or plate-like conductive base material, and a diaphragm having ionic conductivity and/or electrolyte retention property between each bipolar plate. A stacked battery comprising a laminate stacked with a frame material surrounding the outer peripheral surface of the diaphragm, characterized in that the electrode is an aggregate of conductive fibers supporting a battery active material. Stacked battery.
JP3007682A 1991-01-25 1991-01-25 Layer-built cell Pending JPH04248274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3007682A JPH04248274A (en) 1991-01-25 1991-01-25 Layer-built cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3007682A JPH04248274A (en) 1991-01-25 1991-01-25 Layer-built cell

Publications (1)

Publication Number Publication Date
JPH04248274A true JPH04248274A (en) 1992-09-03

Family

ID=11672563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3007682A Pending JPH04248274A (en) 1991-01-25 1991-01-25 Layer-built cell

Country Status (1)

Country Link
JP (1) JPH04248274A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040920A3 (en) * 1997-03-12 1998-11-26 Tno Method for manufacturing a bipolar plate
JP2007095653A (en) * 2005-09-05 2007-04-12 Nissan Motor Co Ltd Bipolar battery and method of manufacturing bipolar battery
JP2012234823A (en) * 2005-09-05 2012-11-29 Nissan Motor Co Ltd Method for manufacturing bipolar battery
JP2014529175A (en) * 2011-09-09 2014-10-30 イースト ペン マニュファクチャリング カンパニー インコーポレーテッドEast Penn Manufacturing Co.,Inc. Bipolar battery and plate
JP2017216234A (en) * 2011-10-24 2017-12-07 アドバンスト バッテリー コンセプツ エルエルシー Bipolar battery assembly
WO2018116725A1 (en) * 2016-12-19 2018-06-28 株式会社豊田自動織機 Electricity storage module and method for manufacturing electricity storage module
WO2019073791A1 (en) * 2017-10-11 2019-04-18 株式会社豊田自動織機 Power storage module
WO2019073717A1 (en) * 2017-10-10 2019-04-18 株式会社豊田自動織機 Power storage module
US10446822B2 (en) 2011-10-24 2019-10-15 Advanced Battery Concepts, LLC Bipolar battery assembly
US10615393B2 (en) 2011-10-24 2020-04-07 Advanced Battery Concepts, LLC Bipolar battery assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150528A (en) * 1976-06-09 1977-12-14 Suwa Seikosha Kk Enclosed alkali silver secondary cell
JPS53843A (en) * 1976-06-24 1978-01-07 Asahi Dow Ltd Zinc negative electrode alkaline battery
JPS60175376A (en) * 1983-11-14 1985-09-09 カリフオルニア インスチチユ−ト オブ テクノロジ− Conductive plate for lead storage battery and method of producing same
JPS60189867A (en) * 1984-03-12 1985-09-27 Matsushita Electric Ind Co Ltd Solid electrolyte secondary battery
JPH0294251A (en) * 1988-09-29 1990-04-05 Asahi Glass Co Ltd Separator for alkaline battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150528A (en) * 1976-06-09 1977-12-14 Suwa Seikosha Kk Enclosed alkali silver secondary cell
JPS53843A (en) * 1976-06-24 1978-01-07 Asahi Dow Ltd Zinc negative electrode alkaline battery
JPS60175376A (en) * 1983-11-14 1985-09-09 カリフオルニア インスチチユ−ト オブ テクノロジ− Conductive plate for lead storage battery and method of producing same
JPS60189867A (en) * 1984-03-12 1985-09-27 Matsushita Electric Ind Co Ltd Solid electrolyte secondary battery
JPH0294251A (en) * 1988-09-29 1990-04-05 Asahi Glass Co Ltd Separator for alkaline battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040920A3 (en) * 1997-03-12 1998-11-26 Tno Method for manufacturing a bipolar plate
JP2007095653A (en) * 2005-09-05 2007-04-12 Nissan Motor Co Ltd Bipolar battery and method of manufacturing bipolar battery
JP2012234823A (en) * 2005-09-05 2012-11-29 Nissan Motor Co Ltd Method for manufacturing bipolar battery
JP2014529175A (en) * 2011-09-09 2014-10-30 イースト ペン マニュファクチャリング カンパニー インコーポレーテッドEast Penn Manufacturing Co.,Inc. Bipolar battery and plate
US9941546B2 (en) 2011-09-09 2018-04-10 East Penn Manufacturing Co., Inc. Bipolar battery and plate
US10446822B2 (en) 2011-10-24 2019-10-15 Advanced Battery Concepts, LLC Bipolar battery assembly
JP2017216234A (en) * 2011-10-24 2017-12-07 アドバンスト バッテリー コンセプツ エルエルシー Bipolar battery assembly
US10615393B2 (en) 2011-10-24 2020-04-07 Advanced Battery Concepts, LLC Bipolar battery assembly
WO2018116725A1 (en) * 2016-12-19 2018-06-28 株式会社豊田自動織機 Electricity storage module and method for manufacturing electricity storage module
JP2018101486A (en) * 2016-12-19 2018-06-28 株式会社豊田自動織機 Power storage module and method for manufacturing power storage module
JPWO2019073717A1 (en) * 2017-10-10 2020-11-05 株式会社豊田自動織機 Power storage module
WO2019073717A1 (en) * 2017-10-10 2019-04-18 株式会社豊田自動織機 Power storage module
US11361910B2 (en) 2017-10-10 2022-06-14 Kabushiki Kaisha Toyota Jidoshokki Power storage module
WO2019073791A1 (en) * 2017-10-11 2019-04-18 株式会社豊田自動織機 Power storage module
JPWO2019073791A1 (en) * 2017-10-11 2020-11-05 株式会社豊田自動織機 Power storage module
US11699557B2 (en) 2017-10-11 2023-07-11 Kabushiki Kaisha Toyota Jidoshokki Power storage module

Similar Documents

Publication Publication Date Title
US11791470B2 (en) Battery cell with electrolyte diffusion material
KR100921345B1 (en) Hybrid-typed Electrode Assembly of Capacitor-Battery Structure
JP3116643B2 (en) Electrochemical element, assembled battery, and method of manufacturing electrochemical element
EP0512417B1 (en) Zinc secondary battery having bipolar plate construction with horizontally disposed battery components
CN208173683U (en) Wind battery core and battery
CN108511199B (en) Electrochemical device
JPH06349519A (en) Bipolar lead storage battery
EP1419549A4 (en) Bipolar electrochemical battery of stacked wafer cells
US20110143184A1 (en) Battery with electrolyte diffusing separator
CN110326074B (en) Electrochemical device
US20190020036A1 (en) Electrode for secondary battery including electrode protecting layer
JPH04248274A (en) Layer-built cell
KR101135492B1 (en) Electrode assembly, and rechargeable battery using thereof
JP2002246071A (en) Electricity storage device
US11837701B2 (en) Bipolar lead acid battery cells with increased energy density
CN209401735U (en) Electrode assembly and secondary cell
JPH11329393A (en) Nonwoven cloth for battery separator and battery using it
JP2020074320A (en) Stacked storage battery and storage battery system including the same
CN114284463A (en) Composite lithium supplementing sheet, and battery cell and battery with same
CN216850039U (en) Composite power storage device
CN218039326U (en) Flow battery stack and flow battery
CN219067141U (en) Diaphragm, battery cell and electric equipment
US20220393181A1 (en) Lead-acid battery having fiber electrode with lead-calcium strap
JP2018142607A (en) Electrochemical device
JPH10284138A (en) Electric charge storing part compounded battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970506