JPH06301035A - Plane light source, display device using the same and lens sheet used for the same - Google Patents
Plane light source, display device using the same and lens sheet used for the sameInfo
- Publication number
- JPH06301035A JPH06301035A JP5112397A JP11239793A JPH06301035A JP H06301035 A JPH06301035 A JP H06301035A JP 5112397 A JP5112397 A JP 5112397A JP 11239793 A JP11239793 A JP 11239793A JP H06301035 A JPH06301035 A JP H06301035A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light source
- lens
- lens sheet
- light guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
- Planar Illumination Modules (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は面光源に関するものであ
り、液晶表示装置等の透過型表示装置のバックライト、
照明広告、交通標識等に有用なものである。本発明は又
該面光源を背面光源として用いた液晶表示装置等の透過
型表示装置も開示する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface light source, and a backlight for a transmissive display device such as a liquid crystal display device,
It is useful for lighting advertisements, traffic signs, etc. The present invention also discloses a transmissive display device such as a liquid crystal display device using the surface light source as a back light source.
【0002】[0002]
【従来の技術】液晶表示装置(LCD)のバックライト
用の面光源として、 図7のような透光性平板を導光体としたエッジライト
方式のものが知られている。このような面光源では、透
明な平行平板からなる導光体の側端面の双方又は一方か
ら光を入射させ、透光性平板内部の全反射を利用し光を
導光板の全域に遍く伝播させ、その伝播した光の一部を
導光体裏面の光散乱反射板で臨界角未満の拡散反射光と
なし、導光板表面から拡散光を放出する。(実開昭55
−162201)。 図6のような一方の面に三角プリズム型レンチキュラ
ーレンズの突起を有し、もう一方の面を平滑面としたレ
ンズシートを、の面光源の導光板表面上に突起面を上
にして重ね、レンズの光集束作用を利用して、その拡散
放射光を所望の角度範囲内に均一等方的に拡散させるこ
とができる(実開平4−107201)。このレンズシ
ートは艶消透明拡散板(艶消透明シート)と組合せて使
用する場合には、単に艶消透明拡散板のみを用いたもの
(米国特許第4729067号)よりも、光源の光エネ
ルギーを所望の限られた角度範囲内に重点的に分配し、
かつ、その角度範囲内では均一等方性の高い拡散光を得
ることはできた。2. Description of the Related Art As a surface light source for a backlight of a liquid crystal display device (LCD), an edge light type one using a transparent flat plate as a light guide as shown in FIG. 7 is known. In such a surface light source, light is made incident from both or one of the side end surfaces of the light guide body made of a transparent parallel plate, and the light is propagated uniformly throughout the light guide plate by utilizing the total internal reflection of the transparent plate. A part of the propagated light is made into a diffuse reflection light having a critical angle less than a critical angle by a light scattering reflection plate on the back surface of the light guide, and the diffuse light is emitted from the surface of the light guide plate. (Actual development 55
-162201). As shown in FIG. 6, a lens sheet having a triangular prism type lenticular lens projection on one surface and a smooth surface on the other surface is stacked on the light guide plate surface of the surface light source with the projection surface facing upward. By utilizing the light focusing effect of the lens, the diffused radiation can be uniformly and isotropically diffused within a desired angular range (actual 4-107201). When this lens sheet is used in combination with a matte transparent diffusion plate (matte transparent sheet), the light energy of the light source is higher than that using only the matte transparent diffusion plate (US Pat. No. 4,729,067). Focused distribution within the desired limited angle range,
In addition, it was possible to obtain diffused light with high uniform isotropicity within the angle range.
【0003】[0003]
【発明が解決しようとする課題】しかし、前述した従来
の技術では、導光体裏面に光散乱板を設けただけの
では、放出光は導光体表面の法線方向に対して60度の
角度をピークに比較的鋭い分布をすることになり、最も
光を必要とする法線方向の輝度が不足し、受容の少ない
斜め横方向に光エネルギーが散逸してしまう。また、従
来の技術では導光体の光放出面上の三角プリズム型レ
ンチキュラーレンズシートが放出光を屈折集束さること
により、光放出面の法線方向をピークとして30°〜6
0°の角度内に放出される光エネルギー比率が高くなる
が、一方で図17の様に法線方向から離れた方向(斜め
方向)にも放出光のピーク(サイドローブ)が発生する
という欠点があった。此の為、依然として観察者に寄与
しない損失光が残存する。又このサイドローブは周囲に
不要なノイズ光を輻射することにもなり不都合であっ
た。更に、放出面内での輝度分布についても予想に反し
て、導光板側端部から2〜4cm迄は高輝度であるが、
それ以上遠ざかると輝度が漸次低下し、光源と反対側の
端部では目立って暗くなると云う問題も生じることがわ
かった。However, in the above-mentioned conventional technique, if only the light-scattering plate is provided on the back surface of the light guide, the emitted light is 60 degrees with respect to the direction normal to the surface of the light guide. The distribution has a relatively sharp distribution with the angle at the peak, the brightness in the normal direction, which requires the most light, is insufficient, and the light energy is dissipated in the oblique lateral direction where there is little acceptance. In the prior art, the triangular prism type lenticular lens sheet on the light emitting surface of the light guide refracts and focuses the emitted light, so that the normal direction of the light emitting surface has a peak at 30 ° to 6 °.
Although the ratio of the light energy emitted within the angle of 0 ° becomes high, on the other hand, as shown in FIG. 17, the peak (side lobe) of the emitted light also occurs in the direction (oblique direction) away from the normal direction. was there. For this reason, there remains loss light that does not contribute to the observer. Further, this side lobe is also inconvenient because it radiates unnecessary noise light to the surroundings. Further, contrary to the expectation about the brightness distribution in the emission surface, the brightness is high from 2 to 4 cm from the end portion on the light guide plate side,
It was found that when the distance from the light source is further increased, the brightness gradually decreases, and there is a problem that the end portion on the side opposite to the light source becomes noticeably dark.
【0004】これらの欠点を改良すべく、 特開平1−245220号のように、導光体裏面の光
散乱層を網点等のパターン状とし、且つそのパターンの
面積を光源に近づく程小さく、光源から遠ざかる程大き
くさせて導光板面内の輝度分布を補正、均一化させる試
み。 特開平3−9306号のように導光板の側端部の2箇
所以上に光源を配置して導光板面内の輝度分布を補正、
均一化させる試み。 がなされたが、いずれも完全に輝度を均一化することは
難しく、又では光放出面側から、光散乱層を網点が目
立ってしまう欠点があり、又では光源のスペース、消
費電力とも2倍以上となる欠点があった。In order to improve these drawbacks, as in Japanese Patent Laid-Open No. 1-245220, the light-scattering layer on the back surface of the light guide has a pattern of halftone dots or the like, and the area of the pattern is small as it approaches the light source. Attempt to correct and uniformize the brightness distribution within the light guide plate surface by increasing the distance from the light source. As in Japanese Patent Laid-Open No. 3-9306, light sources are arranged at two or more positions on the side edge of the light guide plate to correct the luminance distribution in the plane of the light guide plate.
Attempt to homogenize. However, in both cases, it is difficult to completely uniformize the brightness, and there is a drawback that halftone dots are conspicuous in the light scattering layer from the light emitting surface side. It had the drawback of being more than doubled.
【0005】本発明の目的は、前述の課題を解決し、液
晶表示装置のバックライト用等の用途のレンズシート及
びそのレンズシートを用いた面光源を提供する事であ
り、その際消費電力や発熱量を増大させることなく、所
望の角度範囲内のみに均一且つ高輝度発光をし、面内で
の場所による輝度のバラツキもない面発光を得ることで
ある。An object of the present invention is to solve the above-mentioned problems and to provide a lens sheet for use as a backlight of a liquid crystal display device and a surface light source using the lens sheet. The object is to obtain uniform surface light emission with high brightness only within a desired angle range without increasing the amount of heat generation, and to obtain surface light emission without variation in brightness depending on the position in the surface.
【0006】[0006]
【課題を解決するための手段】上記の目的を達成するた
めに本発明は、In order to achieve the above object, the present invention provides
【請求項1】 透光性平板又は直方体状空洞からなる導
光体と、該導光体の側端面の少なくとも一面に隣接して
設けられた線光源又は点光源と、該導光体裏面の光反射
層と、該導光体表面の光放出面上に積層された凹又は凸
のレンチキュラーレンズシートとからなる面光源であっ
て、該レンズシートは楕円柱単位レンズをその稜線方向
が互いに平行になるように多数平面内に配列してなり、
該楕円柱単位レンズは長軸方向が光放出面の法線方向を
向いており、 1.1×n/(n2 −1)1/2 ≦長軸/短軸≦0.9×
n/(n2 −1)1/2 である事を特徴とする面光源。1. A light guide body comprising a transparent flat plate or a rectangular parallelepiped cavity, a line light source or a point light source provided adjacent to at least one side end surface of the light guide body, and a back surface of the light guide body. A surface light source comprising a light reflecting layer and a concave or convex lenticular lens sheet laminated on the light emitting surface of the light guide surface, the lens sheet comprising elliptic cylinder unit lenses whose ridge line directions are parallel to each other. Are arranged in a large number of planes so that
The major axis of the elliptic cylinder unit lens is oriented in the direction normal to the light emitting surface, and 1.1 × n / (n 2 −1) 1/2 ≦ long axis / minor axis ≦ 0.9 ×
A surface light source characterized by having n / (n 2 −1) 1/2 .
【請求項2】 透光性平板又は直方体状空洞からなる導
光体と、該導光体の側端面の少なくとも一面に隣接して
設けられた線光源又は点光源と、該導光体裏面の光反射
層と、該導光体表面の光放出面上に積層された凹又は凸
のレンチキュラーレンズシートとからなる面光源であっ
て、該レンズシートは双曲線柱単位レンズをその稜線方
向が互いに平行になるように多数平面内に配列してな
り、該双曲線柱単位レンズは長軸方向が光放出面の法線
方向を向いており、 1.1×n/(n2 −1)1/2 ≦漸近線の傾斜≦0.9
×n/(n2 −1)1/2 である事を特徴とする面光源。2. A light guide body comprising a light-transmissive flat plate or a rectangular parallelepiped cavity, a line light source or a point light source provided adjacent to at least one side end face of the light guide body, and a back surface of the light guide body. A surface light source comprising a light reflection layer and a concave or convex lenticular lens sheet laminated on the light emitting surface of the light guide surface, the lens sheet comprising hyperbolic column unit lenses whose ridge directions are parallel to each other. Are arranged in a plurality of planes so that the long axis direction of the hyperbolic pillar unit lens is oriented in the normal direction of the light emitting surface, and 1.1 × n / (n 2 −1) 1/2 ≤ Asymptotic slope ≤ 0.9
A surface light source characterized by being × n / (n 2 −1) 1/2 .
【請求項3】 該導光体が表面粗さが光源光の波長以下
の平滑表面を有する透光性平板からなり、該レンチキュ
ラーレンズシートがレンズ面の反対面に表面粗さが光源
光の波長以上の微小凹凸を有しており、その微小凹凸面
を導光体の平滑表面側に向けて積層されてなり、導光体
とレンズシートとの間に光源光の波長以上の空隙を少な
くとも部分的には有する事を特徴とする請求項1に記載
の面光源。3. The light guide is made of a light-transmissive flat plate having a smooth surface whose surface roughness is equal to or less than the wavelength of the light from the light source, and the lenticular lens sheet is provided on the surface opposite to the lens surface where the surface roughness is the wavelength of the light from the light source. It has the above-mentioned minute unevenness and is laminated with the minute uneven surface facing the smooth surface side of the light guide, and at least part of the gap between the light guide and the lens sheet is longer than the wavelength of the source light. The surface light source according to claim 1, wherein the surface light source has the following characteristics.
【請求項4】 該導光体が表面粗さが光源光の波長以下
の平滑表面を有する透光性平板からなり、該レンチキュ
ラーレンズシート裏面と該導光体表面との間に光拡散層
を挿入してなり、該光拡散層の表面及び裏面に表面粗さ
が光源光の波長以上の微小凹凸を有しており、その結
果、光源光の波長以上の空隙を少なくとも部分的に形成
された界面が、導光体表面と光拡散層との界面、及び光
拡散層とレンズシート裏面との界面の2箇所に有する事
を特徴とする請求項1記載の面光源。4. The light guide is made of a translucent flat plate having a smooth surface whose surface roughness is equal to or less than the wavelength of the light from the light source, and a light diffusion layer is provided between the back surface of the lenticular lens sheet and the light guide surface. It has been inserted, and the surface roughness and the back surface of the light diffusing layer have minute irregularities with a wavelength of the light of the light source or more, and as a result, voids having the wavelength of the light of the light source or more are formed at least partially. The surface light source according to claim 1, wherein the interface is provided at two locations, that is, an interface between the light guide surface and the light diffusion layer and an interface between the light diffusion layer and the back surface of the lens sheet.
【請求項5】 1個以上の線光源又は点光源と、該光源
の下面及び側面を覆い光源の上面に窓が開口され、光源
側内面が光反射面となっているランプハウスと、該窓部
を被覆する凹又は凸のレンチキュラーレンズ、とからな
る面光源であって、該レンズシートは楕円柱単位レンズ
をその稜線方向が互いに平行になるように多数平面内に
配列してなり、該楕円柱単位レンズは長軸方向が光放出
面の法線方向を向いており、 1.1×n/(n2 −1)1/2 ≦長軸/短軸≦0.9×
n/(n2 −1)1/2 である事を特徴とする面光源。5. A lamp house having at least one line light source or point light source, a lamp house which covers a lower surface and a side surface of the light source and has a window opened on an upper surface of the light source, and an inner surface on the light source side serving as a light reflecting surface, and the window. A surface light source comprising a concave or convex lenticular lens for covering a portion, the lens sheet comprising elliptic cylinder unit lenses arranged in a plurality of planes such that their ridge directions are parallel to each other. In the pillar unit lens, the major axis direction is oriented in the direction normal to the light emitting surface, and 1.1 × n / (n 2 −1) 1/2 ≦ long axis / minor axis ≦ 0.9 ×
A surface light source characterized by having n / (n 2 −1) 1/2 .
【請求項6】 1個以上の線光源又は点光源と、該光源
の下面及び側面を覆い光源の上面に窓が開口され、光源
側内面が光反射面となっているランプハウスと、該窓部
を被覆する凹又は凸のレンチキュラーレンズ、とからな
る面光源であって、該レンズシートは双曲線柱単位レン
ズをその稜線方向が互いに平行になるように多数平面内
に配列してなり、該双曲線柱単位レンズは長軸方向が光
放出面の法線方向を向いており、 1.1×n/(n2 −1)1/2 ≦漸近線の傾斜≦0.9
×n/(n2 −1)1/2 である事を特徴とする面光源。6. A lamp house having at least one line light source or point light source, a lamp house which covers a lower surface and a side surface of the light source and has a window opened on an upper surface of the light source, and an inner surface on the light source side serving as a light reflecting surface, and the window. A concave or convex lenticular lens that covers a portion, and the lens sheet, wherein the lens sheet is formed by arranging hyperbolic pillar unit lenses in a plurality of planes such that their ridge directions are parallel to each other. In the pillar unit lens, the long axis direction is oriented in the direction normal to the light emitting surface, and 1.1 × n / (n 2 −1) 1/2 ≦ asymptote slope ≦ 0.9
A surface light source characterized by being × n / (n 2 −1) 1/2 .
【請求項7】 請求項1〜請求項6の面光源の光放出面
上に透過型表示素子を積層してなる事を特徴とする表示
装置。7. A display device, wherein a transmissive display element is laminated on a light emitting surface of the surface light source according to any one of claims 1 to 6.
【0007】本発明のレンズシート4は、楕円柱レンチ
キュラーレンズ、又は双曲線柱レンチキュラーレンズで
ある。先ず、楕円柱レンチキュラーレンズを例に説明す
る。即ち、図3(A)のように楕円柱状の凸単位レンズ
42をその稜線方向を平行にして隣接して配列させてな
る柱状レンズ群(所謂レンチキュラーレンズ)であり、
レンズシート4の法線方向に楕円の長軸方向が向いてい
る。そして楕円の偏平度としては、楕円の式を、 X2 /a2 +Y2 /b2 =1 式(1) 但し、a短軸長は、bは長軸長で、a<b とした時、
長軸/短軸=b/a=は、 1.1×n/(n2 −1)1/2 ≦b/a≦0.9×n/(n2 −1)1/2 −−−−−式(2) とするのが好ましい。楕円をこのように設計する理由と
しては、レンチキュラーレンズの球面収差をなくし、集
光時の損失を最小にするためである。即ち、図4
(A)、図5(A)のように真円柱レンチキュラーレン
ズを用いた場合、レンズの集束作用を利用して放出光を
所定の拡散角θ内に集束させようとしても、実際に焦点
Fに集束する光はレンズ中心付近の近軸光線LNのみで
あり、その他の光線LFは焦点をそれて散逸光となって
しまう(所謂球面収差)。この際焦点をずれた光線LF
は、所定の各θ内から散逸してしまい、光の損失及び不
要なノイズ光となってしまう。The lens sheet 4 of the present invention is an elliptic cylinder lenticular lens or a hyperbolic cylinder lenticular lens. First, an elliptic cylinder lenticular lens will be described as an example. That is, as shown in FIG. 3A, it is a columnar lens group (so-called lenticular lens) in which convex unit lenses 42 having an elliptic columnar shape are arranged adjacent to each other with their ridge directions parallel.
The major axis direction of the ellipse faces the normal direction of the lens sheet 4. As the flatness of the ellipse, the ellipse equation is expressed as X 2 / a 2 + Y 2 / b 2 = 1 equation (1) where a is the minor axis length, b is the major axis length, and a <b ,
The major axis / minor axis = b / a = is 1.1 × n / (n 2 −1) 1/2 ≦ b / a ≦ 0.9 × n / (n 2 −1) 1/2 −−− --It is preferable to use the formula (2). The reason for designing the ellipse in this way is to eliminate the spherical aberration of the lenticular lens and to minimize the loss during focusing. That is, FIG.
5A and 5A, when a true cylindrical lenticular lens is used, even if the emitted light is focused within a predetermined diffusion angle θ by utilizing the focusing function of the lens, it is actually focused on the focal point F. The focused light is only the paraxial ray LN near the center of the lens, and the other rays LF defocus and become dissipated light (so-called spherical aberration). At this time, the light beam LF defocused
Will be dissipated from within each predetermined θ, resulting in light loss and unnecessary noise light.
【0008】レンチキュラーレンズの球面収差を最小に
する為の幾何光学的条件は、レンチキュラーレンズの稜
線に直交する断面(主切断面)の楕円の偏平率eとレン
ズ材料の屈折率nとの間に、 n=1/e 式(3) の関係が成り立てば良い。また偏平率eは、該楕円の長
軸の長さ2bと短軸の長さ2aを使って、 e2 =(b2 −a2 )/b2 式(4) と書ける。よって、式(1)及び式(2)より、 長軸/短軸=2b/2a=b/a=n/(n2 −1)1/2 式(5) 例えば、アクリル樹脂で屈折率=1.5の物質を使用し
たとすると、式(5)より、 長軸/短軸=1.34 の時球面収差はなくなる。但し実際には、導光板裏面の
光拡散反射層2、導光板とレンズシートとの間の光拡散
層8等による光拡散、屈折等により方向がそれる光線が
一部生じる為、所定の拡散角θから逸脱する光エネルギ
ーは零とはならないが、最小には出来る。The geometrical optical condition for minimizing the spherical aberration of the lenticular lens is between the flatness e of the ellipse of the cross section (main cutting plane) orthogonal to the ridge of the lenticular lens and the refractive index n of the lens material. , N = 1 / e Equation (3) should be satisfied. The flatness e can be written as e 2 = (b 2 −a 2 ) / b 2 formula (4) using the length 2b of the major axis and the length 2a of the minor axis of the ellipse. Therefore, from the formulas (1) and (2), the major axis / minor axis = 2b / 2a = b / a = n / (n 2 −1) 1/2 formula (5) If the substance of 1.5 is used, the spherical aberration disappears from the formula (5) when the major axis / minor axis = 1.34. However, in reality, a part of the light rays whose direction is deviated due to light diffusion and refraction due to the light diffusion / reflection layer 2 on the back surface of the light guide plate, the light diffusion layer 8 between the light guide plate and the lens sheet, etc. The light energy deviating from the angle θ is not zero, but can be minimized.
【0009】又式(5)から多少はずれても、その差が
少ない間は式(5)の場合にほぼ近い特性を得ることが
可能である。しかし、有る程度以上式(5)からはずれ
ると輝度の角度分布ピークが、球面収差の為に光放出面
の法線方向を中心とした平坦な山となり、且つ平坦な頂
上の両端部にサイドローブ(側面のピーク)が出来てし
まい。本発明の目的に適さなくなる。検討の結果、式
(5)の+−20%以内であればサイドローブを生ぜ
ず、一応単なる光等方拡散性フィルムのみの場合に比
べ、良好な光エネルギー利用効率、シャープな拡散角、
高い法線方向輝度を得ることができると判明した。但
し、実用上より好ましくは、式(5)の+−10%以内
の偏平率にするとよい。Even if it deviates from the expression (5) to some extent, it is possible to obtain characteristics close to those of the expression (5) while the difference is small. However, if it deviates from the expression (5) more than a certain degree, the peak of the angular distribution of luminance becomes a flat mountain centered in the normal direction of the light emitting surface due to spherical aberration, and side lobes are formed at both ends of the flat top. (Side peak) is made. It becomes unsuitable for the purpose of the present invention. As a result of the examination, if it is within + -20% of the formula (5), side lobes do not occur, and good light energy utilization efficiency, sharp diffusion angle, and
It was found that a high normal direction luminance can be obtained. However, from the practical viewpoint, it is preferable that the flatness ratio is within + -10% of the formula (5).
【0010】尚この単位レンズは、図3(A)、(C)
の様な凸レンズでも、図3(B)、(D)の様な凹レン
ズでも良い。This unit lens is shown in FIGS. 3 (A) and 3 (C).
A convex lens as shown in FIG. 3B or a concave lens as shown in FIGS. 3B and 3D may be used.
【0011】該楕円柱単位レンズの光線の挙動は、第4
図(B)、図5(B)に示した通りである。光軸に平行
に入射する光線は、球面収差を生じることなく、焦点F
に収束し、而る後所定の拡散角θで発散する。該拡散角
θは、球面収差が無視でき、導光板の平滑表面10とレ
ンズシート4との間の全反射によって、導光板の法線か
ら大きくはずれた光線は、導光板内にフィードバックさ
れ、導光板裏面の光反射層の拡散反射とによって導光板
の法線方向近傍の光線、即ち光軸にほぼ平行な光線が主
にレンズに入射するとした場合、概略、 θ=2ta
n-1(p/2f) 式(6) となる。ただし、pは単位レンズの繰り返し周期、fは
焦点距離である。図4と図5の比較からわかるように焦
点にできる位置は凹レンズと凸レンズとで変わる。即
ち、図4(B)のように凸レンズの場合結像は実像とな
り焦点はレンズ外部(向こう側)にできる。又図5
(B)のように凹レンズの場合は、結像は虚像となり焦
点はレンズ内部(手前側)にできる。但しいずれの場合
に於いても、本発明の用途の場合、焦点距離はレンズ表
面(即ち面光源表面)から観察者までの距離に比べて充
分小さく取る為(通常10mm以下)、観察者に対する
効果としては凹、凸両レンズとも大差はない。The behavior of light rays of the elliptic cylinder unit lens is as follows:
This is as shown in FIGS. 5B and 5B. A ray incident parallel to the optical axis does not cause spherical aberration and has a focal point F.
And then diverge at a predetermined diffusion angle θ. With respect to the divergence angle θ, spherical aberration can be neglected, and a light ray largely deviated from the normal line of the light guide plate is fed back into the light guide plate due to total reflection between the smooth surface 10 of the light guide plate and the lens sheet 4. If light rays in the vicinity of the normal direction of the light guide plate, that is, light rays substantially parallel to the optical axis mainly enter the lens due to the diffuse reflection of the light reflection layer on the back surface of the light plate, roughly, θ = 2ta
n −1 (p / 2f) Expression (6) is obtained. However, p is the repeating period of the unit lens, and f is the focal length. As can be seen from the comparison between FIG. 4 and FIG. 5, the focusable position varies depending on the concave lens and the convex lens. That is, in the case of a convex lens as shown in FIG. 4B, the image formation becomes a real image and the focus can be on the outside of the lens (on the other side). See also FIG.
In the case of the concave lens as in (B), the image is formed as a virtual image and the focus can be inside the lens (front side). However, in any case, in the case of the use of the present invention, the focal length is set sufficiently smaller than the distance from the lens surface (that is, the surface of the surface light source) to the observer (usually 10 mm or less). There is no big difference between the concave and convex lenses.
【0012】尚、以上の説明では専ら楕円柱型レンチキ
ュラーレンズについて述べたが、単位レンズ断面が式
(6)、 X2 /a2 −Y2 /b2 =1 式(6) (但し、ここで、b/aは漸近線の傾きで、 a<
b、)で表現される双曲線柱型レンチキュラーレンズで
あっても同様な効果が期待できる。a、bの最適範囲も
楕円柱の場合と同様である。In the above description, the elliptic cylinder type lenticular lens is exclusively described, but the unit lens cross section is expressed by the formula (6), X 2 / a 2 -Y 2 / b 2 = 1 formula (6) (however, here Where b / a is the slope of the asymptote, and a <
Similar effects can be expected even with a hyperbolic columnar lenticular lens represented by b,). The optimum ranges of a and b are the same as in the case of an elliptic cylinder.
【0013】これらレンズシートは1枚構成で用いるこ
ともできるが、柱状レンズを用いてX、Y2方向(上下
方向、左右方向等)の光拡散角を制御する為には図6の
ように2枚のレンズシートを、その長軸が直交するよう
に積層しても良い。この場合レンズ面の向きは図6のよ
うに2枚とも同じ向きにするのが、光反射層2から飛来
する光線のうち、比較的法線方向に近い成分の透過率の
高さと、比較的法線方向から傾いた光線の導光板へのフ
ィードバック率の高さとの均衡上最も良好であるが、勿
論各レンズシートのレンズが対抗して向き合う(レンズ
面は2枚のレンズシートの間に挾まれる)様に積層する
こともできる。又該レンズシートは図3(A)、(C)
のように透光性基材を一体成形して得ても良いし、又図
3(B)、(D)のように透光性平板(又はシート)4
4の上に単位レンズ42を形成したものでも良い。Although these lens sheets can be used as a single sheet, in order to control the light diffusion angle in the X, Y2 directions (vertical direction, horizontal direction, etc.) by using a columnar lens, as shown in FIG. The lens sheets may be laminated so that their major axes are orthogonal to each other. In this case, the lens surfaces should be oriented in the same direction as shown in FIG. 6 because of the high transmittance of the components of light rays coming from the light reflecting layer 2 which are relatively close to the normal direction, It is the best in terms of balance with the high feedback rate of the light beam inclined from the normal direction to the light guide plate, but of course the lenses of each lens sheet face each other (the lens surface is sandwiched between two lens sheets). Can be laminated. Also, the lens sheet is shown in FIGS.
It may be obtained by integrally molding a translucent substrate as shown in Fig. 3, or as shown in Figs. 3 (B) and 3 (D), a translucent flat plate (or sheet) 4
The unit lens 42 may be formed on the surface 4.
【0014】該レンズシート4は透光性基材から形成さ
れる。此処で透光性基材としては、ポリメタアクリル酸
メチル,ポリアクリル酸メチル等のアクリル酸エステル
又はメタアクリル酸エステルの単独若しくは共重合体,
ポリエチレンテレフタレート,ポリブチレンテレフタレ
ート等のポリエステル,ポリカーボネート,ポリスチレ
ン、ポリメチルペンテン等熱可塑性樹脂、或いは紫外線
又は電子線で架橋した、多官能のウレタンアクリレー
ト、ポリエステルアクリレート等のアクリレート、不飽
和ポリエステル等透明な樹脂,透明な硝子等、透明なセ
ラミックス等が用いられる。The lens sheet 4 is formed of a transparent base material. Here, as the translucent base material, a homopolymer or a copolymer of acrylic acid ester or methacrylic acid ester such as polymethyl methacrylate, polymethyl acrylate, and the like,
Polyesters such as polyethylene terephthalate and polybutylene terephthalate, polycarbonates, polystyrenes, thermoplastic resins such as polymethylpentene, or transparent resins such as polyfunctional urethane acrylates, polyester acrylates and other acrylates, unsaturated polyesters crosslinked by ultraviolet rays or electron beams. , Transparent glass, transparent ceramics, etc. are used.
【0015】この透光性基材は、レンズシートとして用
いる場合には、通常総厚みが20〜1000μm程度と
する。When used as a lens sheet, this translucent substrate usually has a total thickness of about 20 to 1000 μm.
【0016】レンズ形状を形成する方法としては、例え
ば、公知の熱プレス法(特開昭56−157310号公
報記載)、紫外線硬化性の熱可塑性樹脂フィルムにロー
ルエンボス版によってエンボス加工したのちに、紫外線
を照射してそのフィルムを硬化させる方法(特開昭61
−156273号公報記載)、レンズ形状を刻設したロ
ール凹版上に紫外線又は電子線硬化性樹脂液を塗布し凹
部に充填後、樹脂液を介してロール凹版上に透明基材フ
イルムを被覆したまま紫外線又は電子線を照射し硬化さ
せた樹脂と、それに接着した基材フイルムとをロール凹
版から離型し、ロール凹版のレンズ形状を硬化樹脂層に
賦型する方法(特開平3ー223883号、米国特許第
4576850号等)等を用いる。該方法の場合、成形
したレンズシートを巻き取って加工する都合上、加工時
の龜裂発生等を防止する為、紫外線又は電子線硬化性樹
脂としては、比較的可撓性、柔軟性のあるものを選定す
る。As a method for forming a lens shape, for example, a publicly known hot pressing method (described in JP-A-56-157310), an emulsifying process using a roll embossing plate on an ultraviolet-curable thermoplastic resin film, A method of irradiating ultraviolet rays to cure the film (JP-A-61-61
No. 156273), an ultraviolet or electron beam curable resin liquid is applied on a roll intaglio engraved with a lens shape and filled in the recess, and then the roll intaglio is still coated with the transparent base film through the resin liquid. A method in which a resin cured by irradiation with ultraviolet rays or an electron beam and a base film adhered to the resin are released from a roll intaglio, and the lens shape of the roll intaglio is applied to a cured resin layer (JP-A-3-223883, US Pat. No. 4,576,850) and the like are used. In the case of the method, the ultraviolet ray or electron beam curable resin has relatively flexibility and flexibility in order to prevent the occurrence of cracks and the like during processing because of the convenience of winding and processing the molded lens sheet. Select one.
【0017】透光性基材に要求される透光性は、各用途
の使用に支障のない程度に、拡散光を充分透過するよう
に選定する必要があり、無色透明が一番望ましいが、用
途によっては着色透明又は艶消半透明であってもよい。
ここで、艶消透明とは、透過光を半立体角内のあらゆる
方向にほぼ均一等方的に拡散透過させる性質をいい、光
等方拡散性と同義語に用いられる。つまり、艶消透明と
は、透明性基材の表面の法線方向とのなす角をθとした
場合に、平行光束を裏面から入射させたとき(入射角i
=0°)における透過光強度の角度分布I0 (θ)がc
os分布 I0 (θ)=I0 mpcosθ、−90°≦θ≦90° 式(8) θは法線Nとのなす角、I0 mpは法線方向の透過光強度
又はそれに類似する分布となることを云う。なお、Ii
(θ)の定義については後述する。The translucency required for the translucent base material must be selected so that diffused light can be sufficiently transmitted to the extent that it does not hinder the use of each application, and colorless and transparent is most preferable. Depending on the application, it may be colored transparent or matt translucent.
Here, the matte transparent has a property of diffusing and transmitting the transmitted light almost uniformly and isotropically in all directions within a semi-solid angle, and is synonymous with light isotropic diffusivity. That is, the term "matte transparent" means that when a parallel light flux is incident from the rear surface (incident angle i
= 0 °), the angular distribution I 0 (θ) of the transmitted light intensity is c
os distribution I 0 (θ) = I 0 mp cos θ, −90 ° ≦ θ ≦ 90 ° Formula (8) θ is the angle formed by the normal line N, I 0 mp is the transmitted light intensity in the normal direction or similar to it. It is said to be distributed. Note that I i
The definition of (θ) will be described later.
【0018】該レンズシートの裏面(レンズ面の反対
面)には、微小凹凸(微小突起群)を設けることが好ま
しい。此の理由は、請求項1〜請求項4のような所謂エ
ッジライト型面光源の場合と、請求項5〜請求項6のよ
うな所謂直下型面光源との場合で異なる。エッジライト
型の場合は後述するように、光放出面内の輝度分布を均
一化する為であり、一方直下型の場合は所定の光拡散角
内の輝度の角度分布の均一化が目的である(この場合
は、単なる光拡散効果)。レンズシート裏面に形成する
高さが光源光の波長以上、100μm以下の微小凹凸4
1は、図14のように一体成形レンズシート4の裏面に
熱プレスによるエンボス加工、サンドブラスト加工等で
直接形成することも出来るし、其の他図11のようにレ
ンズシート4の平坦な裏面に突起を有する透光性材料層
を形成することによっても出来る。具体的には、炭酸カ
ルシウム、シリカ、アクリル樹脂等の透明な微粒子を透
明バインダーに分散させた塗料を塗工して、塗膜の表面
に微粒子の凹凸を現出させる方法、或いは前記の特開平
3ー223883号、米国特許第4576850号等に
開示されるロール凹版上で紫外線又は電子線硬化性樹脂
液を表面が艶消し微小凹凸となる様に成形する方法等を
用いる。It is preferable to provide minute irregularities (a group of minute protrusions) on the back surface of the lens sheet (the surface opposite to the lens surface). The reason is different between the so-called edge light type surface light source as in claims 1 to 4 and the so-called direct type surface light source as in claims 5 to 6. In the case of the edge light type, as will be described later, it is for uniforming the luminance distribution in the light emitting surface, while in the case of the direct type, the purpose is to make the angular distribution of luminance within a predetermined light diffusion angle uniform. (In this case, just the light diffusion effect). Minute irregularities 4 whose height formed on the back surface of the lens sheet is not less than the wavelength of the light source light and not more than 100 μm
No. 1 can be directly formed on the back surface of the integrally molded lens sheet 4 as shown in FIG. 14 by embossing by heat pressing, sandblasting, etc., or else on the flat back surface of the lens sheet 4 as shown in FIG. It is also possible to form a light-transmitting material layer having protrusions. Specifically, a method in which transparent fine particles of calcium carbonate, silica, acrylic resin, or the like are dispersed in a transparent binder to coat the surface of the coating film to form irregularities of the fine particles, or the method described in JP A method of molding an ultraviolet or electron beam curable resin liquid on a roll intaglio disclosed in, for example, US Pat. No. 3,223,883, U.S. Pat.
【0019】該突起41は、図11のように導光板1の
平滑表面10とレンズシート4との間に光源光の波長以
上の間隙9(寸法ΔX)を少なくとも部分的に形成させ
る事が目的である。後述するように間隙ΔXが光源光の
波長未満だと、導光板1の平滑平面10での光全反射が
充分に起きなくなり、又100μm超過だと突起の凹凸
形状が目立ってきて不都合である。The projection 41 is intended to at least partially form a gap 9 (dimension ΔX) equal to or longer than the wavelength of the light source light between the smooth surface 10 of the light guide plate 1 and the lens sheet 4 as shown in FIG. Is. As will be described later, when the gap ΔX is less than the wavelength of the light from the light source, total reflection of light on the smooth flat surface 10 of the light guide plate 1 does not sufficiently occur, and when it exceeds 100 μm, the uneven shape of the protrusions becomes conspicuous, which is inconvenient.
【0020】此の目的が達せられれば該突起41はいか
なる凹凸形状でも良いが、所望の拡散角内での均一な輝
度の角度分布と光源面内での均一な輝度分布とを得る点
から、最も良好な態様は、図3(C)、(D)の様にレ
ンズシート4の裏面にランダムな凹凸形状(例えば砂目
模様、梨地模様等)を全面に形成したものである。此の
様にすると、図11に示すようにレンズシート4の裏面
から入射した光L1、L2S等は該突起群41が光拡散
層としても作用して光を等方的に拡散する為、別途艶消
透明シートを介在させることなく均一な角度分布がえら
れ、又網点状のパターンが目立つこともなく良好であ
る。The projection 41 may have any uneven shape as long as this purpose is achieved, but from the viewpoint of obtaining a uniform brightness angular distribution within a desired diffusion angle and a uniform brightness distribution within a light source surface, In the best mode, as shown in FIGS. 3C and 3D, a random uneven shape (for example, a grain pattern, a satin pattern, etc.) is formed on the entire back surface of the lens sheet 4. In this way, as shown in FIG. 11, the light L1, L2S, etc. incident from the back surface of the lens sheet 4 is isotropically diffused by the projection group 41 also acting as a light diffusion layer. A uniform angle distribution can be obtained without interposing a matte transparent sheet, and a dot pattern is not conspicuous, which is good.
【0021】勿論この他、図10の如く艶消し透明性と
表面の波長以上、100μm以下の突起群41とを有す
る光等方拡散性シート8を、レンズシート4と導光板の
平滑平面10との間に介在させる事も出来る。但し、こ
の場合は光が拡散する界面が複数(平滑平面10光等方
拡散性シート8/、光等方拡散性シート8/レンズシー
ト4の裏面)になるため、法線方向近傍に向かう有効な
光エネルギーの透過率が最大になり、且つ法線方向から
大きく離れた(斜め〜光放出面の接線方向)光源として
無駄になる光エネルギーの反射率も最大となり(この反
射光は、図11でわかるように、別の場所の光反射層2
に送られ、そこで再利用される。)光エネルギー利用効
率が最大となり、同時に全光放出面内での輝度分布も最
も均一となる。In addition to this, of course, as shown in FIG. 10, a light isotropic diffusive sheet 8 having a matt transparency and a group of protrusions 41 having a surface wavelength of 100 μm or less, a lens sheet 4 and a smooth surface 10 of the light guide plate. You can also intervene between. However, in this case, since there are a plurality of interfaces for diffusing light (smooth flat surface 10 light isotropic diffusing sheet 8 /, light isotropic diffusing sheet 8 / rear surface of lens sheet 4), it is effective to move in the vicinity of the normal direction. The transmittance of light energy is maximized, and the reflectance of light energy that is wasted as a light source far from the normal direction (oblique to the tangential direction of the light emission surface) is also maximized (this reflected light is As you can see, the light reflection layer 2 in another place
Sent to and reused there. ) The light energy utilization efficiency is maximized, and at the same time, the brightness distribution in the entire light emission surface is also most uniform.
【0022】又、図14の如く、微小凹凸41は、網点
等の互いに隔たった点状パターンが平面内に分布配列し
たものを用いる事もできる。但し、この様にするとパタ
ーン41が目立つ為、艶消し剤をレンズシート4に分散
させる等の工夫が必要となる。Further, as shown in FIG. 14, the minute concavo-convex pattern 41 may be a pattern in which dot-like patterns such as halftone dots are arranged in a plane in a distributed manner. However, in this case, the pattern 41 is conspicuous, and it is necessary to devise a method of dispersing the matting agent in the lens sheet 4.
【0023】本発明の面光源は図10、図11の断面
図、及び図1、図2の斜視図で示される構成となってい
る。導光板1、その側端部の少なくとも1箇所に隣接し
て設置された線状又は点状光源3、導光板の裏面の光反
射層2、導光板の光反射層とは反対面に設置されたレン
ズシート4、とを最低限の構成となすものである。通常
これらに、光源光反射鏡5、全体を収納し、光放出面を
窓とした収納筺体(図示せず)、電源(図示せず)等も
付随する。The surface light source of the present invention has a structure shown in the sectional views of FIGS. 10 and 11 and the perspective views of FIGS. The light guide plate 1, the linear or point light source 3 installed adjacent to at least one of the side end portions thereof, the light reflection layer 2 on the back surface of the light guide plate, and the surface opposite to the light reflection layer of the light guide plate. The lens sheet 4 has a minimum configuration. Usually, the light source light reflecting mirror 5, the entire housing, a housing (not shown) having a light emitting surface as a window, a power source (not shown), etc. are also attached to these.
【0024】導光板1の光反射層の反対面10は平面で
あり、表面粗さ(JIS−B−0601の十点平均粗さ
Rz等で計測される)は、光源光の波長以下に仕上げ
る。通常光源は可視光線であり、その波長は0.4〜
0.8μmであるから、表面粗さは0.4μm以下とす
る。この程度の粗さに仕上げる方法としては公知の手
法、例えば鏡面板での熱プレス、鏡面性の形を用いた射
出成形、注型(キャステイング)成形、光学レンズ等で
行われている精密研磨等を用いれば良い。The opposite surface 10 of the light-reflecting layer of the light guide plate 1 is a flat surface, and the surface roughness (measured by the ten-point average roughness Rz of JIS-B-0601) is equal to or less than the wavelength of the light source light. . Usually, the light source is visible light, and its wavelength is 0.4 ~
Since it is 0.8 μm, the surface roughness is 0.4 μm or less. Known methods for finishing to this degree of roughness, such as heat pressing with a mirror surface plate, injection molding using a mirror surface shape, casting (casting) molding, precision polishing performed with optical lenses, etc. Should be used.
【0025】導光板1の材料としては、前記のレンズシ
ートの材料と同様の透光性材料の中から選択する。通常
は、アクリル又はポリカーボネートの樹脂が用いられ
る。導光板の厚みは、通常1〜10mm程度のものが用
いられる。The material of the light guide plate 1 is selected from the same translucent materials as the material of the lens sheet. Usually, acrylic or polycarbonate resin is used. The thickness of the light guide plate is usually about 1 to 10 mm.
【0026】光源3としては、螢光燈等の線光源が全面
均一の輝度を得る上で好ましいが、白熱電球等の点光源
を用いる事も可能である。該光源3は図示した様に導光
板の側端部の外に隔離して設ける以外に、導光板1の側
端部を一部切り欠いて、一部又は全部を導光板の中に埋
設する事も可能である。高輝度と輝度の面内での均一性
向上の点から、光源3を導光板1のもう片方の側端部に
も設置する事もできる。光源光反射鏡5としては公知の
もの、例えば放物面柱、双曲線柱、楕円柱等の形状をし
た板の内面に金属蒸着をしたものが用いられる。As the light source 3, a linear light source such as a fluorescent lamp is preferable in order to obtain uniform brightness over the entire surface, but a point light source such as an incandescent lamp can also be used. The light source 3 is provided outside the side end portion of the light guide plate as shown in the figure, and the side end portion of the light guide plate 1 is partially cut away so that a part or the whole is embedded in the light guide plate. Things are possible. The light source 3 can also be installed at the other side end of the light guide plate 1 from the viewpoint of high brightness and uniformity of brightness in the plane. As the light source light reflecting mirror 5, a well-known one is used, for example, a plate having a shape of a parabolic column, a hyperbolic column, an elliptic column, or the like, on the inner surface of which metal vapor deposition is performed.
【0027】エッジライト型面光源の場合、導光板の平
滑平面10上には、前記のレンズシート4を積層する。
その際図10、図11のようにレンズシート4のレンズ
面を外側(平面10の反対面)に、微小凹凸41が内側
(平面10側)を向くようにして載せることにより、レ
ンズシート4と導光板1の平滑面10との間に、光源光
の波長λ以上の空隙9が少なくとも一部分はできるよう
にする。空隙部分9の面積比率R即ち、 R=(波長λ以上の空隙のある部分の面積/導光板全表
面積)×100% は、要求される面内での輝度の均一性、光エネルギーの
利用効率、導光板の寸法等により決定されるが、通常
は、比率Rは80%以上、より好ましくは90%以上必
要である。In the case of an edge light type surface light source, the lens sheet 4 is laminated on the smooth flat surface 10 of the light guide plate.
At that time, as shown in FIGS. 10 and 11, the lens surface of the lens sheet 4 is placed on the outside (opposite surface of the flat surface 10) so that the minute irregularities 41 face inward (on the flat surface 10 side). At least a part of the gap 9 having a wavelength λ of the light of the light source or more is formed between the light guide plate 1 and the smooth surface 10. The area ratio R of the void portion 9, that is, R = (area of the void portion having a wavelength of λ or more / total surface area of the light guide plate) × 100% is the required uniformity of brightness in the plane and the utilization efficiency of light energy. Although it is determined by the dimensions of the light guide plate, the ratio R is usually required to be 80% or more, and more preferably 90% or more.
【0028】この理由としては、実験の結果、図9の様
な、ともに表面粗さが光の波長以下の平滑な導光板表面
10とレンズシートの表面41とを密着させた場合、線
光源3からの入力光のうち大部分が、光源側の側端部か
ら距離yの所で全反射することなく放出され、yより遠
い所では急激に輝度が低下して暗くなることが判明し
た。そして、発光部の長さyと導光板の光伝播方向の全
長Yに対する比率、(y/Y)×100=10〜20%
である事が判明した。よって、光源から導光板平面10
に入射する光エネルギー量を全長さYに均等に分配する
為には、平面10への入射光のうち10〜20%だは透
過させ、残り90〜80%を全反射させる必要がある。
概ね、 (透過光量/全反射光量)=(波長λ以上の空隙のある部分の面積/導光板全表 面積)=R 式(9) で近似されることから、Rは80〜90%以上必要とな
る事が判明した。The reason for this is that as a result of the experiment, when the surface 10 of the lens sheet and the surface 10 of the light guide plate, both of which have a surface roughness equal to or less than the wavelength of light as shown in FIG. It has been found that most of the input light from Eq. 1 is emitted from the side end on the light source side at a distance y without being totally reflected, and the brightness is sharply reduced and dark at a position far from y. The ratio of the length y of the light emitting portion to the total length Y of the light guide plate in the light propagation direction, (y / Y) × 100 = 10 to 20%
It turned out to be Therefore, from the light source to the light guide plate plane 10
In order to evenly distribute the amount of light energy incident on the total length Y, it is necessary to transmit 10% to 20% of the incident light on the plane 10 and totally reflect the remaining 90% to 80%.
Generally, (amount of transmitted light / amount of total reflected light) = (area of void portion having wavelength λ or more / total surface area of light guide plate) = R Since it is approximated by the formula (9), R is required to be 80 to 90% or more. It turned out that
【0029】レンズシート4と導光板1との間に光源光
の波長以上の空隙を形成する方法としては、レンズシー
ト4を、そのレンズ面42と突起群41の向きを図1
0、図11とは反転させて置くことも出来る(図示せ
ず)。但しこの場合は、一旦レンズ面42で所望の角度
内に集束された光が、再び東邦的に発散してしまう為、
光の拡散角を最適値である法線を中心とした30度〜6
0度内に制御することが難しい。As a method of forming an air gap having a wavelength equal to or longer than the light source light between the lens sheet 4 and the light guide plate 1, the lens sheet 4 is arranged such that the lens surface 42 and the projection group 41 are oriented as shown in FIG.
0, it is also possible to invert it from FIG. 11 (not shown). However, in this case, the light once focused within the desired angle on the lens surface 42 diverges in a eastern fashion again,
30 degrees to 6 around the normal, which is the optimum value for the light diffusion angle
It is difficult to control within 0 degrees.
【0030】光反射層2は、光を拡散反射させる性能を
持つ層であって、以下のように構成することができる。 導光板層の片面に、高隠蔽性かつ白色度の高い顔
料、例えば、二酸化チタン、アルミニウム等の粉末を分
散させた白色層を塗装などによって形成する。 サンドブライト加工,エンボス加工等によって艶消
微細凹凸を形成した導光板の凹凸模様面に、更に、アル
ミニウム,クロム,銀等のような金属をメッキ又は蒸着
等して、金属薄膜層を形成する。 隠蔽性が低く単にマット面を塗布で形成した白色層
に、金属薄膜層を形成する。 網点状の白色層に形成し、光源から遠ざかるに従っ
て面積率を増やして、光源の光量が減衰するのを補正す
るようにしてもよい。The light reflecting layer 2 is a layer having a property of diffusing and reflecting light, and can be constructed as follows. On one surface of the light guide plate layer, a white layer in which a pigment having high hiding property and high whiteness, for example, powder of titanium dioxide, aluminum or the like is dispersed is formed by coating or the like. A metal thin film layer is formed by further plating or vapor-depositing a metal such as aluminum, chromium, or silver on the uneven surface of the light guide plate on which matte fine unevenness has been formed by sandbright processing, embossing, or the like. A metal thin film layer is formed on a white layer which has a low hiding property and is formed by simply coating a matte surface. It may be formed in a white dot-like layer and the area ratio may be increased as the distance from the light source increases so as to correct the attenuation of the light amount of the light source.
【0031】尚本発明の面光源100を透過型LCD等
の透過型表示装置のバックライト(背面光源)として使
用する場合の構成は図1、図2の通りである。即ち本発
明の面光源100のレンズシートのレンズ面(単位レン
ズ42のある側)の上に透過型表示装置6を積層すれ
ば、本発明の表示装置を得る。The structure of the surface light source 100 of the present invention used as a backlight (rear surface light source) of a transmissive display device such as a transmissive LCD is as shown in FIGS. That is, the display device of the present invention is obtained by stacking the transmissive display device 6 on the lens surface (the side where the unit lens 42 is located) of the lens sheet of the surface light source 100 of the present invention.
【0032】面光源の光の分布状態を評価するには、拡
散角が有効である。拡散角としては例えば半値角θH が
用いられる。これは、透過光輝度(又は強度)が光放出
面の法線からの角度θの減少関数I(θ)とした時に、
I (θH ) =I(θ)/2となる角θH として定義され
る。The diffusion angle is effective for evaluating the light distribution of the surface light source. A half value angle θ H is used as the diffusion angle, for example. When the transmitted light brightness (or intensity) is defined as a decreasing function I (θ) of the angle θ from the normal line of the light emitting surface,
It is defined as an angle θ H such that I (θ H ) = I (θ) / 2.
【0033】[0033]
【作用】請求項1、及び請求項5の楕円柱レンチキュラ
ーレンズは、前記の通り幾何光学的に球面収差を生じな
い。即ち真円柱単位レンズは図4(A)、図5(A)の
ように球面収差が存在し、光軸から離れた入射光線L2
は焦点には集光せず、その結果、一部の光が所定の拡散
角θの範囲から逸脱して無駄となってしまう。一方本発
明で用いる図4(B)、図5(B)の楕円柱単位レンズ
は前述のように球面収差を生じない乃至はそれが無視出
来る範囲内の形状に設計されている。その為、光軸に平
行な入射光はレンズしーと4で屈折後、1つの焦点に収
束し、その後その儘発散して行くため、放出光は所望の
拡散角θ(式(6))にほぼ近い角度で集光され、有効
利用される。凹レンズの場合は、前記の通り凸レンズに
比べて、焦点の位置がレンズの全方か後方かの差であ
る。従ってレンズシート4の焦点距離よりも充分遠方の
観察者にとっては、凸レンズと実質同様の作用をなす。The elliptic cylinder lenticular lens according to the first and fifth aspects does not cause spherical aberration geometrically as described above. That is, the true cylindrical unit lens has spherical aberration as shown in FIGS. 4 (A) and 5 (A), and the incident light ray L2 distant from the optical axis.
Is not focused on the focal point, and as a result, a part of the light deviates from the range of the predetermined diffusion angle θ and is wasted. On the other hand, the elliptic cylinder unit lenses of FIGS. 4 (B) and 5 (B) used in the present invention are designed so that spherical aberration does not occur or that it can be ignored as described above. Therefore, the incident light parallel to the optical axis is refracted by the lens lens 4 and then converges to one focal point, and then diverges at that point, so that the emitted light has a desired diffusion angle θ (equation (6)). The light is condensed at an angle close to, and is effectively used. In the case of a concave lens, the focus position is the difference between the entire position and the rear of the lens as compared with the convex lens as described above. Therefore, for an observer who is far away from the focal length of the lens sheet 4, the same action as the convex lens is performed.
【0034】又双曲線レンチキュラーレンズの場合も、
前記楕円柱レンチキュラーレンズの場合と同様である。Also in the case of a hyperbolic lenticular lens,
This is similar to the case of the elliptic cylinder lenticular lens.
【0035】次に、エッジライト型面光源に於ける、空
隙9について説明する。エッジライト方式面光源の作用
機構は図7のように、光源3から導光板1に入射し導光
板の平滑平面10に直接入射する光線のうち、光源近傍
に入射するL1は入射角(面10の法線とのなす角)が
小さく臨界角未満になる為、入射光量の何割かが透過光
L1Tとなって放出する。これによって、光源近傍の放
出光が形成される。一方、光源3から比較的離れた所に
直接入射する光線L2は入射角が大きく、臨界角以上と
なる為、外部には放出されず全反射光L2Rとなって更
に遠方へ送られ、導光板裏面の光拡散反射層2で拡散
(乱)反射光L2Sとなって四方八方に進む、これらの
何割かは臨界角未満で面10へ入射し、その更に何割か
が放出光となる。これによって光源から離れた所での放
出光が形成される。Next, the void 9 in the edge light type surface light source will be described. As shown in FIG. 7, the action mechanism of the edge light type surface light source is that, among the light rays that are incident on the light guide plate 1 from the light source 3 and are directly incident on the smooth flat surface 10 of the light guide plate, L1 that is incident near the light source is the incident angle (the surface 10 Since the angle formed by the normal line of 1) is small and less than the critical angle, some of the incident light amount is emitted as transmitted light L1T. Thereby, emitted light near the light source is formed. On the other hand, the light ray L2 that is directly incident on a relatively distant place from the light source 3 has a large incident angle and is equal to or greater than the critical angle. Diffuse (random) reflected light L2S is propagated in all directions in the light diffusive reflection layer 2 on the back surface. Some of these incident on the surface 10 at less than the critical angle, and some more of it becomes emitted light. This forms the emitted light at a distance from the light source.
【0036】此処で、導光板1の平滑平面10の上に、
非レンズ面が平滑平面となったレンズシート4の平滑面
が面10に接する向きで積層した状態が第8図、第9図
である。通常使用される透光性材料の屈折率は、いずれ
も大体1.5前後であり、相互の差は大きくない。よっ
て、程度の差はあれ、図9のようにレンズシート4と導
光板1とは光学的に殆ど一体の物となる。そうすると、
レンズシート4の単位レンズ42の表面は平滑平面10
に対して傾斜を持つので、光源近傍で導光板に入射する
光線の大部分、例えばL1、L2、L3は臨界角未満で
入射する為、何割かがその儘放出され、反射した光も大
部分が光源方向に戻され、遠方に伝播されない。 もち
ろん、光源から直接遠方のレンズ面に入射し、そこから
放出光となる光線、例えば図9のL4も存在するが、そ
の量は図7の場合より少ない。故に前述の様に、面光源
からの放出光は、光源側近傍導光板の全面積の10〜2
0%の所に大部分集中してしまう事になる。Here, on the smooth flat surface 10 of the light guide plate 1,
FIGS. 8 and 9 show a state in which the smooth surface of the lens sheet 4 whose non-lens surface is a smooth flat surface is laminated so as to contact the surface 10. The refractive indexes of the translucent materials that are normally used are all around 1.5, and the mutual differences are not large. Therefore, to some extent, as shown in FIG. 9, the lens sheet 4 and the light guide plate 1 are optically almost integrated. Then,
The surface of the unit lens 42 of the lens sheet 4 is a smooth flat surface 10.
Since most of the light rays that enter the light guide plate near the light source, such as L1, L2, and L3, are incident at less than the critical angle, some of them are emitted and the reflected light is mostly reflected. Is returned to the light source and does not propagate far away. Of course, there is also a ray of light that is emitted from the light source directly to the lens surface far away and becomes emitted light, for example, L4 in FIG. 9, but the amount thereof is smaller than in the case of FIG. Therefore, as described above, the light emitted from the surface light source is 10 to 2 of the total area of the light guide plate near the light source side.
Most of it will be concentrated at 0%.
【0037】一方本発明では、図10、図11のよう
に、レンズシート4の非レンズ面側に突起群41を形成
し、それにより導光板の平滑平面10とレンズシート4
との間に、少なくとも部分的に、空隙9を形成する。此
の空隙部9では、通常1.5程度の導光板1と屈折率
1.0程度の空気層(乃至は真空層)とが平面10を界
面として隣接する為、図7の場合と同様の光全反射が起
こる。そのため光源近傍の領域では平面10に臨界角未
満で入射し透過していく光線L1Tによって放出光がえ
られ、又光源から離れた領域では該空隙部9の界面で全
反射した後、裏面の光拡散反射層2で拡散反射した光線
のうち臨界角未満の成分L2Tによって放出光が得られ
る。On the other hand, in the present invention, as shown in FIGS. 10 and 11, the projection group 41 is formed on the non-lens surface side of the lens sheet 4, whereby the smooth flat surface 10 of the light guide plate and the lens sheet 4 are formed.
An air gap 9 is formed at least partially between and. In this space 9, since the light guide plate 1 having a refractive index of about 1.5 and the air layer (or vacuum layer) having a refractive index of about 1.0 are adjacent to each other with the plane 10 as an interface, the same as in the case of FIG. Total internal reflection occurs. Therefore, in the region near the light source, the emitted light is obtained by the light ray L1T which is incident on the plane 10 at less than the critical angle and is transmitted, and in the region away from the light source, the light on the back surface is totally reflected at the interface of the void 9. Emitted light is obtained by the component L2T of the light rays diffusely reflected by the diffuse reflection layer 2 and having a smaller angle than the critical angle.
【0038】勿論、L2Tの中でも、一部、微小凹凸4
1と平滑平面10とが接触している領域に入射した光
は、全反射せず、そのまま透過し放出光となる。空隙部
の面積比Rが80〜90%以上の場合、全面保母均一な
輝度分布となることは、前述の通りである。Of course, in the L2T, a part of the fine unevenness 4
Light incident on a region where 1 and the flat surface 10 are in contact with each other is not totally reflected but is transmitted as it is and becomes emitted light. As described above, when the area ratio R of the voids is 80 to 90% or more, the luminance distribution is uniform over the entire surface.
【0039】又ここで、微小凹凸41の高さ(即ち空隙
部の間隔)を、光源光の一波長以上にしたことにより、
面10での全反射が確実なものとなる。その理由として
は、図12のように、導光板内部から導光板の平滑平面
10入射した光線L1が全反射して反射光L1Rになる
場合、厳密に言うと光の電磁場は全く空気(又は真空)
9の中に存在しない訳ではなく、一部トンネル効果によ
り界面10を透過した電磁場L1Vが存在している。但
し、此の電磁場L1Vは指数関数的に減衰し、光の波長
程度のオーダーで振幅は0となる。よって、空隙9が光
の波長に比べて充分大きな距離続けば、光線L1は事実
上全く、空隙部9の中には入らない。Here, the height of the minute irregularities 41 (that is, the space between the voids) is set to be equal to or more than one wavelength of the light source light.
Total reflection on the surface 10 is ensured. The reason is that, as shown in FIG. 12, when the light ray L1 incident on the smooth plane 10 of the light guide plate from the inside of the light guide plate is totally reflected to become the reflected light L1R, strictly speaking, the electromagnetic field of the light is completely air (or vacuum). )
9 does not exist, but there is an electromagnetic field L1V that has partially passed through the interface 10 due to the tunnel effect. However, this electromagnetic field L1V is attenuated exponentially, and its amplitude becomes 0 on the order of the wavelength of light. Therefore, if the void 9 continues for a distance sufficiently larger than the wavelength of light, the light ray L1 practically does not enter the void 9.
【0040】ところが、図13のように導光板1とほぼ
同屈折率のレンズシート4が、導光板の面10に対し
て、光の波長λ未満の距離ΔX迄近づくと(ΔX<
λ)、完全に減衰せずにレンズシート4に入った電磁場
L1Vは再び進行波L1Tとなる、即ち透過光L1Tが
生じてしまう。However, as shown in FIG. 13, when the lens sheet 4 having substantially the same refractive index as the light guide plate 1 approaches the surface 10 of the light guide plate up to a distance ΔX less than the wavelength λ of light (ΔX <
λ), the electromagnetic field L1V entering the lens sheet 4 without being completely attenuated becomes the traveling wave L1T again, that is, the transmitted light L1T is generated.
【0041】本発明に於いては、レンズシート4の裏面
に微小凹凸4が形成してある為、図14のように導光板
1とレンズシート4との間には空隙部9を有する領域と
空隙部が無く光学的に両者が一体化している(或いは空
隙が有っても光の波長未満)領域とができる。これらの
うち、空隙部では入射光の全反射が起こり、空隙のない
部分では入射光は透過する。空隙部面積の導光板全面積
に対する比で、面10で全反射する光量の比が決まるこ
とは前述の通りである。In the present invention, since the minute irregularities 4 are formed on the back surface of the lens sheet 4, as shown in FIG. 14, a region having a space 9 between the light guide plate 1 and the lens sheet 4 is formed. There can be a region where there is no void and both are optically integrated (or less than the wavelength of light even if there is a void). Of these, the incident light is totally reflected in the void portion, and the incident light is transmitted in the portion without the void. As described above, the ratio of the amount of light totally reflected by the surface 10 is determined by the ratio of the area of the void portion to the total area of the light guide plate.
【0042】[0042]
【発明の効果】請求項1、請求項2、請求項5、請求項
6の面光源は球面収差がない為、導光板から放出された
光は殆ど所定の拡散角内に集光され、本来無駄になる面
光源の斜め〜接線方向に散逸する光エネルギーも観察に
有効な照明光として利用できる。その為、エネルギーの
利用効率も良く、高輝度であり、且つ面光源側面にノイ
ズ光を放出することもない。請求項3、請求項4の面光
源は、レンズシート4の裏面(レンズ面の反対面)の微
凹凸の為、エッジライト型面光源の導光板とレンズシー
トとの間に確実に、光源光の波長以上の空隙を形成出来
る。その為レンズシートを置いても、導光板表面での光
全反射による導光板内全体への光源光の均一な分配を妨
げることがなく光放出面内での輝度分布は均一である。Since the surface light source of claim 1, claim 2, claim 5, and claim 6 does not have spherical aberration, the light emitted from the light guide plate is almost converged within a predetermined diffusion angle. Light energy which is wasted from the oblique to tangential directions of the surface light source can also be used as illumination light effective for observation. Therefore, the energy utilization efficiency is high, the brightness is high, and no noise light is emitted to the side surface of the surface light source. Since the surface light source according to claim 3 or 4 has fine irregularities on the back surface (the surface opposite to the lens surface) of the lens sheet 4, the light source light can be reliably provided between the light guide plate of the edge light type surface light source and the lens sheet. It is possible to form voids having a wavelength longer than Therefore, even if the lens sheet is placed, the uniform distribution of the light source light throughout the light guide plate due to the total reflection of light on the surface of the light guide plate is not hindered, and the luminance distribution on the light emission surface is uniform.
【0043】又請求項7の表示装置は、請求項1〜請求
項6の面光源を使用している為、電力等エネギー利用効
率が高く、高輝度で、適度な視野角を持ち、且つ前面均
一な輝度の表示を得る事ができる。Since the display device of claim 7 uses the surface light source of claims 1 to 6, it has high energy utilization efficiency such as electric power, high brightness, an appropriate viewing angle, and a front surface. It is possible to obtain a display with uniform brightness.
【0044】[0044]
【実施例1】 (レンズの成形工程)図15の様な装置を用い、以下の
工程により製造した。 厚さ100μmの無色透明な2軸延伸ポリエチレンテ
レフタレートの基材フィルムの巻取りロール11を用意
した。 金属円筒表面に楕円柱レンチキュラーレンズ形状の逆
型(同一形状で凹凸が逆)15を刻設したロール状凹版
14を用意し、これを中心軸の回りに回転させつつ、T
ダイ型ノズル21から紫外線硬化型樹脂液16を版面に
供給し、レンズの逆型の凹凸表面を充填被覆した。 次いで前記基材フィルム12を巻取りロール11から
ロール状凹版14の回転周速度と同期する速度で巻出し
て、押圧ロール13で基材フィルムを該ロール凹版上
に、該樹脂液を間に介して積層密着させ、その儘の状態
で水銀燈23、23からの紫外線を基材フィルム側から
照射し、該逆型内で樹脂液を架橋硬化させると同時に基
材フィルムと接着した。 次いで剥離ロール18を用いて走行する基材フィルム
を、それに接着したレンズ形状19の成形された硬化樹
脂と共に剥離し、 斯くして、楕円柱レンチキュラーレンズシート20を
得た。ちなみに;レンズ形状 ;図3(A)の通り、 ・単位レンズ形状;凸楕円柱(長軸をレンズシートの法
線方向に向ける。) ・長軸長2b=204μm ・短軸長2a=150μm ・長軸長/短軸長=2b/2a=1.36 ・レンズ単位の繰り返し周期p=130μm 紫外線硬化性樹脂液; ・多官能ポリエステルアクリレートオリゴマー ・光反応開始剤 を主成分とする。Example 1 (Lens Molding Step) Using a device as shown in FIG. 15, the lens was manufactured by the following steps. A winding roll 11 of a transparent and colorless biaxially stretched polyethylene terephthalate base film having a thickness of 100 μm was prepared. A roll-shaped intaglio 14 is prepared by engraving an elliptic cylinder lenticular lens-shaped reverse type (the same shape but the concavities and convexities are opposite) 15 on the surface of a metal cylinder, and while rotating this around the central axis, T
The UV curable resin liquid 16 was supplied to the plate surface from the die nozzle 21 to fill and coat the reverse concave and convex surface of the lens. Next, the base film 12 is unwound from the winding roll 11 at a speed that is synchronized with the rotational peripheral speed of the roll-shaped intaglio plate 14, and the base film is pressed onto the roll intaglio plate by the pressing roll 13 with the resin liquid interposed therebetween. Then, ultraviolet rays from the mercury lamps 23, 23 were irradiated from the side of the base material film in this state, and the resin solution was cross-linked and cured in the reverse mold and simultaneously adhered to the base material film. Next, the base film running using the peeling roll 18 was peeled off together with the cured resin having the lens shape 19 adhered thereto, thus obtaining the elliptic cylinder lenticular lens sheet 20. By the way, lens shape ; as shown in FIG. 3 (A), unit lens shape; convex elliptic cylinder (long axis oriented in the normal direction of the lens sheet), major axis length 2b = 204 μm, minor axis length 2a = 150 μm Long axis length / Short axis length = 2b / 2a = 1.36-Repeating cycle of lens unit p = 130 μm UV curable resin liquid; -Polyfunctional polyester acrylate oligomer-Photoreaction initiator as a main component.
【0045】(微小凹凸を有する艶消し層の成形工程) 金属円筒表面にサンドブラストして得た微小凹凸(突
起群)の逆型を刻設したロール状凹版を用意した。 次いで、厚さ50μmの無色透明な2軸延伸ポリエチ
レンテレフタレートの基材フィルムを巻取りロールから
巻戻し、レンズ成形工程と同様の装置、樹脂液、を用い
て、該レンズシートの裏面に紫外線硬化型樹脂硬化物よ
りなる艶消し透明の微小凹凸を成形した。 斯くして、本発明に仕様する光拡散層を得た。ちなみ
に、微小凹凸 ・ヘイズ値=88.8 ・表面光沢度(JIS−Z−8741)=11.1 ・表面粗さ(JIS−B−0601の十点平均粗さ)R
z=38.4μm ・表面粗さ(JIS−B−0601の中心線平均粗さ)
Ra=7.3μm(Process of forming matte layer having fine irregularities) A roll-shaped intaglio was prepared by engraving a reverse mold of fine irregularities (projections) obtained by sandblasting on the surface of a metal cylinder. Then, a colorless and transparent biaxially stretched polyethylene terephthalate base film having a thickness of 50 μm is unwound from a winding roll, and the same apparatus and resin solution as those used in the lens forming step are used to form an ultraviolet ray curable resin on the back surface of the lens sheet. Matte transparent fine irregularities made of a resin cured product were molded. Thus, the light diffusion layer specified in the present invention was obtained. By the way, minute irregularities -Haze value = 88.8-Surface gloss (JIS-Z-8741) = 11.1-Surface roughness (10-point average roughness of JIS-B-0601) R
z = 38.4 μm Surface roughness (center line average roughness of JIS-B-0601)
Ra = 7.3 μm
【0046】[0046]
【実施例2】実施例1で製造した楕円柱レンズシート
を、実施例1で製造した光拡散層を介して、導光板に重
ね、図1の100の構成のエッジライト型面光源を得
た。導光板 ; ・材料;ポリメチルメタアクリレート重合体樹脂 ・形状;直方体。 厚み4mm ・表面;十点平均粗さが全面に於いてRz=0.1μm
未満の平滑性に仕上げた。 ・裏面;導光板の裏面に艶消し透明インキを円形の網点
状に印刷し、その裏面にアルミニウムをポリエチレンテ
レフタレートフィルムに真空蒸着した鏡面反射性フィル
ムをおいた。網点はシリカの微粉末をアクリル系樹脂の
バインダーに分散させたものを用いシルクスクリーン印
刷で形成した。網点の配列は、繰り返し周期5mmで縦
・横方向に配列させた。網点の直径は光源に近い所では
0.1mmとし、光源からの距離に比例して大きくし、
光源と反対側の端部で2mmとした。光源 線光源として、白色螢光燈を導光板の一端に配置した。
導光板と反対側には金属性の反射鏡を置いた。 以上の構成の面光源の性能は以下の通り。 ・輝度の角度分布は図16の通り。 ・半値角=36度 ・法線方向輝度(導光板中央部)=2028cd/m2 ・法線方向輝度の光放出面内の分布;+−15%以内。
目視でも略均一 ・サイドローブ発生無し。Example 2 The elliptic cylinder lens sheet produced in Example 1 was overlaid on the light guide plate through the light diffusion layer produced in Example 1 to obtain an edge light type surface light source having the constitution 100 in FIG. . Light guide plate : -Material: Polymethylmethacrylate polymer resin-Shape: Rectangular solid. Thickness 4 mm ・ Surface; 10-point average roughness Rz = 0.1 μm on the entire surface
Finished to less than smoothness. -Back surface: Matte transparent ink was printed on the back surface of the light guide plate in a circular halftone dot pattern, and a specular reflective film obtained by vacuum-depositing aluminum on a polyethylene terephthalate film was placed on the back surface. The halftone dots were formed by silk screen printing using fine silica powder dispersed in an acrylic resin binder. The halftone dots were arranged in a vertical and horizontal direction with a repeating cycle of 5 mm. The diameter of the halftone dot is 0.1 mm near the light source, and it is increased in proportion to the distance from the light source.
It was set to 2 mm at the end opposite to the light source. A white fluorescent lamp was arranged at one end of the light guide plate as a light source line light source.
A metallic reflecting mirror was placed on the side opposite to the light guide plate. The performance of the surface light source with the above configuration is as follows. -The angular distribution of brightness is as shown in Fig. 16.・ Half-value angle = 36 degrees ・ Brightness in normal direction (center of light guide plate) = 2028 cd / m 2・ Distribution of brightness in normal direction in light emitting surface: within + -15%.
Almost visually uniform ・ No side lobes are generated.
【0037】[0037]
【比較例1】実施例2に於いて、レンズシート凸楕円柱
レンチキュラーレンズに代えて、下記の三角柱プリズム
型レンチキュラーレンズを仕様した。 ・断面形状; 直角二等片三角形。90度の頂角を面光
源の法線方向に向ける。 ・単位レンズの繰り返し周期(一辺の長さ)=100μ
m ・材料、層構成、製法は実施例1の凸楕円柱レンチキュ
ラーレンズと同様。 以上の構成の面光源の性能は以下の通り。 ・輝度の角度分布は図17の通り。 ・半値角=34度 ・法線方向輝度(導光板中央部)=2074cd/m2 ・法線方向輝度の光放出面内の分布;+−15%以内。
目視でもほぼ均 ・サイドローブ発生有り。(法線から+−75度方向に
ピーク) サイドローブピーク輝度/法線方向輝度=26%Comparative Example 1 The following triangular prism prism type lenticular lens was used in place of the convex elliptic cylinder lenticular lens of the lens sheet in Example 2. -Cross-sectional shape: right-angled isosceles triangle. The 90-degree apex angle is oriented in the direction normal to the surface light source.・ Repeat cycle of unit lens (length of one side) = 100μ
m The material, layer configuration, and manufacturing method are the same as those of the convex elliptic cylinder lenticular lens of the first embodiment. The performance of the surface light source with the above configuration is as follows. -The angular distribution of brightness is as shown in Fig. 17. · Half-value angle = 34 degrees, the normal direction brightness (light guide plate central portion) = 2074cd / m 2 · normal direction brightness distribution in the light emitting surface of; + - 15% or less.
Almost visually uniform ・ Side lobes occur. (Peak in + -75 degree direction from the normal) Sidelobe peak brightness / normal brightness = 26%
【比較例2】実施例2に於いて、レンズシートの代わり
に実施例1で作った光拡散層を用いた。即ち、光拡散層
を2層重ねて置いた。その他は実施例2と同じとした。
以上の構成の面光源の性能は以下の通り、 ・輝度の角度分布は図19の通り。 ・半値角=38度(但し、半値角の外でも急には減衰せ
ず或る程度の放出光が分布する。) ・法線方向輝度(導光板中央部)=1491cd/m2 ・法線方向輝度の光放出面内の分布;+−15%以内。
目視でも略均一 ・サイドローブ発生無し。Comparative Example 2 In Example 2, the light diffusion layer prepared in Example 1 was used instead of the lens sheet. That is, two light diffusion layers were stacked and placed. Others were the same as in Example 2.
The performance of the surface light source having the above configuration is as follows: The angular distribution of luminance is as shown in FIG.・ Half-value angle = 38 degrees (However, outside the half-value angle, it is not attenuated abruptly and a certain amount of emitted light is distributed.) ・ Normal direction luminance (center of light guide plate) = 1491 cd / m 2・ Normal line Distribution of directional luminance within the light emitting surface; within + -15%.
Almost visually uniform ・ No side lobes are generated.
【比較例3】実施例2に於いて、以下の形状の凸楕円柱
レンチキュラーレンズを使用した。 ・単位レンズ形状;凸楕円柱(短軸をレンズシートの法
線方向に向ける。) ・長軸長2b=150μm ・短軸長2a=204μm ・長軸長/短軸長=2b/2a=0.74 ・レンズ単位の繰り返し周期p=177μm その他は実施例2と同じとした。以上の構成の面光源の
性能は以下の通り、 ・輝度の角度分布は図18の通り。 ・半値角=42度 ・法線方向輝度(導光板中央部)=1738cd/m2 ・法線方向輝度の光放出面内の分布;+−5%以内。目
視でもほぼ均一 ・サイドローブ発生有り。(法線方向より、+−75度
離れた方向に輝度のピークあり) サイドローブピーク輝度/法線方向輝度=37%Comparative Example 3 In Example 2, a convex elliptic cylinder lenticular lens having the following shape was used. -Unit lens shape: convex elliptic cylinder (the short axis is oriented in the normal direction of the lens sheet) -Long axis length 2b = 150 μm- Short axis length 2a = 204 μm-Long axis length / short axis length = 2b / 2a = 0 .74 Repetition cycle of lens unit p = 177 μm Others were the same as in Example 2. The performance of the surface light source having the above configuration is as follows: The angular distribution of brightness is as shown in FIG. · Half-value angle = 42 deg, the normal direction brightness (light guide plate central portion) = 1738cd / m 2 · normal direction brightness distribution in the light emitting surface of; + - 5% or less. Almost visually uniform ・ Side lobes occur. (Brightness peak exists in the direction + -75 degrees away from the normal direction) Sidelobe peak brightness / normal direction brightness = 37%
【比較例4】実施例2に於いて、レンズシートの裏面に
艶消し層を介在させない物を使用した。レンズシート裏
面は、基材フィルム表面自体であり、表面の十点平均粗
さRzは0.1μm未満の平滑平面とした。その他は実
施例2と同じとした。以上の構成の面光源の性能は、光
放出面の法線方向輝度が光源側端部近傍は高輝度である
が、光源からの距離とともに急激に低下し、光源から2
cmの所では目視で暗く感じる程に輝度が低下してしま
った。[Comparative Example 4] In Example 2, an article having no matte layer on the back surface of the lens sheet was used. The back surface of the lens sheet is the surface of the base film itself, and the ten-point average roughness Rz of the surface is a smooth flat surface of less than 0.1 μm. Others were the same as in Example 2. Regarding the performance of the surface light source configured as described above, although the brightness in the normal direction of the light emitting surface is high near the end on the light source side, the brightness decreases sharply with the distance from the light source.
At a position of cm, the brightness was lowered to such an extent that it was visually dark.
【図1】本発明のエッジライト型面光源、及びそれを用
いた透過型表示装置の実施例の斜視図。FIG. 1 is a perspective view of an embodiment of an edge light type surface light source of the present invention and a transmissive display device using the same.
【図2】本発明の直下型面光源、及びそれを用いた透過
型表示装置の実施例の斜視図。FIG. 2 is a perspective view of an example of a direct type surface light source of the present invention and a transmissive display device using the same.
【図3】本発明のレンズシートの実施例の斜視図。楕円
柱型レンチキュラーレンズの場合。(A)、(C)は凸
レンズ、(B)、(D)は凹レンズの場合。FIG. 3 is a perspective view of an embodiment of a lens sheet of the present invention. For an elliptic cylinder lenticular lens. (A) and (C) are convex lenses, and (B) and (D) are concave lenses.
【図4】レンズシートの光線の挙動、特に球面収差を単
位レンズで説明した図。(A)は凸真円柱レンズの場
合、(B)は本発明の凸楕円柱レンズの場合。FIG. 4 is a diagram illustrating behavior of light rays on a lens sheet, particularly spherical aberration, with a unit lens. (A) shows a case of a convex true cylindrical lens, and (B) shows a case of a convex elliptic cylinder lens of the present invention.
【図5】レンズシートの光線の挙動、特に球面収差を単
位レンズで説明した図。(A)は凹真円柱レンズの場
合、(B)は本発明の凹楕円柱レンズの場合。FIG. 5 is a diagram illustrating behavior of light rays on a lens sheet, particularly spherical aberration, with a unit lens. (A) shows a case of a concave true cylindrical lens, and (B) shows a case of a concave elliptic cylinder lens of the present invention.
【図6】本発明のレンズシートの別の実施例の斜視図。
楕円柱型レンチキュラーレンズ2枚を、両者の軸が直行
する様に積層した場合。FIG. 6 is a perspective view of another embodiment of the lens sheet of the present invention.
When two elliptic cylinder type lenticular lenses are laminated so that their axes are perpendicular to each other.
【図7】従来技術のエッジライト型面光源の断面図。導
光板上にレンズシートなしの場合。FIG. 7 is a cross-sectional view of a conventional edge light type surface light source. When there is no lens sheet on the light guide plate.
【図8】従来技術のエッジライト型面光源の斜視図。導
光板上にレンズシートを、間に空隙を置かず、密着させ
た場合。FIG. 8 is a perspective view of a conventional edge light type surface light source. When the lens sheet is closely attached to the light guide plate without leaving a gap between them.
【図9】〔図8〕の拡大断面図。レンズシートと導光板
との界面が光学的に消滅一体化している事を示す。FIG. 9 is an enlarged sectional view of FIG. It shows that the interface between the lens sheet and the light guide plate is optically eliminated and integrated.
【図10】本発明のエッジライト型面光源の実施例の断
面図。導光板とレンズシートとの界面に、両面が微小凹
凸を有する光拡散層を挿入し、2か所(2層)の空隙を
形成した例。FIG. 10 is a sectional view of an embodiment of an edge light type surface light source of the present invention. An example in which a light diffusion layer having fine irregularities on both sides is inserted at the interface between the light guide plate and the lens sheet to form voids at two locations (two layers).
【図11】本発明のエッジライト型面光源の別の実施例
の断面図。レンズシートの裏面に直接微小凹凸を形成し
て、空隙を1層のみ有する例。FIG. 11 is a sectional view of another embodiment of the edge light type surface light source of the present invention. An example in which minute concaves and convexes are directly formed on the back surface of the lens sheet to have only one layer of voids.
【図12】導光板表面の平滑平面で全反射する光線の挙
動を示す断面図。一部空気中に電磁場がトンネル効果で
滲み出ている。FIG. 12 is a cross-sectional view showing the behavior of light rays that are totally reflected by a smooth flat surface of the light guide plate. The electromagnetic field seeps out in the air due to the tunnel effect.
【図13】導光板からトンネル効果で滲み出した光線が
レンズシート内で再び進行波となることを示す断面図。FIG. 13 is a cross-sectional view showing that a light beam oozing out from the light guide plate due to a tunnel effect becomes a traveling wave again in the lens sheet.
【図14】本発明のレンズシートに於いて、導光板から
外部へ向かって進行する光線が一部全反射され、一部透
過することを示す断面図。FIG. 14 is a cross-sectional view showing that in the lens sheet of the present invention, a light ray traveling from the light guide plate to the outside is partially totally reflected and partially transmitted.
【図15】本発明の製造方法の一例を示す断面図。〔実
施例1〕に対応する。FIG. 15 is a cross-sectional view showing an example of the manufacturing method of the present invention. This corresponds to [Example 1].
【図16】本発明〔実施例2〕のエッジライト型面光源
の特性。長軸が法線方向に向いた凸楕円柱レンチキュラ
ーレンズを用いた場合の、放出光輝度の角度分布を図示
する。FIG. 16 is a characteristic of the edge light type surface light source according to the second embodiment of the present invention. 9 illustrates an angular distribution of emission light luminance when a convex elliptic cylinder lenticular lens whose long axis is oriented in the normal direction is used.
【図17】〔比較例2〕のエッジライト型面光源の特
性。三角柱レンチキュラーレンズを用いた場合の、放出
光輝度の角度分布を図示する。FIG. 17 is a characteristic of the edge light type surface light source of [Comparative example 2]. The angle distribution of emission light brightness when a triangular prism lenticular lens is used is shown in the figure.
【図18】〔比較例3〕のエッジライト型面光源の特
性。短軸が法線方向に向いた凸楕円柱レンチキュラーレ
ンズを用いた場合の、放出光輝度の角度分布を図示す
る。FIG. 18 shows the characteristics of the edge light type surface light source of [Comparative Example 3]. The angle distribution of the emission light brightness when a convex elliptic cylinder lenticular lens whose short axis faces the normal direction is used is shown.
【図19】〔比較例3〕のエッジライト型面光源の特
性。導光板の上に光拡散層(フィルム)を2層積層した
場合の。放出光輝度の角度分布を図示する。FIG. 19 shows the characteristics of the edge light type surface light source of [Comparative Example 3]. When two light diffusion layers (films) are laminated on the light guide plate. 9 illustrates the angular distribution of emitted light brightness.
1 導光板 2 光反射層 3 光源(ユニット) 4 レンズシート 5 反射鏡 6 液晶表示装置等の透過型表示装置 7 レンズシート裏面の平滑平面 8 光等方拡散性シート(光拡散層) 9 空隙 10導光板表面の平滑平面。 11巻取りロール 12基材フィルム 13押圧ロール 14ロール状凹版 15レンズ形状の逆型 16紫外線硬化型樹脂液 17レンズ逆型内の未硬化樹脂液 18剥離ロール 19レンズ形状(レンズ単位) 20レンズシート 21Tダイ型ノズル 22液溜まり 23水銀燈 41レンズシートの突起(群) 42レンズ単位 43突起群を有する透明層 44透明基材層 100面光源 200表示装置 F 焦点 L1光源から近傍のレンズ面に直接入射し、透過して行
く光線。 L2光源から近傍のレンズ面に直接入射し、透過して行
く光線。 L3光源から近傍のレンズ面に直接入射し、透過して行
く光線。 L4光源から遠方のレンズ面に直接入射し、透過して行
く光線。 LN近軸光線。 LF近軸から離れた光線。 L1R導光板の平滑平面10での反射光。 L2R導光板の平滑平面10での反射光。 L1T導光板の平滑平面10での透過光。 L2T導光板の平滑平面10での透過光。 L1S導光板裏面の光反射層2での拡散反射光。 L2S導光板裏面の光反射層2での拡散反射光。DESCRIPTION OF SYMBOLS 1 Light guide plate 2 Light reflection layer 3 Light source (unit) 4 Lens sheet 5 Reflecting mirror 6 Transmissive display device such as liquid crystal display device 7 Smooth flat surface of lens sheet back surface 8 Light isotropic diffusive sheet (light diffusion layer) 9 Void 10 A smooth flat surface of the light guide plate. 11 Winding Roll 12 Base Film 13 Pressing Roll 14 Roll Intaglio 15 Lens Shape Reverse Type 16 UV Curable Resin Liquid 17 Uncured Resin Liquid in Lens Reverse Mold 18 Peeling Roll 19 Lens Shape (Lens Unit) 20 Lens Sheet 21 T-die type nozzle 22 Liquid pool 23 Mercury lamp 41 Lens sheet projections (group) 42 Lens unit 43 Transparent layer having projection groups 44 Transparent base material layer 100 Surface light source 200 Display device F Focus L1 Direct incidence on a nearby lens surface from a light source And then the light rays that pass through. Light rays that are directly incident on and transmitted through the lens surface in the vicinity from the L2 light source. A light ray that is directly incident on and transmitted through the lens surface in the vicinity from the L3 light source. Light rays that are directly incident on the lens surface at a distance from the L4 light source and are transmitted therethrough. LN paraxial ray. LF Rays off paraxial. Light reflected on the smooth flat surface 10 of the L1R light guide plate. Light reflected on the smooth flat surface 10 of the L2R light guide plate. Transmitted light on the smooth flat surface 10 of the L1T light guide plate. Transmitted light on the smooth flat surface 10 of the L2T light guide plate. Diffuse reflected light from the light reflecting layer 2 on the back surface of the L1S light guide plate. Diffuse reflected light from the light reflecting layer 2 on the back surface of the L2S light guide plate.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年8月26日[Submission date] August 26, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】全文[Correction target item name] Full text
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【書類名】 明細書[Document name] Statement
【発明の名称】 面光源、それを用いた表示装置、及び
それらに用いるレンズシート Title: Surface light source , display device using the same, and
Lens sheet used for them
【特許請求の範囲】[Claims]
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は面光源に関するものであ
り、液晶表示装置等の透過型表示装置のバックライト、
照明広告、交通標識等に有用なものである。本発明は又
該面光源を背面光源として用いた液晶表示装置等の透過
型表示装置も開示する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface light source, and a backlight for a transmissive display device such as a liquid crystal display device,
It is useful for lighting advertisements, traffic signs, etc. The present invention also discloses a transmissive display device such as a liquid crystal display device using the surface light source as a back light source.
【0002】[0002]
【従来の技術】液晶表示装置(LCD)のバックライト
用の面光源として、 図7のような透光性平板を導光体としたエッジライト
方式のものが知られている。このような面光源では、透
明な平行平板からなる導光体の側端面の双方又は一方か
ら光を入射させ、透光性平板内部の全反射を利用し光を
導光板の全域に遍く伝播させ、その伝播した光の一部を
導光体裏面の光散乱反射板で臨界角未満の拡散反射光と
なし、導光板表面から拡散光を放出する。(実開昭55
−162201)。 図6のような一方の面に三角プリズム型レンチキュラ
ーレンズの突起を有し、もう一方の面を平滑面としたレ
ンズシートを、の面光源の導光板表面上に突起面を上
にして重ね、レンズの光集束作用を利用して、その拡散
放射光を所望の角度範囲内に均一等方的に拡散させるこ
とができる(実開平4−107201)。このレンズシ
ートは艶消透明拡散板(艶消透明シート)と組合せて使
用する場合には、単に艶消透明拡散板のみを用いたもの
(米国特許第4729067号)よりも、光源の光エネ
ルギーを所望の限られた角度範囲内に重点的に分配し、
かつ、その角度範囲内では均一等方性の高い拡散光を得
ることはできた。2. Description of the Related Art As a surface light source for a backlight of a liquid crystal display device (LCD), an edge light type one using a transparent flat plate as a light guide as shown in FIG. 7 is known. In such a surface light source, light is made incident from both or one of the side end surfaces of the light guide body made of a transparent parallel plate, and the light is propagated uniformly throughout the light guide plate by utilizing the total internal reflection of the transparent plate. A part of the propagated light is made into a diffuse reflection light having a critical angle less than a critical angle by a light scattering reflection plate on the back surface of the light guide, and the diffuse light is emitted from the surface of the light guide plate. (Actual development 55
-162201). As shown in FIG. 6, a lens sheet having a triangular prism type lenticular lens projection on one surface and a smooth surface on the other surface is stacked on the light guide plate surface of the surface light source with the projection surface facing upward. By utilizing the light focusing effect of the lens, the diffused radiation can be uniformly and isotropically diffused within a desired angular range (actual 4-107201). When this lens sheet is used in combination with a matte transparent diffusion plate (matte transparent sheet), the light energy of the light source is higher than that using only the matte transparent diffusion plate (US Pat. No. 4,729,067). Focused distribution within the desired limited angle range,
In addition, it was possible to obtain diffused light with high uniform isotropicity within the angle range.
【0003】[0003]
【発明が解決しようとする課題】しかし、前述した従来
の技術では、導光体裏面に光散乱板を設けただけの
では、放出光は導光体表面の法線方向に対して60度の
角度をピークに比較的鋭い分布をすることになり、最も
光を必要とする法線方向の輝度が不足し、受容の少ない
斜め横方向に光エネルギーが散逸してしまう。また、従
来の技術では導光体の光放出面上の三角プリズム型レ
ンチキュラーレンズシートが放出光を屈折集束さること
により、光放出面の法線方向をピークとして30°〜6
0°の角度内に放出される光エネルギー比率が高くなる
が、一方で図17の様に法線方向から離れた方向(斜め
方向)にも放出光のピーク(サイドローブ)が発生する
という欠点があった。此の為、依然として観察者に寄与
しない損失光が残存する。又このサイドローブは周囲に
不要なノイズ光を輻射することにもなり不都合であっ
た。更に、放出面内での輝度分布についても予想に反し
て、導光板側端部から2〜4cm迄は高輝度であるが、
それ以上遠ざかると輝度が漸次低下し、光源と反対側の
端部では目立って暗くなると云う問題も生じることがわ
かった。However, in the above-mentioned conventional technique, if only the light-scattering plate is provided on the back surface of the light guide, the emitted light is 60 degrees with respect to the direction normal to the surface of the light guide. The distribution has a relatively sharp distribution with the angle at the peak, the brightness in the normal direction, which requires the most light, is insufficient, and the light energy is dissipated in the oblique lateral direction where there is little acceptance. In the prior art, the triangular prism type lenticular lens sheet on the light emitting surface of the light guide refracts and focuses the emitted light, so that the normal direction of the light emitting surface has a peak at 30 ° to 6 °.
Although the ratio of the light energy emitted within the angle of 0 ° becomes high, on the other hand, as shown in FIG. 17, the peak (side lobe) of the emitted light also occurs in the direction (oblique direction) away from the normal direction. was there. For this reason, there remains loss light that does not contribute to the observer. Further, this side lobe is also inconvenient because it radiates unnecessary noise light to the surroundings. Further, contrary to the expectation about the brightness distribution in the emission surface, the brightness is high from 2 to 4 cm from the end portion on the light guide plate side,
It was found that when the distance from the light source is further increased, the brightness gradually decreases, and there is a problem that the end portion on the side opposite to the light source becomes noticeably dark.
【0004】これらの欠点を改良すべく、 特開平1−245220号のように、導光体裏面の光
散乱層を網点等のパターン状とし、且つそのパターンの
面積を光源に近づく程小さく、光源から遠ざかる程大き
くさせて導光板面内の輝度分布を補正、均一化させる試
み。 特開平3−9306号のように導光板の側端部の2箇
所以上に光源を配置して導光板面内の輝度分布を補正、
均一化させる試み。 がなされたが、いずれも完全に輝度を均一化することは
難しく、又では光放出面側から、光散乱層を網点が目
立ってしまう欠点があり、又では光源のスペース、消
費電力とも2倍以上となる欠点があった。In order to improve these drawbacks, as in Japanese Patent Laid-Open No. 1-245220, the light-scattering layer on the back surface of the light guide has a pattern of halftone dots or the like, and the area of the pattern is small as it approaches the light source. Attempt to correct and uniformize the brightness distribution within the light guide plate surface by increasing the distance from the light source. As in Japanese Patent Laid-Open No. 3-9306, light sources are arranged at two or more positions on the side edge of the light guide plate to correct the luminance distribution in the plane of the light guide plate.
Attempt to homogenize. However, in both cases, it is difficult to completely uniformize the brightness, and there is a drawback that halftone dots are conspicuous in the light scattering layer from the light emitting surface side. It had the drawback of being more than doubled.
【0005】本発明の目的は、前述の課題を解決し、液
晶表示装置のバックライト用等の用途のレンズシート及
びそのレンズシートを用いた面光源を提供する事であ
り、その際消費電力や発熱量を増大させることなく、所
望の角度範囲内のみに均一且つ高輝度発光をし、面内で
の場所による輝度のバラツキもない面発光を得ることで
ある。An object of the present invention is to solve the above-mentioned problems and to provide a lens sheet for use as a backlight of a liquid crystal display device and a surface light source using the lens sheet. The object is to obtain uniform surface light emission with high brightness only within a desired angle range without increasing the amount of heat generation, and to obtain surface light emission without variation in brightness depending on the position in the surface.
【0006】[0006]
【課題を解決するための手段】上記の目的を達成するた
めに本発明は、In order to achieve the above object, the present invention provides
【0007】本発明のレンズシート4は、楕円柱レンチ
キュラーレンズ、又は双曲線柱レンチキュラーレンズで
ある。先ず、楕円柱レンチキュラーレンズを例に説明す
る。即ち、図3(A)のように楕円柱状の凸単位レンズ
42をその稜線方向を平行にして隣接して配列させてな
る柱状レンズ群(所謂レンチキュラーレンズ)であり、
レンズシート4の法線方向に楕円の長軸方向が向いてい
る。そして楕円の偏平度としては、楕円の式を、 X2/a2+Y2/b2=1 式(1) 但し、aは短軸長、bは長軸長で、a<b とした時、
長軸/短軸=b/a=は、 1.1×n/(n2−1) 1/2≧b/a≧0.9×n/(n2−1)1/2 −−−−−式(2) とするのが好ましい。楕円をこのように設計する理由と
しては、レンチキュラーレンズの球面収差をなくし、集
光時の損失を最小にするためである。即ち、図4
(A)、図5(A)のように真円柱レンチキュラーレン
ズを用いた場合、レンズの集束作用を利用して放出光を
所定の拡散角θ内に集束させようとしても、実際に焦点
Fに集束する光はレンズ中心付近の近軸光線LNのみで
あり、その他の光線LFは焦点をそれて散逸光となって
しまう(所謂球面収差)。この際焦点をずれた光線LF
は、所定の各θ内から散逸してしまい、光の損失及び不
要なノイズ光となってしまう。The lens sheet 4 of the present invention is an elliptic cylinder lenticular lens or a hyperbolic cylinder lenticular lens. First, an elliptic cylinder lenticular lens will be described as an example. That is, as shown in FIG. 3A, it is a columnar lens group (so-called lenticular lens) in which convex unit lenses 42 having an elliptic columnar shape are arranged adjacent to each other with their ridge directions parallel.
The major axis direction of the ellipse faces the normal direction of the lens sheet 4. As the flatness of the ellipse, the ellipse formula is expressed as follows: X 2 / a 2 + Y 2 / b 2 = 1 (1) where a is the short axis length, b is the long axis length, and a <b ,
The major axis / minor axis = b / a = is 1.1 × n / (n 2 −1) 1/2 ≧ b / a ≧ 0 . 9 × n / (n 2 −1) 1/2 −−−− Formula (2) is preferable. The reason for designing the ellipse in this way is to eliminate the spherical aberration of the lenticular lens and to minimize the loss during focusing. That is, FIG.
5A and 5A, when a true cylindrical lenticular lens is used, even if the emitted light is focused within a predetermined diffusion angle θ by utilizing the focusing function of the lens, it is actually focused on the focal point F. The focused light is only the paraxial ray LN near the center of the lens, and the other rays LF defocus and become dissipated light (so-called spherical aberration). At this time, the light beam LF defocused
Will be dissipated from within each predetermined θ, resulting in light loss and unnecessary noise light.
【0008】レンチキュラーレンズの球面収差を最小に
する為の幾何光学的条件は、レンチキュラーレンズの稜
線に直交する断面(主切断面)の楕円の偏平率eとレン
ズ材料の屈折率nとの間に、 n=1/e 式(3) の関係が成り立てば良い。また偏平率eは、該楕円の長
軸の長さ2bと短軸の長さ2aを使って、 e2=(b2−a2)/b2 式(4) と書ける。よって、式(1)及び式(2)より、 長軸/短軸=2b/2a=b/a=n/(n2−1)1/2 式(5) 例えば、アクリル樹脂で屈折率=1.5の物質を使用し
たとすると、式(5)より、 長軸/短軸=1.34 の時球面収差はなくなる。但し実際には、導光板裏面の
光拡散反射層2、導光板とレンズシートとの間の光拡散
層8等による光拡散、屈折等により方向がそれる光線が
一部生じる為、所定の拡散角θから逸脱する光エネルギ
ーは零とはならないが、最小には出来る。The geometrical optical condition for minimizing the spherical aberration of the lenticular lens is between the flatness e of the ellipse of the cross section (main cutting plane) orthogonal to the ridge of the lenticular lens and the refractive index n of the lens material. , N = 1 / e Equation (3) should be satisfied. The flatness e can be written as e 2 = (b 2 −a 2 ) / b 2 formula (4) using the length 2b of the major axis and the length 2a of the minor axis of the ellipse. Therefore, from the formulas (1) and (2), the major axis / minor axis = 2b / 2a = b / a = n / (n 2 −1) 1/2 formula (5) For example, with an acrylic resin, the refractive index = If the substance of 1.5 is used, the spherical aberration disappears from the formula (5) when the major axis / minor axis = 1.34. However, in reality, a part of the light rays whose direction is deviated due to light diffusion and refraction due to the light diffusion / reflection layer 2 on the back surface of the light guide plate, the light diffusion layer 8 between the light guide plate and the lens sheet, etc. The light energy deviating from the angle θ is not zero, but can be minimized.
【0009】又式(5)から多少はずれても、その差が
少ない間は式(5)の場合にほぼ近い特性を得ることが
可能である。しかし、有る程度以上式(5)からはずれ
ると輝度の角度分布ピークが、球面収差の為に光放出面
の法線方向を中心とした平坦な山となり、且つ平坦な頂
上の両端部にサイドローブ(側面のピーク)が出来てし
まい。本発明の目的に適さなくなる。検討の結果、式
(5)の+−20%以内であればサイドローブを生ぜ
ず、一応単なる光等方拡散性フィルムのみの場合に比
べ、良好な光エネルギー利用効率、シャープな拡散角、
高い法線方向輝度を得ることができると判明した。但
し、実用上より好ましくは、式(5)の+−10%以内
の偏平率にするとよい。Even if it deviates from the expression (5) to some extent, it is possible to obtain characteristics close to those of the expression (5) while the difference is small. However, if it deviates from the expression (5) more than a certain degree, the peak of the angular distribution of luminance becomes a flat mountain centered in the normal direction of the light emitting surface due to spherical aberration, and side lobes are formed at both ends of the flat top. (Side peak) is made. It becomes unsuitable for the purpose of the present invention. As a result of the examination, if it is within + -20% of the formula (5), side lobes do not occur, and good light energy utilization efficiency, sharp diffusion angle, and
It was found that a high normal direction luminance can be obtained. However, from the practical viewpoint, it is preferable that the flatness ratio is within + -10% of the formula (5).
【0010】尚この単位レンズは、図3(A)、(C)
の様な凸レンズでも、図3(B)、(D)の様な凹レン
ズでも良い。This unit lens is shown in FIGS. 3 (A) and 3 (C).
A convex lens as shown in FIG. 3B or a concave lens as shown in FIGS. 3B and 3D may be used.
【0011】該楕円柱単位レンズの光線の挙動は、第4
図(B)、図5(B)に示した通りである。光軸に平行
に入射する光線は、球面収差を生じることなく、焦点F
に収束し、而る後所定の拡散角θで発散する。該拡散角
θは、球面収差が無視でき、導光板の平滑表面10とレ
ンズシート4との間の全反射によって、導光板の法線か
ら大きくはずれた光線は、導光板内にフィードバックさ
れ、導光板裏面の光反射層の拡散反射とによって導光板
の法線方向近傍の光線、即ち光軸にほぼ平行な光線が主
にレンズに入射するとした場合、概略、 θ=2ta
n−1(p/2f) 式(6) となる。ただし、pは単位レンズの繰り返し周期、fは
焦点距離である。図4と図5の比較からわかるように焦
点にできる位置は凹レンズと凸レンズとで変わる。即
ち、図4(B)のように凸レンズの場合結像は実像とな
り焦点はレンズ外部(向こう側)にできる。又図5
(B)のように凹レンズの場合は、結像は虚像となり焦
点はレンズ内部(手前側)にできる。但しいずれの場合
に於いても、本発明の用途の場合、焦点距離はレンズ表
面(即ち面光源表面)から観察者までの距離に比べて充
分小さく取る為(通常10mm以下)、観察者に対する
効果としては凹、凸両レンズとも大差はない。The behavior of light rays of the elliptic cylinder unit lens is as follows:
This is as shown in FIGS. 5B and 5B. A ray incident parallel to the optical axis does not cause spherical aberration and has a focal point F.
And then diverge at a predetermined diffusion angle θ. With respect to the divergence angle θ, spherical aberration can be neglected, and a light ray largely deviated from the normal line of the light guide plate is fed back into the light guide plate due to total reflection between the smooth surface 10 of the light guide plate and the lens sheet 4. If light rays in the vicinity of the normal direction of the light guide plate, that is, light rays substantially parallel to the optical axis mainly enter the lens due to the diffuse reflection of the light reflection layer on the back surface of the light plate, roughly, θ = 2ta
n −1 (p / 2f) Expression (6) is obtained. However, p is the repeating period of the unit lens, and f is the focal length. As can be seen from the comparison between FIG. 4 and FIG. 5, the focusable position varies depending on the concave lens and the convex lens. That is, in the case of a convex lens as shown in FIG. 4B, the image formation becomes a real image and the focus can be on the outside of the lens (on the other side). See also FIG.
In the case of the concave lens as in (B), the image is formed as a virtual image and the focus can be inside the lens (front side). However, in any case, in the case of the use of the present invention, the focal length is set sufficiently smaller than the distance from the lens surface (that is, the surface of the surface light source) to the observer (usually 10 mm or less). There is no big difference between the concave and convex lenses.
【0012】尚、以上の説明では専ら楕円柱型レンチキ
ュラーレンズについて述べたが、単位レンズ断面が式
(6)、 X2/a2−Y2/b2=1 式(6) (但し、ここで、b/aは漸近線の傾きで、 a<
b、)で表現される双曲線柱型レンチキュラーレンズで
あっても同様な効果が期待できる。a、bの最適範囲も
楕円柱の場合と同様である。In the above description, the elliptic cylinder type lenticular lens was exclusively described, but the unit lens cross section is expressed by the formula (6), X 2 / a 2 -Y 2 / b 2 = 1 formula (6) (where Where b / a is the slope of the asymptote, and a <
Similar effects can be expected even with a hyperbolic columnar lenticular lens represented by b,). The optimum ranges of a and b are the same as in the case of an elliptic cylinder.
【0013】これらレンズシートは1枚構成で用いるこ
ともできるが、柱状レンズを用いてX、Y2方向(上下
方向、左右方向等)の光拡散角を制御する為には図6の
ように2枚のレンズシートを、その長軸が直交するよう
に積層しても良い。この場合レンズ面の向きは図6のよ
うに2枚とも同じ向きにするのが、光反射層2から飛来
する光線のうち、比較的法線方向に近い成分の透過率の
高さと、比較的法線方向から傾いた光線の導光板へのフ
ィードバック率の高さとの均衡上最も良好であるが、勿
論各レンズシートのレンズが対抗して向き合う(レンズ
面は2枚のレンズシートの間に挾まれる)様に積層する
こともできる。又該レンズシートは図3(A)、(C)
のように透光性基材を一体成形して得ても良いし、又図
3(B)、(D)のように透光性平板(又はシート)4
4の上に単位レンズ42を形成したものでも良い。Although these lens sheets can be used as a single sheet, in order to control the light diffusion angle in the X, Y2 directions (vertical direction, horizontal direction, etc.) by using a columnar lens, as shown in FIG. The lens sheets may be laminated so that their major axes are orthogonal to each other. In this case, the lens surfaces should be oriented in the same direction as shown in FIG. 6 because of the high transmittance of the components of light rays coming from the light reflecting layer 2 which are relatively close to the normal direction, It is the best in terms of balance with the high feedback rate of the light beam inclined from the normal direction to the light guide plate, but of course the lenses of each lens sheet face each other (the lens surface is sandwiched between two lens sheets). Can be laminated. Also, the lens sheet is shown in FIGS.
It may be obtained by integrally molding a translucent substrate as shown in Fig. 3, or as shown in Figs. 3 (B) and 3 (D), a translucent flat plate (or sheet) 4
The unit lens 42 may be formed on the surface 4.
【0014】該レンズシート4は透光性基材から形成さ
れる。此処で透光性基材としては、ポリメタアクリル酸
メチル,ポリアクリル酸メチル等のアクリル酸エステル
又はメタアクリル酸エステルの単独若しくは共重合体,
ポリエチレンテレフタレート,ポリブチレンテレフタレ
ート等のポリエステル,ポリカーボネート,ポリスチレ
ン、ポリメチルペンテン等熱可塑性樹脂、或いは紫外線
又は電子線で架橋した、多官能のウレタンアクリレー
ト、ポリエステルアクリレート等のアクリレート、不飽
和ポリエステル等透明な樹脂,透明な硝子等、透明なセ
ラミックス等が用いられる。The lens sheet 4 is formed of a transparent base material. Here, as the translucent base material, a homopolymer or a copolymer of acrylic acid ester or methacrylic acid ester such as polymethyl methacrylate, polymethyl acrylate, and the like,
Polyesters such as polyethylene terephthalate and polybutylene terephthalate, thermoplastic resins such as polycarbonate, polystyrene and polymethylpentene, or transparent resins such as polyfunctional urethane acrylates, polyester acrylates and other acrylates, unsaturated polyesters cross-linked by ultraviolet rays or electron beams. , Transparent glass, transparent ceramics, etc. are used.
【0015】この透光性基材は、レンズシートとして用
いる場合には、通常総厚みが20〜1000μm程度と
する。When used as a lens sheet, this translucent substrate usually has a total thickness of about 20 to 1000 μm.
【0016】レンズ形状を形成する方法としては、例え
ば、公知の熱プレス法(特開昭56−157310号公
報記載)、紫外線硬化性の熱可塑性樹脂フィルムにロー
ルエンボス版によってエンボス加工したのちに、紫外線
を照射してそのフィルムを硬化させる方法(特開昭61
−156273号公報記載)、レンズ形状を刻設したロ
ール凹版上に紫外線又は電子線硬化性樹脂液を塗布し凹
部に充填後、樹脂液を介してロール凹版上に透明基材フ
イルムを被覆したまま紫外線又は電子線を照射し硬化さ
せた樹脂と、それに接着した基材フイルムとをロール凹
版から離型し、ロール凹版のレンズ形状を硬化樹脂層に
賦型する方法(特開平3−223883号、米国特許第
4576850号等)等を用いる。該方法の場合、成形
したレンズシートを巻き取って加工する都合上、加工時
の亀裂発生等を防止する為、紫外線又は電子線硬化性樹
脂としては、比較的可撓性、柔軟性のあるものを選定す
る。As a method for forming a lens shape, for example, a publicly known hot pressing method (described in JP-A-56-157310), an emulsifying process using a roll embossing plate on an ultraviolet-curable thermoplastic resin film, A method of irradiating ultraviolet rays to cure the film (JP-A-61-61
No. 156273), an ultraviolet or electron beam curable resin liquid is applied on a roll intaglio engraved with a lens shape and filled in the recess, and then the roll intaglio is still coated with the transparent base film through the resin liquid. A method in which a resin cured by irradiation with ultraviolet rays or an electron beam and a substrate film adhered to the resin are released from the roll intaglio, and the lens shape of the roll intaglio is imprinted on the cured resin layer (JP-A-3-223883, US Pat. No. 4,576,850) and the like are used. In the case of the method, the ultraviolet ray or electron beam curable resin is relatively flexible and flexible in order to prevent the occurrence of cracks during processing, for the convenience of winding and processing the molded lens sheet. Is selected.
【0017】透光性基材に要求される透光性は、各用途
の使用に支障のない程度に、拡散光を充分透過するよう
に選定する必要があり、無色透明が一番望ましいが、用
途によっては着色透明又は艶消半透明であってもよい。
ここで、艶消透明とは、透過光を半立体角内のあらゆる
方向にほぼ均一等方的に拡散透過させる性質をいい、光
等方拡散性と同義語に用いられる。つまり、艶消透明と
は、透明性基材の表面の法線方向とのなす角をθとした
場合に、平行光束を裏面から入射させたとき(入射角i
=0°)における透過光強度の角度分布Io(θ)がc
os分布 Io(θ)=Io mpcosθ、−90°≦θ≦90° 式(8) θは法線Nとのなす角、Io mpは法線方向の透過光強
度又はそれに類似する分布となることを云う。なお、I
i(θ)の定義については後述する。The translucency required for the translucent base material must be selected so that diffused light can be sufficiently transmitted to the extent that it does not hinder the use of each application, and colorless and transparent is most preferable. Depending on the application, it may be colored transparent or matt translucent.
Here, the matte transparent has a property of diffusing and transmitting the transmitted light almost uniformly and isotropically in all directions within a semi-solid angle, and is synonymous with light isotropic diffusivity. That is, the term "matte transparent" means that when a parallel light flux is incident from the rear surface (incident angle i
= 0 °), the angular distribution I o (θ) of the transmitted light intensity is c
os distribution I o (θ) = I o mp cos θ, −90 ° ≦ θ ≦ 90 ° Equation (8) θ is the angle formed by the normal line N, I o mp is the transmitted light intensity in the normal direction or is similar thereto. It is said to be distributed. Note that I
The definition of i (θ) will be described later.
【0018】該レンズシートの裏面(レンズ面の反対
面)には、微小凹凸(微小突起群)を設けることが好ま
しい。此の理由は、請求項1〜請求項4のような所謂エ
ッジライト型面光源の場合と、請求項5〜請求項6のよ
うな所謂直下型面光源との場合で異なる。エッジライト
型の場合は後述するように、光放出面内の輝度分布を均
一化する為であり、一方直下型の場合は所定の光拡散角
内の輝度の角度分布の均一化が目的である(この場合
は、単なる光拡散効果)。レンズシート裏面に形成する
高さが光源光の波長以上、100μm以下の微小凹凸4
1は、図14のように一体成形レンズシート4の裏面に
熱プレスによるエンボス加工、サンドブラスト加工等で
直接形成することも出来るし、其の他図11のようにレ
ンズシート4の平坦な裏面に突起を有する透光性材料層
を形成することによっても出来る。具体的には、炭酸カ
ルシウム、シリカ、アクリル樹脂等の透明な微粒子を透
明バインダーに分散させた塗料を塗工して、塗膜の表面
に微粒子の凹凸を現出させる方法、或いは前記の特開平
3−223883号、米国特許第4576850号等に
開示されるロール凹版上で紫外線又は電子線硬化性樹脂
液を表面が艶消し微小凹凸となる様に成形する方法等を
用いる。It is preferable to provide minute irregularities (a group of minute protrusions) on the back surface of the lens sheet (the surface opposite to the lens surface). The reason is different between the so-called edge light type surface light source as in claims 1 to 4 and the so-called direct type surface light source as in claims 5 to 6. In the case of the edge light type, as will be described later, it is for uniforming the luminance distribution in the light emitting surface, while in the case of the direct type, the purpose is to make the angular distribution of luminance within a predetermined light diffusion angle uniform. (In this case, just the light diffusion effect). Minute irregularities 4 whose height formed on the back surface of the lens sheet is not less than the wavelength of the light source light and not more than 100 μm
No. 1 can be directly formed on the back surface of the integrally molded lens sheet 4 as shown in FIG. 14 by embossing by heat pressing, sandblasting, etc., or else on the flat back surface of the lens sheet 4 as shown in FIG. It is also possible to form a light-transmitting material layer having protrusions. Specifically, a method in which transparent fine particles of calcium carbonate, silica, acrylic resin, or the like are dispersed in a transparent binder to coat the surface of the coating film to form irregularities of the fine particles, or the method described in JP A method of molding an ultraviolet or electron beam curable resin liquid on a roll intaglio plate disclosed in, for example, US Pat. No. 3,223,883, US Pat.
【0019】該突起41は、図11のように導光板1の
平滑表面10とレンズシート4との間に光源光の波長以
上の間隙9(寸法ΔX)を少なくとも部分的に形成させ
る事が目的である。後述するように間隙ΔXが光源光の
波長未満だと、導光板1の平滑平面10での光全反射が
充分に起きなくなり、又100μm超過だと突起の凹凸
形状が目立ってきて不都合である。The projection 41 is intended to at least partially form a gap 9 (dimension ΔX) equal to or longer than the wavelength of the light source light between the smooth surface 10 of the light guide plate 1 and the lens sheet 4 as shown in FIG. Is. As will be described later, when the gap ΔX is less than the wavelength of the light from the light source, total reflection of light on the smooth flat surface 10 of the light guide plate 1 does not sufficiently occur, and when it exceeds 100 μm, the uneven shape of the protrusions becomes conspicuous, which is inconvenient.
【0020】此の目的が達せられれば該突起41はいか
なる凹凸形状でも良いが、所望の拡散角内での均一な輝
度の角度分布と光源面内での均一な輝度分布とを得る点
から、最も良好な態様は、図3(C)、(D)の様にレ
ンズシート4の裏面にランダムな凹凸形状(例えば砂目
模様、梨地模様等)を全面に形成したものである。此の
様にすると、図11に示すようにレンズシート4の裏面
から入射した光L1、L2S等は該突起群41が光拡散
層としても作用して光を等方的に拡散する為、別途艶消
透明シートを介在させることなく均一な角度分布がえら
れ、又網点状のパターンが目立つこともなく良好であ
る。The projection 41 may have any uneven shape as long as this purpose is achieved, but from the viewpoint of obtaining a uniform brightness angular distribution within a desired diffusion angle and a uniform brightness distribution within a light source surface, In the best mode, as shown in FIGS. 3C and 3D, a random uneven shape (for example, a grain pattern, a satin pattern, etc.) is formed on the entire back surface of the lens sheet 4. In this way, as shown in FIG. 11, the light L1, L2S, etc. incident from the back surface of the lens sheet 4 is isotropically diffused by the projection group 41 also acting as a light diffusion layer. A uniform angle distribution can be obtained without interposing a matte transparent sheet, and a dot pattern is not conspicuous, which is good.
【0021】勿論この他、図10の如く艶消し透明性と
表面の波長以上、100μm以下の突起群41とを有す
る光等方拡散性シート8を、レンズシート4と導光板の
平滑平面10との間に介在させる事も出来る。但し、こ
の場合は光が拡散する界面が複数(平滑平面10光等方
拡散性シート8/、光等方拡散性シート8/レンズシー
ト4の裏面)になるため、法線方向近傍に向かう有効な
光エネルギーの透過率が最大になり、且つ法線方向から
大きく離れた(斜め〜光放出面の接線方向)光源として
無駄になる光エネルギーの反射率も最大となり(この反
射光は、図11でわかるように、別の場所の光反射層2
に送られ、そこで再利用される。)光エネルギー利用効
率が最大となり、同時に全光放出面内での輝度分布も最
も均一となる。In addition to this, of course, as shown in FIG. 10, a light isotropic diffusive sheet 8 having a matt transparency and a group of protrusions 41 having a surface wavelength of 100 μm or less, a lens sheet 4 and a smooth surface 10 of the light guide plate. You can also intervene between. However, in this case, since there are a plurality of interfaces for diffusing light (smooth flat surface 10 light isotropic diffusing sheet 8 /, light isotropic diffusing sheet 8 / rear surface of lens sheet 4), it is effective to move in the vicinity of the normal direction. The transmittance of light energy is maximized, and the reflectance of light energy that is wasted as a light source far from the normal direction (oblique to the tangential direction of the light emission surface) is also maximized (this reflected light is As you can see, the light reflection layer 2 in another place
Sent to and reused there. ) The light energy utilization efficiency is maximized, and at the same time, the brightness distribution in the entire light emission surface is also most uniform.
【0022】又、図14の如く、微小凹凸41は、網点
等の互いに隔たった点状パターンが平面内に分布配列し
たものを用いる事もできる。但し、この様にするとパタ
ーン41が目立つ為、艶消し剤をレンズシート4に分散
させる等の工夫が必要となる。Further, as shown in FIG. 14, the minute concavo-convex pattern 41 may be a pattern in which dot-like patterns such as halftone dots are arranged in a plane in a distributed manner. However, in this case, the pattern 41 is conspicuous, and it is necessary to devise a method of dispersing the matting agent in the lens sheet 4.
【0023】本発明の面光源は図10、図11の断面
図、及び図1、図2の斜視図で示される構成となってい
る。導光板1、その側端部の少なくとも1箇所に隣接し
て設置された線状又は点状光源3、導光板の裏面の光反
射層2、導光板の光反射層とは反対面に設置されたレン
ズシート4、とを最低限の構成となすものである。通常
これらに、光源光反射鏡5、全体を収納し、光放出面を
窓とした収納筺体(図示せず)、電源(図示せず)等も
付随する。The surface light source of the present invention has a structure shown in the sectional views of FIGS. 10 and 11 and the perspective views of FIGS. The light guide plate 1, the linear or point light source 3 installed adjacent to at least one of the side end portions thereof, the light reflection layer 2 on the back surface of the light guide plate, and the surface opposite to the light reflection layer of the light guide plate. The lens sheet 4 has a minimum configuration. Usually, the light source light reflecting mirror 5, the entire housing, a housing (not shown) having a light emitting surface as a window, a power source (not shown), etc. are also attached to these.
【0024】導光板1の光反射層の反対面10は平面で
あり、表面粗さ(JIS−B−0601の十点平均粗さ
Rz等で計測される)は、光源光の波長以下に仕上げ
る。通常光源は可視光線であり、その波長は0.4〜
0.8μmであるから、表面粗さは0.4μm以下とす
る。この程度の粗さに仕上げる方法としては公知の手
法、例えば鏡面板での熱プレス、鏡面性の形を用いた射
出成形、注型(キャステイング)成形、光学レンズ等で
行われている精密研磨等を用いれば良い。The opposite surface 10 of the light reflecting layer of the light guide plate 1 is a flat surface, and the surface roughness (measured by the ten-point average roughness R z of JIS-B-0601) is not more than the wavelength of the light source. Finish. Usually, the light source is visible light, and its wavelength is 0.4 ~
Since it is 0.8 μm, the surface roughness is 0.4 μm or less. Known methods for finishing to this degree of roughness, such as heat pressing with a mirror surface plate, injection molding using a mirror surface shape, casting (casting) molding, precision polishing performed with optical lenses, etc. Should be used.
【0025】導光板1の材料としては、前記のレンズシ
ートの材料と同様の透光性材料の中から選択する。通常
は、アクリル又はポリカーボネートの樹脂が用いられ
る。導光板の厚みは、通常1〜10mm程度のものが用
いられる。The material of the light guide plate 1 is selected from the same translucent materials as the material of the lens sheet. Usually, acrylic or polycarbonate resin is used. The thickness of the light guide plate is usually about 1 to 10 mm.
【0026】光源3としては、螢光燈等の線光源が全面
均一の輝度を得る上で好ましいが、白熱電球等の点光源
を用いる事も可能である。該光源3は図示した様に導光
板の側端部の外に隔離して設ける以外に、導光板1の側
端部を一部切り欠いて、一部又は全部を導光板の中に埋
設する事も可能である。高輝度と輝度の面内での均一性
向上の点から、光源3を導光板1のもう片方の側端部に
も設置する事もできる。光源光反射鏡5としては公知の
もの、例えば放物面柱、双曲線柱、楕円柱等の形状をし
た板の内面に金属蒸着をしたものが用いられる。As the light source 3, a linear light source such as a fluorescent lamp is preferable in order to obtain uniform brightness over the entire surface, but a point light source such as an incandescent lamp can also be used. The light source 3 is provided outside the side end portion of the light guide plate as shown in the figure, and the side end portion of the light guide plate 1 is partially cut away so that a part or the whole is embedded in the light guide plate. Things are possible. The light source 3 can also be installed at the other side end of the light guide plate 1 from the viewpoint of high brightness and uniformity of brightness in the plane. As the light source light reflecting mirror 5, a well-known one is used, for example, a plate having a shape of a parabolic column, a hyperbolic column, an elliptic column, or the like, on the inner surface of which metal vapor deposition is performed.
【0027】エッジライト型面光源の場合、導光板の平
滑平面10上には、前記のレンズシート4を積層する。
その際図10、図11のようにレンズシート4のレンズ
面を外側(平面10の反対面)に、微小凹凸41が内側
(平面10側)を向くようにして載せることにより、レ
ンズシート4と導光板1の平滑面10との間に、光源光
の波長λ以上の空隙9が少なくとも一部分はできるよう
にする。空隙部分9の面積比率R即ち、 R=(波長λ以上の空隙のある部分の面積/導光板全表
面積)×100% は、要求される面内での輝度の均一性、光エネルギーの
利用効率、導光板の寸法等により決定されるが、通常
は、比率Rは80%以上、より好ましくは90%以上必
要である。In the case of an edge light type surface light source, the lens sheet 4 is laminated on the smooth flat surface 10 of the light guide plate.
At that time, as shown in FIGS. 10 and 11, the lens surface of the lens sheet 4 is placed on the outside (opposite surface of the flat surface 10) so that the minute irregularities 41 face inward (on the flat surface 10 side). At least a part of the gap 9 having a wavelength λ of the light of the light source or more is formed between the light guide plate 1 and the smooth surface 10. The area ratio R of the void portion 9, that is, R = (area of the void portion having a wavelength of λ or more / total surface area of the light guide plate) × 100% is the required uniformity of brightness in the plane and the utilization efficiency of light energy. Although it is determined by the dimensions of the light guide plate, the ratio R is usually required to be 80% or more, and more preferably 90% or more.
【0028】この理由としては、実験の結果、図9の様
な、ともに表面粗さが光の波長以下の平滑な導光板表面
10とレンズシートの表面41とを密着させた場合、線
光源3からの入力光のうち大部分が、光源側の側端部か
ら距離yの所で全反射することなく放出され、yより遠
い所では急激に輝度が低下して暗くなることが判明し
た。そして、発光部の長さyと導光板の光伝播方向の全
長Yに対する比率、(y/Y)×100=10〜20%
である事が判明した。よって、光源から導光板平面10
に入射する光エネルギー量を全長さYに均等に分配する
為には、平面10への入射光のうち10〜20%だは透
過させ、残り90〜80%を全反射させる必要がある。
概ね、 (透過光量/全反射光量)=(波長λ以上の空隙のある部分の面積/導光板全表 面積)=R 式(9) で近似されることから、Rは80〜90%以上必要とな
る事が判明した。The reason for this is that as a result of the experiment, when the surface 10 of the lens sheet and the surface 10 of the light guide plate, both of which have a surface roughness equal to or less than the wavelength of light as shown in FIG. It has been found that most of the input light from Eq. 1 is emitted from the side end on the light source side at a distance y without being totally reflected, and the brightness is sharply reduced and dark at a position far from y. The ratio of the length y of the light emitting portion to the total length Y of the light guide plate in the light propagation direction, (y / Y) × 100 = 10 to 20%
It turned out to be Therefore, from the light source to the light guide plate plane 10
In order to evenly distribute the amount of light energy incident on the total length Y, it is necessary to transmit 10% to 20% of the incident light on the plane 10 and totally reflect the remaining 90% to 80%.
Generally, (amount of transmitted light / amount of total reflected light) = (area of void portion having wavelength λ or more / total surface area of light guide plate) = R Since it is approximated by the formula (9), R is required to be 80 to 90% or more. It turned out that
【0029】レンズシート4と導光板1との間に光源光
の波長以上の空隙を形成する方法としては、レンズシー
ト4を、そのレンズ面42と突起群41の向きを図1
0、図11とは反転させて置くことも出来る(図示せ
ず)。但しこの場合は、一旦レンズ面42で所望の角度
内に集束された光が、再び東邦的に発散してしまう為、
光の拡散角を最適値である法線を中心とした30度〜6
0度内に制御することが難しい。As a method of forming an air gap having a wavelength equal to or longer than the light source light between the lens sheet 4 and the light guide plate 1, the lens sheet 4 is arranged such that the lens surface 42 and the projection group 41 are oriented as shown in FIG.
0, it is also possible to invert it from FIG. 11 (not shown). However, in this case, the light once focused within the desired angle on the lens surface 42 diverges in a eastern fashion again,
30 degrees to 6 around the normal, which is the optimum value for the light diffusion angle
It is difficult to control within 0 degrees.
【0030】光反射層2は、光を拡散反射させる性能を
持つ層であって、以下のように構成することができる。 導光板層の片面に、高隠蔽性かつ白色度の高い顔
料、例えば、二酸化チタン、アルミニウム等の粉末を分
散させた白色層を塗装などによって形成する。 サンドブライト加工,エンボス加工等によって艶消
微細凹凸を形成した導光板の凹凸模様面に、更に、アル
ミニウム,クロム,銀等のような金属をメッキ又は蒸着
等して、金属薄膜層を形成する。 隠蔽性が低く単にマット面を塗布で形成した白色層
に、金属薄膜層を形成する。 網点状の白色層に形成し、光源から遠ざかるに従っ
て面積率を増やして、光源の光量が減衰するのを補正す
るようにしてもよい。The light reflecting layer 2 is a layer having a property of diffusing and reflecting light, and can be constructed as follows. On one surface of the light guide plate layer, a white layer in which a pigment having high hiding property and high whiteness, for example, powder of titanium dioxide, aluminum or the like is dispersed is formed by coating or the like. A metal thin film layer is formed by further plating or vapor-depositing a metal such as aluminum, chromium, or silver on the uneven surface of the light guide plate on which matte fine unevenness has been formed by sandbright processing, embossing, or the like. A metal thin film layer is formed on a white layer which has a low hiding property and is formed by simply coating a matte surface. It may be formed in a white dot-like layer and the area ratio may be increased as the distance from the light source increases so as to correct the attenuation of the light amount of the light source.
【0031】尚本発明の面光源100を透過型LCD等
の透過型表示装置のバックライト(背面光源)として使
用する場合の構成は図1、図2の通りである。即ち本発
明の面光源100のレンズシートのレンズ面(単位レン
ズ42のある側)の上に透過型表示装置6を積層すれ
ば、本発明の表示装置を得る。The structure of the surface light source 100 of the present invention used as a backlight (rear surface light source) of a transmissive display device such as a transmissive LCD is as shown in FIGS. That is, the display device of the present invention is obtained by stacking the transmissive display device 6 on the lens surface (the side where the unit lens 42 is located) of the lens sheet of the surface light source 100 of the present invention.
【0032】面光源の光の分布状態を評価するには、拡
散角が有効である。拡散角としては例えば半値角θHが
用いられる。これは、透過光輝度(又は強度)が光放出
面の法線からの角度θの減少関数I(θ)とした時に、
I(θH)=I(θ)/2となる角θHとして定義され
る。The diffusion angle is effective for evaluating the light distribution of the surface light source. A half value angle θ H is used as the diffusion angle, for example. When the transmitted light brightness (or intensity) is defined as a decreasing function I (θ) of the angle θ from the normal line of the light emitting surface,
It is defined as an angle θ H such that I (θ H ) = I (θ) / 2.
【0033】[0033]
【作用】請求項1、及び請求項5の楕円柱レンチキュラ
ーレンズは、前記の通り幾何光学的に球面収差を生じな
い。即ち真円柱単位レンズは図4(A)、図5(A)の
ように球面収差が存在し、光軸から離れた入射光線L2
は焦点には集光せず、その結果、一部の光が所定の拡散
角θの範囲から逸脱して無駄となってしまう。一方本発
明で用いる図4(B)、図5(B)の楕円柱単位レンズ
は前述のように球面収差を生じない乃至はそれが無視出
来る範囲内の形状に設計されている。その為、光軸に平
行な入射光はレンズしーと4で屈折後、1つの焦点に収
束し、その後その儘発散して行くため、放出光は所望の
拡散角θ(式(6))にほぼ近い角度で集光され、有効
利用される。凹レンズの場合は、前記の通り凸レンズに
比べて、焦点の位置がレンズの全方か後方かの差であ
る。従ってレンズシート4の焦点距離よりも充分遠方の
観察者にとっては、凸レンズと実質同様の作用をなす。The elliptic cylinder lenticular lens according to the first and fifth aspects does not cause spherical aberration geometrically as described above. That is, the true cylindrical unit lens has spherical aberration as shown in FIGS. 4 (A) and 5 (A), and the incident light ray L2 distant from the optical axis.
Is not focused on the focal point, and as a result, a part of the light deviates from the range of the predetermined diffusion angle θ and is wasted. On the other hand, the elliptic cylinder unit lenses of FIGS. 4 (B) and 5 (B) used in the present invention are designed so that spherical aberration does not occur or that it can be ignored as described above. Therefore, the incident light parallel to the optical axis is refracted by the lens lens 4 and then converges to one focal point, and then diverges at that point, so that the emitted light has a desired diffusion angle θ (equation (6)). The light is condensed at an angle close to, and is effectively used. In the case of a concave lens, the focus position is the difference between the entire position and the rear of the lens as compared with the convex lens as described above. Therefore, for an observer who is far away from the focal length of the lens sheet 4, the same action as the convex lens is performed.
【0034】又双曲線レンチキュラーレンズの場合も、
前記楕円柱レンチキュラーレンズの場合と同様である。Also in the case of a hyperbolic lenticular lens,
This is similar to the case of the elliptic cylinder lenticular lens.
【0035】次に、エッジライト型面光源に於ける、空
隙9について説明する。エッジライト方式面光源の作用
機構は図7のように、光源3から導光板1に入射し導光
板の平滑平面10に直接入射する光線のうち、光源近傍
に入射するL1は入射角(面10の法線とのなす角)が
小さく臨界角未満になる為、入射光量の何割かが透過光
L1Tとなって放出する。これによって、光源近傍の放
出光が形成される。一方、光源3から比較的離れた所に
直接入射する光線L2は入射角が大きく、臨界角以上と
なる為、外部には放出されず全反射光L2Rとなって更
に遠方へ送られ、導光板裏面の光拡散反射層2で拡散
(乱)反射光L2Sとなって四方八方に進む、これらの
何割かは臨界角未満で面10へ入射し、その更に何割か
が放出光となる。これによって光源から離れた所での放
出光が形成される。Next, the void 9 in the edge light type surface light source will be described. As shown in FIG. 7, the action mechanism of the edge light type surface light source is that, among the light rays that are incident on the light guide plate 1 from the light source 3 and are directly incident on the smooth flat surface 10 of the light guide plate, L1 that is incident in the vicinity of the light source is the incident angle (the surface 10 Since the angle formed by the normal line of 1) is small and less than the critical angle, some of the incident light amount is emitted as transmitted light L1T. Thereby, emitted light near the light source is formed. On the other hand, the light ray L2 that is directly incident on a relatively distant place from the light source 3 has a large incident angle and is equal to or greater than the critical angle. Diffuse (random) reflected light L2S is propagated in all directions in the light diffusive reflection layer 2 on the back surface. Some of these incident on the surface 10 at less than the critical angle, and some more of it becomes emitted light. This forms the emitted light at a distance from the light source.
【0036】此処で、導光板1の平滑平面10の上に、
非レンズ面が平滑平面となったレンズシート4の平滑面
が面10に接する向きで積層した状態が第8図、第9図
である。通常使用される透光性材料の屈折率は、いずれ
も大体1.5前後であり、相互の差は大きくない。よっ
て、程度の差はあれ、図9のようにレンズシート4と導
光板1とは光学的に殆ど一体の物となる。そうすると、
レンズシート4の単位レンズ42の表面は平滑平面10
に対して傾斜を持つので、光源近傍で導光板に入射する
光線の大部分、例えばL1、L2、L3は臨界角未満で
入射する為、何割かがその儘放出され、反射した光も大
部分が光源方向に戻され、遠方に伝播されない。 もち
ろん、光源から直接遠方のレンズ面に入射し、そこから
放出光となる光線、例えば図9のL4も存在するが、そ
の量は図7の場合より少ない。故に前述の様に、面光源
からの放出光は、光源側近傍導光板の全面積の10〜2
0%の所に大部分集中してしまう事になる。Here, on the smooth flat surface 10 of the light guide plate 1,
FIGS. 8 and 9 show a state in which the smooth surface of the lens sheet 4 whose non-lens surface is a smooth flat surface is laminated so as to contact the surface 10. The refractive indexes of the translucent materials that are normally used are all around 1.5, and the mutual differences are not large. Therefore, to some extent, as shown in FIG. 9, the lens sheet 4 and the light guide plate 1 are optically almost integrated. Then,
The surface of the unit lens 42 of the lens sheet 4 is a smooth flat surface 10.
Since most of the light rays that enter the light guide plate near the light source, such as L1, L2, and L3, are incident at less than the critical angle, some of them are emitted and the reflected light is mostly reflected. Is returned to the light source and does not propagate far away. Of course, there is also a ray of light that is emitted from the light source directly to the lens surface far away and becomes emitted light, for example, L4 in FIG. 9, but the amount thereof is smaller than in the case of FIG. Therefore, as described above, the light emitted from the surface light source is 10 to 2 of the total area of the light guide plate near the light source side.
Most of it will be concentrated at 0%.
【0037】一方本発明では、図10、図11のよう
に、レンズシート4の非レンズ面側に突起群41を形成
し、それにより導光板の平滑平面10とレンズシート4
との間に、少なくとも部分的に、空隙9を形成する。此
の空隙部9では、通常1.5程度の導光板1と屈折率
1.0程度の空気層(乃至は真空層)とが平面10を界
面として隣接する為、図7の場合と同様の光全反射が起
こる。そのため光源近傍の領域では平面10に臨界角未
満で入射し透過していく光線L1Tによって放出光がえ
られ、又光源から離れた領域では該空隙部9の界面で全
反射した後、裏面の光拡散反射層2で拡散反射した光線
のうち臨界角未満の成分L2Tによって放出光が得られ
る。On the other hand, in the present invention, as shown in FIGS. 10 and 11, the projection group 41 is formed on the non-lens surface side of the lens sheet 4, whereby the smooth flat surface 10 of the light guide plate and the lens sheet 4 are formed.
An air gap 9 is formed at least partially between and. In this space 9, since the light guide plate 1 having a refractive index of about 1.5 and the air layer (or vacuum layer) having a refractive index of about 1.0 are adjacent to each other with the plane 10 as an interface, the same as in the case of FIG. Total internal reflection occurs. Therefore, in the region near the light source, the emitted light is obtained by the light ray L1T which is incident on the plane 10 at less than the critical angle and is transmitted, and in the region away from the light source, the light on the back surface is totally reflected at the interface of the void 9. Emitted light is obtained by the component L2T of the light rays diffusely reflected by the diffuse reflection layer 2 and having a smaller angle than the critical angle.
【0038】勿論、L2Tの中でも、一部、微小凹凸4
1と平滑平面10とが接触している領域に入射した光
は、全反射せず、そのまま透過し放出光となる。空隙部
の面積比Rが80〜90%以上の場合、全面ほぼ均一な
輝度分布となることは、前述の通りである。Of course, in the L2T, a part of the fine unevenness 4
Light incident on a region where 1 and the flat surface 10 are in contact with each other is not totally reflected but is transmitted as it is and becomes emitted light. As described above, when the area ratio R of the voids is 80 to 90% or more, the luminance distribution is almost uniform over the entire surface.
【0039】又ここで、微小凹凸41の高さ(即ち空隙
部の間隔)を、光源光の一波長以上にしたことにより、
面10での全反射が確実なものとなる。その理由として
は、図12のように、導光板内部から導光板の平滑平面
10入射した光線L1が全反射して反射光L1Rになる
場合、厳密に言うと光の電磁場は全く空気(又は真空)
9の中に存在しない訳ではなく、一部トンネル効果によ
り界面10を透過した電磁場L1Vが存在している。但
し、此の電磁場L1Vは指数関数的に減衰し、光の波長
程度のオーダーで振幅は0となる。よって、空隙9が光
の波長に比べて充分大きな距離続けば、光線L1は事実
上全く、空隙部9の中には入らない。Here, the height of the minute irregularities 41 (that is, the space between the voids) is set to be equal to or more than one wavelength of the light source light.
Total reflection on the surface 10 is ensured. The reason is that, as shown in FIG. 12, when the light ray L1 incident on the smooth plane 10 of the light guide plate from the inside of the light guide plate is totally reflected to become the reflected light L1R, strictly speaking, the electromagnetic field of the light is completely air (or vacuum). )
9 does not exist, but there is an electromagnetic field L1V that has partially passed through the interface 10 due to the tunnel effect. However, this electromagnetic field L1V is attenuated exponentially, and its amplitude becomes 0 on the order of the wavelength of light. Therefore, if the void 9 continues for a distance sufficiently larger than the wavelength of light, the light ray L1 practically does not enter the void 9.
【0040】ところが、図13のように導光板1とほぼ
同屈折率のレンズシート4が、導光板の面10に対し
て、光の波長λ未満の距離ΔX迄近づくと(ΔX<
λ)、完全に減衰せずにレンズシート4に入った電磁場
L1Vは再び進行波L1Tとなる、即ち透過光L1Tが
生じてしまう。However, as shown in FIG. 13, when the lens sheet 4 having substantially the same refractive index as the light guide plate 1 approaches the surface 10 of the light guide plate up to a distance ΔX less than the wavelength λ of light (ΔX <
λ), the electromagnetic field L1V entering the lens sheet 4 without being completely attenuated becomes the traveling wave L1T again, that is, the transmitted light L1T is generated.
【0041】本発明に於いては、レンズシート4の裏面
に微小凹凸4が形成してある為、図14のように導光板
1とレンズシート4との間には空隙部9を有する領域と
空隙部が無く光学的に両者が一体化している(或いは空
隙が有っても光の波長未満)領域とができる。これらの
うち、空隙部では入射光の全反射が起こり、空隙のない
部分では入射光は透過する。空隙部面積の導光板全面積
に対する比で、面10で全反射する光量の比が決まるこ
とは前述の通りである。In the present invention, since the minute irregularities 4 are formed on the back surface of the lens sheet 4, as shown in FIG. 14, a region having a space 9 between the light guide plate 1 and the lens sheet 4 is formed. There can be a region where there is no void and both are optically integrated (or less than the wavelength of light even if there is a void). Of these, the incident light is totally reflected in the void portion, and the incident light is transmitted in the portion without the void. As described above, the ratio of the amount of light totally reflected by the surface 10 is determined by the ratio of the area of the void portion to the total area of the light guide plate.
【0042】[0042]
【発明の効果】請求項1、請求項2、請求項5、請求項
6の面光源は球面収差がない為、導光板から放出された
光は殆ど所定の拡散角内に集光され、本来無駄になる面
光源の斜め〜接線方向に散逸する光エネルギーも観察に
有効な照明光として利用できる。その為、エネルギーの
利用効率も良く、高輝度であり、且つ面光源側面にノイ
ズ光を放出することもない。請求項3、請求項4の面光
源は、レンズシート4の裏面(レンズ面の反対面)の微
凹凸の為、エッジライト型面光源の導光板とレンズシー
トとの間に確実に、光源光の波長以上の空隙を形成出来
る。その為レンズシートを置いても、導光板表面での光
全反射による導光板内全体への光源光の均一な分配を妨
げることがなく光放出面内での輝度分布は均一である。Since the surface light source of claim 1, claim 2, claim 5, and claim 6 does not have spherical aberration, the light emitted from the light guide plate is almost converged within a predetermined diffusion angle. Light energy which is wasted from the oblique to tangential directions of the surface light source can also be used as illumination light effective for observation. Therefore, the energy utilization efficiency is high, the brightness is high, and no noise light is emitted to the side surface of the surface light source. Since the surface light source according to claim 3 or 4 has fine irregularities on the back surface (the surface opposite to the lens surface) of the lens sheet 4, the light source light can be reliably provided between the light guide plate of the edge light type surface light source and the lens sheet. It is possible to form voids having a wavelength longer than Therefore, even if the lens sheet is placed, the uniform distribution of the light source light throughout the light guide plate due to the total reflection of light on the surface of the light guide plate is not hindered, and the luminance distribution on the light emission surface is uniform.
【0043】又請求項7の表示装置は、請求項1〜請求
項6の面光源を使用している為、電力等エネギー利用効
率が高く、高輝度で、適度な視野角を持ち、且つ前面均
一な輝度の表示を得る事ができる。Since the display device of claim 7 uses the surface light source of claims 1 to 6, it has high energy utilization efficiency such as electric power, high brightness, an appropriate viewing angle, and a front surface. It is possible to obtain a display with uniform brightness.
【0044】[0044]
【実施例1】 (レンズの成形工程)図15の様な装置を用い、以下の
工程により製造した。 厚さ100μmの無色透明な2軸延伸ポリエチレンテ
レフタレートの基材フィルムの巻取りロール11を用意
した。 金属円筒表面に楕円柱レンチキュラーレンズ形状の逆
型(同一形状で凹凸が逆)15を刻設したロール状凹版
14を用意し、これを中心軸の回りに回転させつつ、T
ダイ型ノズル21から紫外線硬化型樹脂液16を版面に
供給し、レンズの逆型の凹凸表面を充填被覆した。 次いで前記基材フィルム12を巻取りロール11から
ロール状凹版14の回転周速度と同期する速度で巻出し
て、押圧ロール13で基材フィルムを該ロール凹版上
に、該樹脂液を間に介して積層密着させ、その儘の状態
で水銀燈23、23からの紫外線を基材フィルム側から
照射し、該逆型内で樹脂液を架橋硬化させると同時に基
材フィルムと接着した。 次いで剥離ロール18を用いて走行する基材フィルム
を、それに接着したレンズ形状19の成形された硬化樹
脂と共に剥離し、 斯くして、楕円柱レンチキュラーレンズシート20を
得た。ちなみに;レンズ形状 ;図3(A)の通り、 ・単位レンズ形状;凸楕円柱(長軸をレンズシートの法
線方向に向ける。) ・長軸長2b=204μm ・短軸長2a=150μm ・長軸長/短軸長=2b/2a=1.36 ・レンズ単位の繰り返し周期p=130μm 紫外線硬化性樹脂液; ・多官能ポリエステルアクリレートオリゴマー ・光反応開始剤 を主成分とする。Example 1 (Lens Molding Step) Using a device as shown in FIG. 15, the lens was manufactured by the following steps. A winding roll 11 of a transparent and colorless biaxially stretched polyethylene terephthalate base film having a thickness of 100 μm was prepared. A roll-shaped intaglio 14 is prepared by engraving an elliptic cylinder lenticular lens-shaped reverse type (the same shape but the concavities and convexities are opposite) 15 on the surface of a metal cylinder, and while rotating this around the central axis, T
The UV curable resin liquid 16 was supplied to the plate surface from the die nozzle 21 to fill and coat the reverse concave and convex surface of the lens. Next, the base film 12 is unwound from the winding roll 11 at a speed that is synchronized with the rotational peripheral speed of the roll-shaped intaglio plate 14, and the base film is pressed onto the roll intaglio plate by the pressing roll 13 with the resin liquid interposed therebetween. Then, ultraviolet rays from the mercury lamps 23, 23 were irradiated from the side of the base material film in this state, and the resin solution was cross-linked and cured in the reverse mold and simultaneously adhered to the base material film. Next, the base film running using the peeling roll 18 was peeled off together with the cured resin having the lens shape 19 adhered thereto, thus obtaining the elliptic cylinder lenticular lens sheet 20. By the way, lens shape ; as shown in FIG. 3 (A), unit lens shape; convex elliptic cylinder (long axis oriented in the normal direction of the lens sheet), major axis length 2b = 204 μm, minor axis length 2a = 150 μm Long axis length / Short axis length = 2b / 2a = 1.36-Repeating cycle of lens unit p = 130 μm UV curable resin liquid; -Polyfunctional polyester acrylate oligomer-Photoreaction initiator as a main component.
【0045】(微小凹凸を有する艶消し層の成形工程) 金属円筒表面にサンドブラストして得た微小凹凸(突
起群)の逆型を刻設したロール状凹版を用意した。 次いで、厚さ50μmの無色透明な2軸延伸ポリエチ
レンテレフタレートの基材フィルムを巻取りロールから
巻戻し、レンズ成形工程と同様の装置、樹脂液、を用い
て、該レンズシートの裏面に紫外線硬化型樹脂硬化物よ
りなる艶消し透明の微小凹凸を成形した。 斯くして、本発明に仕様する光拡散層を得た。ちなみ
に、微小凹凸 ・ヘイズ値=88.8 ・表面光沢度(JIS−Z−8741)=11.1 ・表面粗さ(JIS−B−0601の十点平均粗さ)R
z=38.4μm ・表面粗さ(JIS−B−0601の中心線平均粗さ)
Ra=7.3μm(Process of forming matte layer having fine irregularities) A roll-shaped intaglio was prepared by engraving a reverse mold of fine irregularities (projections) obtained by sandblasting on the surface of a metal cylinder. Then, a colorless and transparent biaxially stretched polyethylene terephthalate base film having a thickness of 50 μm is unwound from a winding roll, and the same apparatus and resin solution as those used in the lens forming step are used to form an ultraviolet ray curable resin on the back surface of the lens sheet. Matte transparent fine irregularities made of a resin cured product were molded. Thus, the light diffusion layer specified in the present invention was obtained. By the way, minute irregularities -Haze value = 88.8-Surface gloss (JIS-Z-8741) = 11.1-Surface roughness (10-point average roughness of JIS-B-0601) R
z = 38.4 μm Surface roughness (center line average roughness of JIS-B-0601)
Ra = 7.3 μm
【0046】[0046]
【実施例2】実施例1で製造した楕円柱レンズシート
を、実施例1で製造した光拡散層を介して、導光板に重
ね、図1の100の構成のエッジライト型面光源を得
た。導光板 ; ・材料;ポリメチルメタアクリレート重合体樹脂 ・形状;直方体。 厚み4mm ・表面;十点平均粗さが全面に於いてRz=0.1μm
未満の平滑性に仕上げた。 ・裏面;導光板の裏面に艶消し透明インキを円形の網点
状に印刷し、その裏面にアルミニウムをポリエチレンテ
レフタレートフィルムに真空蒸着した鏡面反射性フィル
ムをおいた。網点はシリカの微粉末をアクリル系樹脂の
バインダーに分散させたものを用いシルクスクリーン印
刷で形成した。網点の配列は、繰り返し周期5mmで縦
・横方向に配列させた。網点の直径は光源に近い所では
0.1mmとし、光源からの距離に比例して大きくし、
光源と反対側の端部で2mmとした。光源 線光源として、白色螢光燈を導光板の一端に配置した。
導光板と反対側には金属性の反射鏡を置いた。 以上の構成の面光源の性能は以下の通り。 ・輝度の角度分布は図16の通り。 ・半値角=36度 ・法線方向輝度(導光板中央部)=2028cd/m2 ・法線方向輝度の光放出面内の分布;+−15%以内。
目視でも略均一 ・サイドローブ発生無し。Example 2 The elliptic cylinder lens sheet produced in Example 1 was overlaid on the light guide plate through the light diffusion layer produced in Example 1 to obtain an edge light type surface light source having the constitution 100 in FIG. . Light guide plate : -Material: Polymethylmethacrylate polymer resin-Shape: Rectangular solid. Thickness 4 mm ・ Surface; 10-point average roughness Rz = 0.1 μm on the entire surface
Finished to less than smoothness. -Back surface: Matte transparent ink was printed on the back surface of the light guide plate in a circular halftone dot pattern, and a specular reflective film obtained by vacuum-depositing aluminum on a polyethylene terephthalate film was placed on the back surface. The halftone dots were formed by silk screen printing using fine silica powder dispersed in an acrylic resin binder. The halftone dots were arranged in a vertical and horizontal direction with a repeating cycle of 5 mm. The diameter of the halftone dot is 0.1 mm near the light source, and it is increased in proportion to the distance from the light source.
It was set to 2 mm at the end opposite to the light source. A white fluorescent lamp was arranged at one end of the light guide plate as a light source line light source.
A metallic reflecting mirror was placed on the side opposite to the light guide plate. The performance of the surface light source with the above configuration is as follows. -The angular distribution of brightness is as shown in Fig. 16. · Half-value angle = 36 degrees, the normal direction brightness (light guide plate central portion) = 2028cd / m 2 · normal direction brightness distribution in the light emitting surface of; + - 15% or less.
Almost visually uniform ・ No side lobes are generated.
【0047】[ 47 ]
【比較例1】実施例2に於いて、レンズシート凸楕円柱
レンチキュラーレンズに代えて、下記の三角柱プリズム
型レンチキュラーレンズを仕様した。 ・断面形状; 直角二等片三角形。90度の頂角を面光
源の法線方向に向ける。 ・単位レンズの繰り返し周期(一辺の長さ)=100μ
m ・材料、層構成、製法は実施例1の凸楕円柱レンチキュ
ラーレンズと同様。 以上の構成の面光源の性能は以下の通り。 ・輝度の角度分布は図17の通り。 ・半値角=34度 ・法線方向輝度(導光板中央部)=2074cd/m2 ・法線方向輝度の光放出面内の分布;+−15%以内。
目視でもほぼ均 ・サイドローブ発生有り。(法線から+−75度方向に
ピーク) サイドローブピーク輝度/法線方向輝度=26%Comparative Example 1 The following triangular prism prism type lenticular lens was used in place of the convex elliptic cylinder lenticular lens of the lens sheet in Example 2. -Cross-sectional shape: right-angled isosceles triangle. The 90-degree apex angle is oriented in the direction normal to the surface light source.・ Repeat cycle of unit lens (length of one side) = 100μ
m The material, layer configuration, and manufacturing method are the same as those of the convex elliptic cylinder lenticular lens of the first embodiment. The performance of the surface light source with the above configuration is as follows. -The angular distribution of brightness is as shown in Fig. 17. · Half-value angle = 34 degrees, the normal direction brightness (light guide plate central portion) = 2074cd / m 2 · normal direction brightness distribution in the light emitting surface of; + - 15% or less.
Almost visually uniform ・ Side lobes occur. (Peak in + -75 degree direction from the normal) Sidelobe peak brightness / normal brightness = 26%
【比較例2】実施例2に於いて、レンズシートの代わり
に実施例1で作った光拡散層を用いた。即ち、光拡散層
を2層重ねて置いた。その他は実施例2と同じとした。
以上の構成の面光源の性能は以下の通り、 ・輝度の角度分布は図19の通り。 ・半値角=38度(但し、半値角の外でも急には減衰せ
ず或る程度の放出光が分布する。) ・法線方向輝度(導光板中央部)=1491cd/m2 ・法線方向輝度の光放出面内の分布;+−15%以内。
目視でも略均一 ・サイドローブ発生無し。Comparative Example 2 In Example 2, the light diffusion layer prepared in Example 1 was used instead of the lens sheet. That is, two light diffusion layers were stacked and placed. Others were the same as in Example 2.
The performance of the surface light source having the above configuration is as follows: The angular distribution of luminance is as shown in FIG. -Half-value angle = 38 degrees (However, some amount of emitted light is distributed without being attenuated abruptly even outside the half-value angle.)-Normal direction luminance (center of light guide plate) = 1491 cd / m 2 -Normal line Distribution of directional luminance within the light emitting surface; within + -15%.
Almost visually uniform ・ No side lobes are generated.
【比較例3】実施例2に於いて、以下の形状の凸楕円柱
レンチキュラーレンズを使用した。 ・単位レンズ形状;凸楕円柱(短軸をレンズシートの法
線方向に向ける。) ・長軸長2b=150μm ・短軸長2a=204μm ・長軸長/短軸長=2b/2a=0.74 ・レンズ単位の繰り返し周期p=177μm その他は実施例2と同じとした。以上の構成の面光源の
性能は以下の通り、 ・輝度の角度分布は図18の通り。 ・半値角=42度 ・法線方向輝度(導光板中央部)=1738cd/m2 ・法線方向輝度の光放出面内の分布;+−5%以内。目
視でもほぼ均一 ・サイドローブ発生有り。(法線方向より、+−75度
離れた方向に輝度のピークあり) サイドローブピーク輝度/法線方向輝度=37%Comparative Example 3 In Example 2, a convex elliptic cylinder lenticular lens having the following shape was used. -Unit lens shape: convex elliptic cylinder (the short axis is oriented in the normal direction of the lens sheet) -Long axis length 2b = 150 μm- Short axis length 2a = 204 μm-Long axis length / short axis length = 2b / 2a = 0 .74 Repetition cycle of lens unit p = 177 μm Others were the same as in Example 2. The performance of the surface light source having the above configuration is as follows: The angular distribution of brightness is as shown in FIG. · Half-value angle = 42 deg, the normal direction brightness (light guide plate central portion) = 1738cd / m 2 · normal direction brightness distribution in the light emitting surface of; + - 5% or less. Almost visually uniform ・ Side lobes occur. (Brightness peak exists in the direction + -75 degrees away from the normal direction) Sidelobe peak brightness / normal direction brightness = 37%
【比較例4】実施例2に於いて、レンズシートの裏面に
艶消し層を介在させない物を使用した。レンズシート裏
面は、基材フィルム表面自体であり、表面の十点平均粗
さRzは0.1μm未満の平滑平面とした。その他は実
施例2と同じとした。以上の構成の面光源の性能は、光
放出面の法線方向輝度が光源側端部近傍は高輝度である
が、光源からの距離とともに急激に低下し、光源から2
cmの所では目視で暗く感じる程に輝度が低下してしま
った。[Comparative Example 4] In Example 2, an article having no matte layer on the back surface of the lens sheet was used. The back surface of the lens sheet is the surface of the base film itself, and the ten-point average roughness Rz of the surface is a smooth flat surface of less than 0.1 μm. Others were the same as in Example 2. Regarding the performance of the surface light source configured as described above, although the brightness in the normal direction of the light emitting surface is high near the end on the light source side, the brightness decreases sharply with the distance from the light source.
At a position of cm, the brightness was lowered to such an extent that it was visually dark.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明のエッジライト型面光源、及びそれを用
いた透過型表示装置の実施例の斜視図。FIG. 1 is a perspective view of an embodiment of an edge light type surface light source of the present invention and a transmissive display device using the same.
【図2】本発明の直下型面光源、及びそれを用いた透過
型表示装置の実施例の斜視図。FIG. 2 is a perspective view of an example of a direct type surface light source of the present invention and a transmissive display device using the same.
【図3】本発明のレンズシートの実施例の斜視図。楕円
柱型レンチキュラーレンズの場合。(A)、(C)は凸
レンズ、(B)、(D)は凹レンズの場合。FIG. 3 is a perspective view of an embodiment of a lens sheet of the present invention. For an elliptic cylinder lenticular lens. (A) and (C) are convex lenses, and (B) and (D) are concave lenses.
【図4】レンズシートの光線の挙動、特に球面収差を単
位レンズで説明した図。(A)は凸真円柱レンズの場
合、(B)は本発明の凸楕円柱レンズの場合。FIG. 4 is a diagram illustrating behavior of light rays on a lens sheet, particularly spherical aberration, with a unit lens. (A) shows a case of a convex true cylindrical lens, and (B) shows a case of a convex elliptic cylinder lens of the present invention.
【図5】レンズシートの光線の挙動、特に球面収差を単
位レンズで説明した図。(A)は凹真円柱レンズの場
合、(B)は本発明の凹楕円柱レンズの場合。FIG. 5 is a diagram illustrating behavior of light rays on a lens sheet, particularly spherical aberration, with a unit lens. (A) shows a case of a concave true cylindrical lens, and (B) shows a case of a concave elliptic cylinder lens of the present invention.
【図6】本発明のレンズシートの別の実施例の斜視図。
楕円柱型レンチキュラーレンズ2枚を、両者の軸が直行
する様に積層した場合。FIG. 6 is a perspective view of another embodiment of the lens sheet of the present invention.
When two elliptic cylinder type lenticular lenses are laminated so that their axes are perpendicular to each other.
【図7】従来技術のエッジライト型面光源の断面図。導
光板上にレンズシートなしの場合。FIG. 7 is a cross-sectional view of a conventional edge light type surface light source. When there is no lens sheet on the light guide plate.
【図8】従来技術のエッジライト型面光源の斜視図。導
光板上にレンズシートを、間に空隙を置かず、密着させ
た場合。FIG. 8 is a perspective view of a conventional edge light type surface light source. When the lens sheet is closely attached to the light guide plate without leaving a gap between them.
【図9】〔図8〕の拡大断面図。レンズシートと導光板
との界面が光学的に消滅一体化している事を示す。FIG. 9 is an enlarged sectional view of FIG. It shows that the interface between the lens sheet and the light guide plate is optically eliminated and integrated.
【図10】本発明のエッジライト型面光源の実施例の断
面図。導光板とレンズシートとの界面に、両面が微小凹
凸を有する光拡散層を挿入し、2か所(2層)の空隙を
形成した例。FIG. 10 is a sectional view of an embodiment of an edge light type surface light source of the present invention. An example in which a light diffusion layer having fine irregularities on both sides is inserted at the interface between the light guide plate and the lens sheet to form voids at two locations (two layers).
【図11】本発明のエッジライト型面光源の別の実施例
の断面図。レンズシートの裏面に直接微小凹凸を形成し
て、空隙を1層のみ有する例。FIG. 11 is a sectional view of another embodiment of the edge light type surface light source of the present invention. An example in which minute concaves and convexes are directly formed on the back surface of the lens sheet to have only one layer of voids.
【図12】導光板表面の平滑平面で全反射する光線の挙
動を示す断面図。一部空気中に電磁場がトンネル効果で
滲み出ている。FIG. 12 is a cross-sectional view showing the behavior of light rays that are totally reflected by a smooth flat surface of the light guide plate. The electromagnetic field seeps out in the air due to the tunnel effect.
【図13】導光板からトンネル効果で滲み出した光線が
レンズシート内で再び進行波となることを示す断面図。FIG. 13 is a cross-sectional view showing that a light beam oozing out from the light guide plate due to a tunnel effect becomes a traveling wave again in the lens sheet.
【図14】本発明のレンズシートに於いて、導光板から
外部へ向かって進行する光線が一部全反射され、一部透
過することを示す断面図。FIG. 14 is a cross-sectional view showing that in the lens sheet of the present invention, a light ray traveling from the light guide plate to the outside is partially totally reflected and partially transmitted.
【図15】本発明の製造方法の一例を示す断面図。〔実
施例1〕に対応する。FIG. 15 is a cross-sectional view showing an example of the manufacturing method of the present invention. This corresponds to [Example 1].
【図16】本発明〔実施例2〕のエッジライト型面光源
の特性。長軸が法線方向に向いた凸楕円柱レンチキュラ
ーレンズを用いた場合の、放出光輝度の角度分布を図示
する。FIG. 16 is a characteristic of the edge light type surface light source according to the second embodiment of the present invention. 9 illustrates an angular distribution of emission light luminance when a convex elliptic cylinder lenticular lens whose long axis is oriented in the normal direction is used.
【図17】〔比較例2〕のエッジライト型面光源の特
性。三角柱レンチキュラーレンズを用いた場合の、放出
光輝度の角度分布を図示する。FIG. 17 is a characteristic of the edge light type surface light source of [Comparative example 2]. The angle distribution of emission light brightness when a triangular prism lenticular lens is used is shown in the figure.
【図18】〔比較例3〕のエッジライト型面光源の特
性。短軸が法線方向に向いた凸楕円柱レンチキュラーレ
ンズを用いた場合の、放出光輝度の角度分布を図示す
る。FIG. 18 shows the characteristics of the edge light type surface light source of [Comparative Example 3]. The angle distribution of the emission light brightness when a convex elliptic cylinder lenticular lens whose short axis faces the normal direction is used is shown.
【図19】〔比較例3〕のエッジライト型面光源の特
性。導光板の上に光拡散層(フィルム)を2層積層した
場合の。放出光輝度の角度分布を図示する。FIG. 19 shows the characteristics of the edge light type surface light source of [Comparative Example 3]. When two light diffusion layers (films) are laminated on the light guide plate. 9 illustrates the angular distribution of emitted light brightness.
【符号の説明】 1 導光板 2 光反射層 光源(ユニット) 4 レンズシート 5 反射鏡 6 液晶表示装置等の透過型表示装置 7 レンズシート裏面の平滑平面 8 光等方拡散性シート(光拡散層) 9 空隙 10導光板表面の平滑平面。 11巻取りロール 12基材フィルム 13押圧ロール 14ロール状凹版 15レンズ形状の逆型 16紫外線硬化型樹脂液 17レンズ逆型内の未硬化樹脂液 18剥離ロール 19レンズ形状(レンズ単位) 20レンズシート 21Tダイ型ノズル 22液溜まり 23水銀燈 41レンズシートの突起(群) 42レンズ単位 43突起群を有する透明層 44透明基材層 100面光源 200表示装置 F 焦点 L1光源から近傍のレンズ面に直接入射し、透過して行
く光線。 L2光源から近傍のレンズ面に直接入射し、透過して行
く光線。 L3光源から近傍のレンズ面に直接入射し、透過して行
く光線。 L4光源から遠方のレンズ面に直接入射し、透過して行
く光線。 LN近軸光線。 LF近軸から離れた光線。 L1R導光板の平滑平面10での反射光。 L2R導光板の平滑平面10での反射光。 L1T導光板の平滑平面10での透過光。 L2T導光板の平滑平面10での透過光。 L1S導光板裏面の光反射層2での拡散反射光。 L2S導光板裏面の光反射層2での拡散反射光。
─────────────────────────────────────────────────────
[Explanation of reference numerals] 1 light guide plate 2 light reflecting layer light source (unit) 4 lens sheet 5 reflecting mirror 6 transmissive display device such as liquid crystal display device 7 smooth flat surface on the back surface of lens sheet 8 light isotropic diffusing sheet (light diffusing layer ) 9 Void 10 A smooth flat surface of the light guide plate. 11 Winding Roll 12 Base Film 13 Pressing Roll 14 Roll Intaglio 15 Lens Shape Reverse Type 16 UV Curable Resin Liquid 17 Uncured Resin Liquid in Lens Reverse Mold 18 Peeling Roll 19 Lens Shape (Lens Unit) 20 Lens Sheet 21 T-die type nozzle 22 Liquid pool 23 Mercury lamp 41 Lens sheet projections (group) 42 Lens unit 43 Transparent layer having projection groups 44 Transparent base material layer 100 Surface light source 200 Display device F Focus L1 Direct incidence on a nearby lens surface from a light source And then the light rays that pass through. Light rays that are directly incident on and transmitted through the lens surface in the vicinity from the L2 light source. A light ray that is directly incident on and transmitted through the lens surface in the vicinity from the L3 light source. Light rays that are directly incident on the lens surface at a distance from the L4 light source and are transmitted therethrough. LN paraxial ray. LF Rays off paraxial. Light reflected on the smooth flat surface 10 of the L1R light guide plate. Light reflected on the smooth flat surface 10 of the L2R light guide plate. Transmitted light on the smooth flat surface 10 of the L1T light guide plate. Transmitted light on the smooth flat surface 10 of the L2T light guide plate. Diffuse reflected light from the light reflecting layer 2 on the back surface of the L1S light guide plate. Diffuse reflected light from the light reflecting layer 2 on the back surface of the L2S light guide plate.
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成6年3月18日[Submission date] March 18, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】全図[Correction target item name] All drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図1】 [Figure 1]
【図2】 [Fig. 2]
【図3】 [Figure 3]
【図5】 [Figure 5]
【図4】 [Figure 4]
【図6】 [Figure 6]
【図7】 [Figure 7]
【図8】 [Figure 8]
【図12】 [Fig. 12]
【図9】 [Figure 9]
【図10】 [Figure 10]
【図11】 FIG. 11
【図13】 [Fig. 13]
【図14】 FIG. 14
【図15】 FIG. 15
【図16】 FIG. 16
【図17】 FIG. 17
【図18】 FIG. 18
【図19】 FIG. 19
Claims (7)
光体と、該導光体の側端面の少なくとも一面に隣接して
設けられた線光源又は点光源と、該導光体裏面の光反射
層と、該導光体表面の光放出面上に積層された凹又は凸
のレンチキュラーレンズシートとからなる面光源であっ
て、 該レンズシートは楕円柱単位レンズをその稜線方向が互
いに平行になるように多数平面内に配列してなり、該楕
円柱単位レンズは長軸方向が光放出面の法線方向を向い
ており、 1.1×n/(n2 −1)1/2 ≦長軸/短軸≦0.9×
n/(n2 −1)1/2 である事を特徴とする面光源。1. A light guide body comprising a transparent flat plate or a rectangular parallelepiped cavity, a line light source or a point light source provided adjacent to at least one side end surface of the light guide body, and a back surface of the light guide body. A surface light source comprising a light reflecting layer and a concave or convex lenticular lens sheet laminated on the light emitting surface of the light guide surface, the lens sheet comprising elliptic cylinder unit lenses whose ridge directions are parallel to each other. Are arranged in a plurality of planes such that the major axis direction of the elliptic cylinder unit lens is in the direction normal to the light emitting surface, and 1.1 × n / (n 2 −1) 1/2 ≤ major axis / minor axis ≤ 0.9 x
A surface light source characterized by having n / (n 2 −1) 1/2 .
光体と、該導光体の側端面の少なくとも一面に隣接して
設けられた線光源又は点光源と、該導光体裏面の光反射
層と、該導光体表面の光放出面上に積層された凹又は凸
のレンチキュラーレンズシートとからなる面光源であっ
て、 該レンズシートは双曲線柱単位レンズをその稜線方向が
互いに平行になるように多数平面内に配列してなり、該
双曲線柱単位レンズは長軸方向が光放出面の法線方向を
向いており、 1.1×n/(n2 −1)1/2 ≦漸近線の傾斜≦0.9
×n/(n2 −1)1/2 である事を特徴とする面光源。2. A light guide body comprising a light-transmissive flat plate or a rectangular parallelepiped cavity, a line light source or a point light source provided adjacent to at least one side end face of the light guide body, and a back surface of the light guide body. A surface light source comprising a light reflecting layer and a concave or convex lenticular lens sheet laminated on the light emitting surface of the light guide surface, wherein the lens sheet comprises hyperbolic column unit lenses whose ridge directions are parallel to each other. Are arranged in a plurality of planes so that the long axis direction of the hyperbolic pillar unit lens is oriented in the normal direction of the light emitting surface, and 1.1 × n / (n 2 −1) 1/2 ≤ Asymptotic slope ≤ 0.9
A surface light source characterized by being × n / (n 2 −1) 1/2 .
の平滑表面を有する透光性平板からなり、該レンチキュ
ラーレンズシートがレンズ面の反対面に表面粗さが光源
光の波長以上の微小凹凸を有しており、その微小凹凸面
を導光体の平滑表面側に向けて積層されてなり、導光体
とレンズシートとの間に光源光の波長以上の空隙を少な
くとも部分的には有する事を特徴とする請求項1に記載
の面光源。3. The light guide is made of a light-transmissive flat plate having a smooth surface whose surface roughness is equal to or less than the wavelength of the light from the light source, and the lenticular lens sheet is provided on the surface opposite to the lens surface where the surface roughness is the wavelength of the light from the light source. It has the above-mentioned minute unevenness and is laminated with the minute uneven surface facing the smooth surface side of the light guide, and at least part of the gap between the light guide and the lens sheet is longer than the wavelength of the source light. The surface light source according to claim 1, wherein the surface light source has the following characteristics.
の平滑表面を有する透光性平板からなり、該レンチキュ
ラーレンズシート裏面と該導光体表面との間に光拡散層
を挿入してなり、該光拡散層の表面及び裏面に表面粗さ
が光源光の波長以上の微小凹凸を有しており、その結
果、光源光の波長以上の空隙を少なくとも部分的に形成
された界面が、導光体表面と光拡散層との界面、及び光
拡散層とレンズシート裏面との界面の2箇所に有する事
を特徴とする請求項1記載の面光源。4. The light guide is made of a translucent flat plate having a smooth surface whose surface roughness is equal to or less than the wavelength of the light from the light source, and a light diffusion layer is provided between the back surface of the lenticular lens sheet and the light guide surface. It has been inserted, and the surface roughness and the back surface of the light diffusing layer have minute irregularities with a wavelength of the light of the light source or more, and as a result, voids having the wavelength of the light of the light source or more are formed at least partially. The surface light source according to claim 1, wherein the interface is provided at two locations, that is, an interface between the light guide surface and the light diffusion layer and an interface between the light diffusion layer and the back surface of the lens sheet.
の下面及び側面を覆い光源の上面に窓が開口され、光源
側内面が光反射面となっているランプハウスと、該窓部
を被覆する凹又は凸のレンチキュラーレンズ、とからな
る面光源であって、 該レンズシートは楕円柱単位レンズをその稜線方向が互
いに平行になるように多数平面内に配列してなり、該楕
円柱単位レンズは長軸方向が光放出面の法線方向を向い
ており、 1.1×n/(n2 −1)1/2 ≦長軸/短軸≦0.9×
n/(n2 −1)1/2 である事を特徴とする面光源。5. A lamp house having at least one line light source or point light source, a lamp house which covers a lower surface and a side surface of the light source and has a window opened on an upper surface of the light source, and an inner surface on the light source side serving as a light reflecting surface, and the window. A surface light source composed of a concave or convex lenticular lens covering a portion, wherein the lens sheet is formed by arranging elliptic cylinder unit lenses in a plurality of planes such that their ridge directions are parallel to each other. In the pillar unit lens, the major axis direction is oriented in the direction normal to the light emitting surface, and 1.1 × n / (n 2 −1) 1/2 ≦ long axis / minor axis ≦ 0.9 ×
A surface light source characterized by having n / (n 2 −1) 1/2 .
の下面及び側面を覆い光源の上面に窓が開口され、光源
側内面が光反射面となっているランプハウスと、該窓部
を被覆する凹又は凸のレンチキュラーレンズ、とからな
る面光源であって、 該レンズシートは双曲線柱単位レンズをその稜線方向が
互いに平行になるように多数平面内に配列してなり、該
双曲線柱単位レンズは長軸方向が光放出面の法線方向を
向いており、 1.1×n/(n2 −1)1/2 ≦漸近線の傾斜≦0.9
×n/(n2 −1)1/2 である事を特徴とする面光源。6. A lamp house having at least one line light source or point light source, a lamp house which covers a lower surface and a side surface of the light source and has a window opened on an upper surface of the light source, and an inner surface on the light source side serving as a light reflecting surface, and the window. A surface light source comprising a concave or convex lenticular lens covering a portion, wherein the lens sheet is formed by arranging hyperbolic column unit lenses in a plurality of planes such that their ridge directions are parallel to each other. In the pillar unit lens, the long axis direction is oriented in the direction normal to the light emitting surface, and 1.1 × n / (n 2 −1) 1/2 ≦ asymptote slope ≦ 0.9
A surface light source characterized by being × n / (n 2 −1) 1/2 .
上に透過型表示素子を積層してなる事を特徴とする表示
装置。7. A display device, wherein a transmissive display element is laminated on a light emitting surface of the surface light source according to any one of claims 1 to 6.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5112397A JPH06301035A (en) | 1993-04-16 | 1993-04-16 | Plane light source, display device using the same and lens sheet used for the same |
KR1019930029490A KR0168879B1 (en) | 1992-12-25 | 1993-12-24 | Renticular lens, surface light source and liquid crystal display apparatus |
US08/173,118 US5592332A (en) | 1992-12-25 | 1993-12-27 | Renticular lens, surface light source, and liquid crystal display apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5112397A JPH06301035A (en) | 1993-04-16 | 1993-04-16 | Plane light source, display device using the same and lens sheet used for the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06301035A true JPH06301035A (en) | 1994-10-28 |
Family
ID=14585643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5112397A Pending JPH06301035A (en) | 1992-12-25 | 1993-04-16 | Plane light source, display device using the same and lens sheet used for the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06301035A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2730067A1 (en) * | 1995-01-30 | 1996-08-02 | Tallet Pascal Louis Dominique | METHOD FOR IMPROVING THE MANUFACTURE OF THE MOLDING DIE TO OBTAIN AN OPTICAL SELECTOR SCREEN |
KR100462574B1 (en) * | 2002-10-14 | 2004-12-17 | 한국전자통신연구원 | System and method for displaying combination 2D and 3D multi-view image displays and image converting method its |
JP2006065277A (en) * | 2004-04-16 | 2006-03-09 | Dainippon Printing Co Ltd | Diffusing sheet, surface light source unit, and transmission type display |
WO2006036032A1 (en) * | 2004-09-30 | 2006-04-06 | Sony Corporation | Optical sheet, backlight, and liquid crystal display device |
WO2006036029A1 (en) * | 2004-09-30 | 2006-04-06 | Sony Corporation | Optical sheet, backlight, and liquid crystal display device |
WO2007004573A1 (en) * | 2005-07-01 | 2007-01-11 | Dai Nippon Printing Co., Ltd. | Surface light source device |
WO2008018288A1 (en) * | 2006-08-10 | 2008-02-14 | Hitachi Maxell, Ltd. | Backlight device, display device, and optical member |
KR100806093B1 (en) * | 2000-04-27 | 2008-02-21 | 가부시키가이샤 구라레 | Planar light source and display device using the same |
KR100806192B1 (en) * | 2005-06-13 | 2008-02-22 | 세이코 엡슨 가부시키가이샤 | Method of manufacturing backlight unit, backlight unit, electrooptical device and electronic equipment |
KR100806193B1 (en) * | 2005-06-13 | 2008-02-22 | 세이코 엡슨 가부시키가이샤 | Manufacturing method of backlight unit, and backlight unit, electro-optic device, and electronic apparatus |
KR100819770B1 (en) * | 2005-06-13 | 2008-04-07 | 세이코 엡슨 가부시키가이샤 | Backlight unit manufacturing method, backlight unit, electro-optical device, and electronic device |
JP2011159632A (en) * | 2011-03-22 | 2011-08-18 | Dainippon Printing Co Ltd | Surface light source device, and transmissive display device |
JP2011257763A (en) * | 2004-04-16 | 2011-12-22 | Dainippon Printing Co Ltd | Surface light source device and transmission type display device |
KR101246701B1 (en) * | 2009-01-14 | 2013-03-25 | 주식회사 엘지화학 | Lenticular lens sheet having a improved moire and method for designing the same |
JP2015210439A (en) * | 2014-04-28 | 2015-11-24 | 大日本印刷株式会社 | Solar paneled display unit |
JP2015210440A (en) * | 2014-04-28 | 2015-11-24 | 大日本印刷株式会社 | Solar paneled display unit |
JP2017044794A (en) * | 2015-08-25 | 2017-03-02 | 大日本印刷株式会社 | Solar cell composite type display body and display body |
-
1993
- 1993-04-16 JP JP5112397A patent/JPH06301035A/en active Pending
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996024087A1 (en) * | 1995-01-30 | 1996-08-08 | Pascal Tallet | Method for improving the manufacture of an optical selector screen moulding die, and resulting screen |
FR2730067A1 (en) * | 1995-01-30 | 1996-08-02 | Tallet Pascal Louis Dominique | METHOD FOR IMPROVING THE MANUFACTURE OF THE MOLDING DIE TO OBTAIN AN OPTICAL SELECTOR SCREEN |
KR100806093B1 (en) * | 2000-04-27 | 2008-02-21 | 가부시키가이샤 구라레 | Planar light source and display device using the same |
KR100462574B1 (en) * | 2002-10-14 | 2004-12-17 | 한국전자통신연구원 | System and method for displaying combination 2D and 3D multi-view image displays and image converting method its |
JP2006065277A (en) * | 2004-04-16 | 2006-03-09 | Dainippon Printing Co Ltd | Diffusing sheet, surface light source unit, and transmission type display |
JP2011257763A (en) * | 2004-04-16 | 2011-12-22 | Dainippon Printing Co Ltd | Surface light source device and transmission type display device |
WO2006036029A1 (en) * | 2004-09-30 | 2006-04-06 | Sony Corporation | Optical sheet, backlight, and liquid crystal display device |
JP5272309B2 (en) * | 2004-09-30 | 2013-08-28 | ソニー株式会社 | Optical sheet, backlight, and liquid crystal display device |
KR101159724B1 (en) * | 2004-09-30 | 2012-06-28 | 소니 가부시키가이샤 | Optical sheet, backlight, and liquid crystal display device |
JP4893307B2 (en) * | 2004-09-30 | 2012-03-07 | ソニー株式会社 | Optical sheet, backlight, and liquid crystal display device |
WO2006036032A1 (en) * | 2004-09-30 | 2006-04-06 | Sony Corporation | Optical sheet, backlight, and liquid crystal display device |
US7695167B2 (en) | 2004-09-30 | 2010-04-13 | Sony Corporation | Optical sheet, backlight and liquid crystal display apparatus |
US7483094B2 (en) | 2004-09-30 | 2009-01-27 | Sony Corporation | Optical sheet, backlight and liquid crystal display apparatus |
KR100819770B1 (en) * | 2005-06-13 | 2008-04-07 | 세이코 엡슨 가부시키가이샤 | Backlight unit manufacturing method, backlight unit, electro-optical device, and electronic device |
KR100806193B1 (en) * | 2005-06-13 | 2008-02-22 | 세이코 엡슨 가부시키가이샤 | Manufacturing method of backlight unit, and backlight unit, electro-optic device, and electronic apparatus |
KR100806192B1 (en) * | 2005-06-13 | 2008-02-22 | 세이코 엡슨 가부시키가이샤 | Method of manufacturing backlight unit, backlight unit, electrooptical device and electronic equipment |
JP4644544B2 (en) * | 2005-07-01 | 2011-03-02 | 大日本印刷株式会社 | Surface light source device |
US8152320B2 (en) | 2005-07-01 | 2012-04-10 | Dai Nippon Printing Co., Ltd. | Surface light source device |
JP2007012517A (en) * | 2005-07-01 | 2007-01-18 | Dainippon Printing Co Ltd | Surface light source device |
WO2007004573A1 (en) * | 2005-07-01 | 2007-01-11 | Dai Nippon Printing Co., Ltd. | Surface light source device |
WO2008018288A1 (en) * | 2006-08-10 | 2008-02-14 | Hitachi Maxell, Ltd. | Backlight device, display device, and optical member |
KR101246701B1 (en) * | 2009-01-14 | 2013-03-25 | 주식회사 엘지화학 | Lenticular lens sheet having a improved moire and method for designing the same |
JP2011159632A (en) * | 2011-03-22 | 2011-08-18 | Dainippon Printing Co Ltd | Surface light source device, and transmissive display device |
JP2015210439A (en) * | 2014-04-28 | 2015-11-24 | 大日本印刷株式会社 | Solar paneled display unit |
JP2015210440A (en) * | 2014-04-28 | 2015-11-24 | 大日本印刷株式会社 | Solar paneled display unit |
JP2017044794A (en) * | 2015-08-25 | 2017-03-02 | 大日本印刷株式会社 | Solar cell composite type display body and display body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2742880B2 (en) | Surface light source, display device using the same, and light diffusion sheet used for them | |
KR0168879B1 (en) | Renticular lens, surface light source and liquid crystal display apparatus | |
JP3518554B2 (en) | Lens sheet and surface light source using the lens sheet | |
US7706073B2 (en) | Collimating microlens array | |
KR100196763B1 (en) | Film lens and surface light source using the same | |
US5550676A (en) | Surface light source element | |
JP3309173B2 (en) | Film lens, surface light source and transmissive display | |
JP3913870B2 (en) | Optical sheet, optical sheet laminate, surface light source device, and transmissive display device | |
JPH06301035A (en) | Plane light source, display device using the same and lens sheet used for the same | |
JP2011502273A (en) | Light management film, backlight unit, and related structures | |
JPH06222207A (en) | Optical sheet, surface light source, and display device | |
JP3860298B2 (en) | Optical sheet, surface light source device, and transmissive display device | |
JPH10282496A (en) | Light transmission body, production of light transmission body and surface light source | |
JP2855510B2 (en) | Lens sheet, edge light type surface light source and transmission type display | |
JP2951525B2 (en) | Surface light source | |
JPH075462A (en) | Surface light source, display device using the same, and light diffusion sheet used for the same | |
JPH06347613A (en) | Film lens and manufacturing method therefor | |
JPH075463A (en) | Surface light source and display device using the same | |
JP3188430B2 (en) | Lens sheet and backlight unit using the same | |
JP3346539B2 (en) | Film lens and surface light source | |
JP3948625B2 (en) | Surface light source using lens sheet | |
JPH06201904A (en) | Lenticular lens, surface light source and liquid crystal display device | |
JP2009139710A (en) | Optical sheet and surface light source device | |
JP3465086B2 (en) | Light control lens sheet, surface light source and transmissive display | |
JPH0862428A (en) | Edge light type surface light source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020618 |