JPH06300376A - Cryostat with precooling part of pulse-tube type refrigerator - Google Patents

Cryostat with precooling part of pulse-tube type refrigerator

Info

Publication number
JPH06300376A
JPH06300376A JP8831793A JP8831793A JPH06300376A JP H06300376 A JPH06300376 A JP H06300376A JP 8831793 A JP8831793 A JP 8831793A JP 8831793 A JP8831793 A JP 8831793A JP H06300376 A JPH06300376 A JP H06300376A
Authority
JP
Japan
Prior art keywords
pulse tube
regenerator
cold head
precooling
cryostat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8831793A
Other languages
Japanese (ja)
Inventor
Yuzo Hayashi
雄 造 林
Yoshihiro Ishizaki
崎 嘉 宏 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECTI KK
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
ECTI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, ECTI KK filed Critical Aisin Seiki Co Ltd
Priority to JP8831793A priority Critical patent/JPH06300376A/en
Publication of JPH06300376A publication Critical patent/JPH06300376A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1406Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1426Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To reduce a heat flowing into a cold head by thermal conduction and thermal radiation from a virtually ordinary temperature and thereby to attain a high efficiency in a cryostat of a pulse tube type refrigerating machine constructed of a pulse tube, the cold head, a cold accumulator, etc. CONSTITUTION:A pulse tube 107 is disposed at the axial center of a cold accumulator 105 joined to a cold head 106, while a directional part 119 giving directionality to a flow of a working fluid is provided in a part from a low- temperature part to an ordinary-temperature part in the pulse tube 107, and a precooling part 117 provided in an outer tube of the cold accumulator in the circumferential direction of the directional part 119 is cooled from inside by the working fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この出願の発明は、パルス管を構
成要素の一つとするほぼ常温にある膨張機付きのオリフ
ィス形その他の形式によるパルス管式冷凍機のパルス
管、コールドヘッド、蓄冷器等から構成されるクライオ
スタットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The invention of the present application relates to a pulse tube, a cold head, a regenerator of a pulse tube type refrigerating machine of an orifice type with an expander, which has a pulse tube as one of its constituent elements, and has an expander at almost room temperature. It is related to a cryostat composed of etc.

【0002】[0002]

【従来の技術】図8は、本発明者らが第7回国際クライ
オクーラー会議(1992年11月17〜19日に米国
のニューメキシコ州サンタフェ市で開催)で発表したパ
ルス管式冷凍機の概略を示すものである。このパルス管
式冷凍機は、流体の圧縮空間1と常温にある膨張空間2
との間を配管3と、流体の圧縮熱を放熱し冷却する放熱
器4と、蓄冷器5と、冷熱を取り出すコールドヘッド6
と、パルス管7と、配管8とで接続して構成されてい
る。
2. Description of the Related Art FIG. 8 shows a pulse tube refrigerator disclosed by the present inventors at the 7th International Cryocooler Conference (held in Santa Fe, New Mexico, USA, November 17-19, 1992). It shows an outline. This pulse tube refrigerator has a compression space 1 for fluid and an expansion space 2 at room temperature.
And a pipe 3, a radiator 4 that radiates and cools the compression heat of the fluid, a regenerator 5, and a cold head 6 that takes out cold heat.
The pulse tube 7 and the pipe 8 are connected to each other.

【0003】図示しないモータによりクランクシャフト
11を介して往復動される膨張ピストン10は、所要冷
凍温度、要素の特性、運転条件によって圧縮ピストン9
のクランクピン12より数度から数十度進んだクランク
角(位相角差とも言い、圧縮ピストン9と膨張ピストン
10がそれぞれ上死点にあるときはクランク角がゼロで
ある)を持つクランクピン13に接続され往復動され
る。14はピストンリングである。15はクランク角設
定機構であり、任意なクランク角に設定できる。
The expansion piston 10, which is reciprocated by a motor (not shown) through a crankshaft 11, has a compression piston 9 depending on a required freezing temperature, element characteristics, and operating conditions.
Crank pin 13 having a crank angle advanced from the crank pin 12 of several degrees to several tens of degrees (also referred to as a phase angle difference, the crank angle is zero when the compression piston 9 and the expansion piston 10 are respectively at the top dead center). It is connected to and reciprocated. 14 is a piston ring. Reference numeral 15 denotes a crank angle setting mechanism, which can set an arbitrary crank angle.

【0004】また、圧縮空間1と常温にある膨張空間2
の容積変化は、クランクシャフトのみならず、図示しな
いがリニアモータで直接圧縮ピストン9、膨張ピストン
10を或るクランク角を維持して往復動させれば同様な
結果が得られることは当然なことである。
A compression space 1 and an expansion space 2 at room temperature
The volume change of not only the crankshaft but also the linear motor (not shown) can directly obtain the same result by directly reciprocating the compression piston 9 and the expansion piston 10 while maintaining a certain crank angle. Is.

【0005】上記会議で発表したように、圧縮空間1内
の10気圧〜20気圧ほどで封入された流体は、圧縮ピ
ストン9が上死点に向かうと圧縮され、膨張ピストン1
0が例えば圧縮ピストン9より25度進んでいると下死
点に向かうため、配管3より放熱器4で放熱しながらほ
ぼ常温になって蓄冷器5に入り、逐次冷却されて45K
程度でコールドヘッド6を通りパルス管7で加速し、配
管8から膨張空間2に入り断熱膨張してクランクシャフ
ト11を回す仕事をする。このとき蓄冷器5、パルス管
7内に残留するコールドヘッド6に近い流体が断熱膨張
によって45Kより更に温度降下する。例えば36Kと
なる。膨張ピストン10が上死点に向かうと、膨張空間
2の作動流体は押し出され、配管8、パルス管7、コー
ルドヘッド6で図示しない被冷却体(電気的センサー
等)を冷却し、蓄冷器5に入って暖められ放熱器4で常
温近くなり、配管3より圧縮空間1に戻って1サイクル
が終わる。これを連続させることにより数分で80K、
最終的には蓄冷器5の性能によるが24K程度の冷凍温
度が得られる。
As announced at the above-mentioned conference, the fluid sealed in the compression space 1 at about 10 to 20 atm is compressed when the compression piston 9 moves toward the top dead center, and the expansion piston 1
For example, when 0 is advanced by 25 degrees from the compression piston 9, it goes to the bottom dead center, so that the heat is radiated by the radiator 4 from the pipe 3 and the temperature becomes almost room temperature and enters the regenerator 5, which is successively cooled to 45K.
In a certain degree, it is accelerated by the pulse tube 7 through the cold head 6, enters the expansion space 2 from the pipe 8 and adiabatically expands to perform the work of rotating the crankshaft 11. At this time, the temperature of the fluid near the cold head 6 remaining in the regenerator 5 and the pulse tube 7 drops further than 45 K due to adiabatic expansion. For example, it becomes 36K. When the expansion piston 10 moves toward the top dead center, the working fluid in the expansion space 2 is pushed out, and the pipe 8, the pulse pipe 7, and the cold head 6 cool the object to be cooled (electric sensor, etc.) (not shown), and the regenerator 5 It is warmed up and heated to near room temperature in the radiator 4, and returns to the compression space 1 through the pipe 3 to complete one cycle. By continuing this, 80K in a few minutes,
Eventually, a freezing temperature of about 24K can be obtained depending on the performance of the regenerator 5.

【0006】[0006]

【発明が解決しようとする課題】図8のパルス管式冷凍
機においてコールドヘッド6の温度を更に低くする場合
の問題点は、ほぼ常温からの熱伝導(蓄冷器の外筒や蓄
冷材、そして被冷却体が電気的センサーである場合には
センサーの複数本のリード線の熱伝導)や熱輻射による
熱がコールドヘッドに直接流入して冷凍温度を高くし冷
凍機の性能を低下させたり、冷凍温度を不安定にするこ
とである。
The problem of further lowering the temperature of the cold head 6 in the pulse tube type refrigerator of FIG. 8 is that heat conduction from approximately room temperature (the outer cylinder of the regenerator, the regenerator material, and When the object to be cooled is an electrical sensor, heat from multiple sensor leads (heat conduction) and heat from heat radiation directly flow into the cold head to raise the freezing temperature and reduce the performance of the refrigerator. To make the freezing temperature unstable.

【0007】この出願の発明は、パルス管式冷凍機の蓄
冷器、コールドヘッド、パルス管等からなるクライオス
タッドにおいて、ほぼ常温からの熱伝導や熱輻射により
コールドヘッドに流入する熱を低減して冷凍効率を高め
ることを目的とする。
According to the invention of this application, in a cryostat comprising a regenerator of a pulse tube refrigerator, a cold head, a pulse tube and the like, heat flowing into the cold head due to heat conduction and heat radiation from almost room temperature is reduced. The purpose is to increase the refrigeration efficiency.

【0008】[0008]

【課題を解決するための手段】この出願の発明に係るパ
ルス管式冷凍機のクライオスタッドは、コールドヘッド
に接合した蓄冷器の軸中心にパルス管を配設するととも
に、このパルス管には作動流体の流れに方向性を与える
方向部を低温部から常温部までの間に設け、且つ、この
方向部の周方向の蓄冷器の外筒に設けた予冷部を内部よ
り作動流体で冷却する構成を基本とするものである。
The cryostat of the pulse tube refrigerator according to the invention of this application has a pulse tube arranged at the center of the axis of a regenerator joined to a cold head, and the pulse tube is operated. A configuration in which a direction portion that gives directionality to the fluid flow is provided between the low temperature portion and the room temperature portion, and the precooling portion provided in the outer cylinder of the regenerator in the circumferential direction of this direction portion is cooled by the working fluid from the inside. Is the basis.

【0009】コールドヘッドおよびパルス管の低温部を
覆う遮蔽板を予冷部に接合することが好ましい。
It is preferable to bond a shield plate covering the cold head and the low temperature portion of the pulse tube to the precooling portion.

【0010】また、作動流体の加速および減速を効率的
に行うと同時に伝熱面積を大きくする円錐形状部をコー
ルドヘッドに設けることが好ましい。
Further, it is preferable that the cold head is provided with a conical portion for efficiently accelerating and decelerating the working fluid and at the same time increasing the heat transfer area.

【0011】更に、作動流体との熱交換のための内部フ
ィンを予冷部に設けることが好ましい。
Furthermore, it is preferable to provide internal fins for heat exchange with the working fluid in the precooling section.

【0012】更には、パルス管が低温部からほぼ常温部
までを複数の直径の異なるパルス管を方向部に設けた接
続口により接続して構成したものとし、流体抵抗の少な
いものとすることが好ましい。理想的にはパルス管を低
温部を細く、常温部の開口部円錐筒型にすれば解決でき
るが、製造が困難である。
Further, the pulse tube may be constructed by connecting from a low temperature portion to a substantially normal temperature portion by connecting ports provided with a plurality of pulse tubes having different diameters in a directional portion, so that the fluid resistance is small. preferable. Ideally, the pulse tube can be solved by making the low temperature part thin and the opening part conical tube type at the room temperature part, but it is difficult to manufacture.

【0013】[0013]

【作用】この出願の発明においては、例えば、常温を3
00K、コールドヘッドの温度を20Kとすれば、予冷
部の温度は80K〜130Kの温度とするものであり、
作動流体が内部より予冷部を冷却することにより、常温
からの熱伝導による侵入熱が予冷部によって除去され、
コールドヘッドの温度がより低くなると同時に冷凍効率
が高められる。
In the invention of this application, for example, the normal temperature is 3
If the temperature of the cold head is 00K and the temperature of the cold head is 20K, the temperature of the pre-cooling section is 80K to 130K.
Since the working fluid cools the pre-cooling section from the inside, the heat entering from the normal temperature is removed by the pre-cooling section.
The cold head temperature is lower and at the same time the refrigeration efficiency is increased.

【0014】コールドヘッドとパルス管の一部を覆う熱
遮蔽板を予冷部に接合すれば、常温からの熱輻射による
熱侵入が低減してコールドヘッドの温度がより低くな
る。
If a heat shield plate covering a part of the cold head and the pulse tube is joined to the pre-cooling portion, heat penetration due to heat radiation from room temperature is reduced and the temperature of the cold head becomes lower.

【0015】コールドヘッドの冷凍温度が60K〜10
0Kの領域でも、予冷部を150K〜200Kにすれ
ば、冷凍温度を安定させるのに有効である。
The freezing temperature of the cold head is 60K to 10K.
Even in the 0K region, setting the precooling section to 150K to 200K is effective in stabilizing the freezing temperature.

【0016】[0016]

【実施例】図1および図2は、この出願の発明の第1実
施例の詳細を示すものである。図1および図2におい
て、蓄冷器105は下方の第1蓄冷器部105Aと上方
の第2蓄冷器部105Bとから構成しており、第1蓄冷
器部105Aの外筒105A1の下端を基板116に接
合し、第1蓄冷器部105Aの外筒105A1の上端お
よび第2蓄冷器部105Bの外筒105B1の下端を予
冷部117に接合し、第2蓄冷器部105Bの外筒10
5B1の上端にはコールドヘッド106を接合する。
1 and 2 show details of a first embodiment of the invention of this application. 1 and 2, the regenerator 105 is composed of a lower first regenerator unit 105A and an upper second regenerator unit 105B, and a lower end of an outer cylinder 105A1 of the first regenerator unit 105A is provided with a substrate 116. And the upper end of the outer cylinder 105A1 of the first regenerator part 105A and the lower end of the outer cylinder 105B1 of the second regenerator part 105B are joined to the pre-cooling part 117, and the outer cylinder 10 of the second regenerator part 105B is joined.
The cold head 106 is joined to the upper end of 5B1.

【0017】コールドヘッド106には、作動流体の加
速および減速を効率的に行うと同時に伝熱面積を大きく
するための円錐形状部106Aを設ける。この円錐形状
部106Aは、作動流体が蓄冷器105からコールドヘ
ッド106を通過しパルス管107に入って作動流体を
加速し断熱膨張して温度降下させたり、逆にパルス管1
07より蓄冷器105に入る時の減速とを、それぞれ作
動流体の摩擦損失を少なくするように機能し、且つコー
ルドヘッド106の伝熱面積を広くして被冷却体を効率
よく冷却する効果を持つものである。この円錐形状部1
06Aの円錐角は、作動流体の速度が速くなるに従って
90度より30度と小さくする。
The cold head 106 is provided with a conical portion 106A for efficiently accelerating and decelerating the working fluid and at the same time increasing the heat transfer area. In this conical portion 106A, the working fluid passes from the regenerator 105 through the cold head 106 and enters the pulse tube 107 to accelerate the working fluid and adiabatically expand it to lower the temperature.
From 07, the deceleration upon entering the regenerator 105 functions to reduce the friction loss of the working fluid, and has the effect of increasing the heat transfer area of the cold head 106 to efficiently cool the cooled object. It is a thing. This conical part 1
The cone angle of 06A is reduced from 90 degrees to 30 degrees as the working fluid velocity increases.

【0018】蓄冷器105の軸中心に配設したパルス管
107も下方の第1パルス管部107Aと上方の第2パ
ルス管部107Bから構成し、第1パルス管部107A
の下端部は基板116に接合した放熱器104の内部に
嵌入し、第1パルス管部107Aの上端部内に方向部1
19の下側筒状部119Aを嵌入し、方向部119の中
心の接続口に第2パルス管部107Bの下端部を嵌入
し、第2パルス管部107Bの上端部に方向部120を
設ける。
The pulse tube 107 arranged at the axial center of the regenerator 105 is also composed of a lower first pulse tube section 107A and an upper second pulse tube section 107B, and a first pulse tube section 107A.
The lower end portion of the first pulse tube portion 107A is fitted into the radiator 104 joined to the substrate 116, and the directional portion 1 is inserted into the upper end portion of the first pulse tube portion 107A.
The lower tubular portion 119A of 19 is fitted, the lower end of the second pulse tube portion 107B is fitted in the central connection port of the direction portion 119, and the direction portion 120 is provided at the upper end portion of the second pulse tube portion 107B.

【0019】予冷部117には第2蓄冷器部105Bと
コールドヘッド107を覆う熱遮蔽板121を接合し、
この熱遮蔽板121、予冷部117および第1蓄冷器部
105Aを覆う真空カバー122を基板116に接合す
る。
A heat shield plate 121 for covering the second regenerator section 105B and the cold head 107 is joined to the pre-cooling section 117,
A vacuum cover 122 that covers the heat shield plate 121, the pre-cooling unit 117, and the first regenerator unit 105A is bonded to the substrate 116.

【0020】放熱器104には圧縮空間からの配管10
3を接続し、またパルス管107と膨張空間とを接続す
る配管108を取付け、配管103−放熱器104−第
1蓄冷器部105A−方向部119−第2蓄冷器部10
5B−コールドヘッド106−第2パルス管部107B
−第1パルス管部107A−配管108の流路を構成さ
せる。
The radiator 104 has a pipe 10 extending from the compression space.
3 is connected, and a pipe 108 for connecting the pulse tube 107 and the expansion space is attached, and the pipe 103-radiator 104-first regenerator portion 105A-direction portion 119-second regenerator portion 10 is connected.
5B-Cold head 106-Second pulse tube section 107B
-First pulse tube portion 107A-To configure the flow path of the pipe 108.

【0021】予冷部117には作動流体との熱交換のた
めの内部フィン117Aを形成し、方向部119により
作動流体の流れを内部フィン117Aに向ける。コール
ドヘッド106にも作動流体との熱交換を行わせる内部
フィン106Bを形成し、方向部120により作動流体
の流れを内部フィン106Bに向ける。
An internal fin 117A for heat exchange with the working fluid is formed in the precooling section 117, and the flow of the working fluid is directed to the internal fin 117A by the direction section 119. The cold head 106 is also formed with internal fins 106B for exchanging heat with the working fluid, and the direction 120 directs the flow of the working fluid to the internal fins 106B.

【0022】第1蓄冷器部105A内には多数枚のブロ
ンズやステンレスのメッシュを蓄冷材として挿入し、第
2蓄冷器部105B内には無数のほぼ球体に加工された
磁気比熱の大きな希土類や鉛等を蓄冷材として挿入す
る。
A large number of bronze or stainless meshes are inserted as a regenerator material in the first regenerator portion 105A, and a myriad of rare earths having a large magnetic specific heat processed into a myriad of spheres in the second regenerator portion 105B. Insert lead etc. as a cold storage material.

【0023】作動流体としては、ヘリウム、水素、アル
ゴン、空気、窒素その他の気体、または分子量の異なる
複数の混合気体を使用する。
As the working fluid, helium, hydrogen, argon, air, nitrogen and other gases, or a plurality of mixed gases having different molecular weights are used.

【0024】パルス管107は、蓄冷材との熱干渉をを
防ぐためステンレス等の金属管を用いたときには、その
外壁にテフロン等の非熱伝導体のチューブを被覆したり
焼き付けしたりし、また、低熱伝導率のセラミックス管
等で形成する。
When a metal tube such as stainless steel is used as the pulse tube 107 to prevent heat interference with the regenerator material, the outer wall of the pulse tube 107 is covered or baked with a tube of a non-heat conductor such as Teflon. , A low heat conductivity ceramic tube or the like.

【0025】以上に説明した第1実施例を略図化したの
が図3である。図4〜図7は、この出願の発明の第2実
施例〜第5実施例を略図化したものである。
FIG. 3 is a schematic view of the first embodiment described above. 4 to 7 are schematic views of the second to fifth embodiments of the invention of this application.

【0026】第1実施例を概略化した図3では、蓄冷器
105の外筒径はコールドヘッド106から常温部(下
端)まで同一であり、蓄冷器105の軸中心に配設した
パルス管107の径も低温部(上端)から常温部(下
端)まで同一である。
In FIG. 3 schematically showing the first embodiment, the outer cylinder diameter of the regenerator 105 is the same from the cold head 106 to the room temperature portion (lower end), and the pulse tube 107 arranged at the axial center of the regenerator 105. Has the same diameter from the low temperature part (upper end) to the room temperature part (lower end).

【0027】図4の第2実施例は、コールドヘッド20
6に上端で接合した蓄冷器205の外筒径を2段の段付
き形状とし、蓄冷器105の軸中心に配設したパルス管
207の径を低温部(上端)から常温部(下端)まで同
一とし、パルス管207の上端と中央に作動流体の流れ
に方向性を与える方向部220,219を設け、蓄冷器
205の外筒に設けた予冷部217を内部より作動流体
で冷却するようにしてある。コールドヘッド206の下
面中心には第1実施例と同様に円錐形状部206Aを設
けてある。
The second embodiment shown in FIG. 4 is a cold head 20.
The outer cylinder diameter of the regenerator 205 joined to 6 at the upper end has a stepped shape with two steps, and the diameter of the pulse tube 207 arranged at the axial center of the regenerator 105 is from the low temperature portion (upper end) to the room temperature portion (lower end). The pulse tubes 207 are provided with the directional portions 220 and 219 at the upper end and the center of the pulse tube 207 for directing the flow of the working fluid, and the precooling portion 217 provided on the outer cylinder of the regenerator 205 is cooled by the working fluid from the inside. There is. At the center of the lower surface of the cold head 206, a conical portion 206A is provided as in the first embodiment.

【0028】図5の第3実施例は、コールドヘッド30
6に上端で接合した蓄冷器305の外筒径をコールドヘ
ッド306から常温部まで同一とし、蓄冷器305の軸
中心に配設したパルス管307の径を2段の段付き形状
(低温部が小径で常温部が大径)とし、パルス管307
の小径部上端と大径部上端に作動流体の流れに方向性を
与える方向部320,319を設け、蓄冷器305の外
筒に設けた予冷部317を内部より作動流体で冷却する
ようにしてある。コールドヘッド306の下面中心に
は、第1実施例と同様に円錐形状部306Aを設けてあ
る。
The third embodiment shown in FIG. 5 is a cold head 30.
6, the outer cylinder diameter of the regenerator 305 joined at the upper end is the same from the cold head 306 to the room temperature portion, and the diameter of the pulse tube 307 disposed at the axial center of the regenerator 305 has a two-stepped shape (low temperature portion is Pulse tube 307 with small diameter and large diameter at room temperature
The directional portions 320 and 319 that direct the flow of the working fluid are provided at the upper end of the small diameter part and the upper end of the large diameter part of the precooling part 317 provided in the outer cylinder of the regenerator 305 and are cooled by the working fluid from the inside. is there. At the center of the lower surface of the cold head 306, a conical portion 306A is provided as in the first embodiment.

【0029】図6の第4実施例は、コールドヘッド40
6に上端で接合した蓄冷器405の外筒径を図4のもの
と同様に2段の段付き形状とし、蓄冷器405の軸中心
に配設したパルス管407の径を図5のものと同様に2
段の段付き形状とし、パルス管407の小径部上端と大
径部上端に作動流体の流れに方向性を与える方向部42
0,419を設け、蓄冷器405の外筒に設けた予冷部
417を内部より作動流体で冷却するようにしてある。
コールドヘッド406の下面中心には、第1実施例と同
様に円錐形状部406Aを設けてある。
The fourth embodiment shown in FIG. 6 is a cold head 40.
6, the outer cylinder diameter of the regenerator 405 joined at the upper end has a stepped shape of two stages as in FIG. 4, and the diameter of the pulse tube 407 disposed at the axial center of the regenerator 405 is the same as that of FIG. Similarly 2
The pulse tube 407 has a stepped shape, and the directional portion 42 that gives directionality to the flow of the working fluid is provided at the upper end of the small diameter portion and the upper end of the large diameter portion of the pulse tube 407.
0 and 419 are provided, and the precooling unit 417 provided in the outer cylinder of the regenerator 405 is cooled from the inside by the working fluid.
At the center of the lower surface of the cold head 406, a conical portion 406A is provided as in the first embodiment.

【0030】図7の第5実施例は、コールドヘッド50
6に上端で接合した蓄冷器505の外筒径を3段の段付
き形状とし、蓄冷器505の軸中心に配設したパルス管
507の径を3段の段付き形状とし、パルス管507の
小径部、中径部、大径部の各上端に作動流体の流れに方
向性を与える方向部520,519,519Aを設け、
蓄冷器505の外筒に設けた2つの予冷部517,51
7Aを内部より作動流体で冷却するようにしてある。コ
ールドヘッド506の下面中心には、第1仁氏例と同様
に円錐形状部506Aを設けてある。
The fifth embodiment shown in FIG. 7 is a cold head 50.
6, the outer cylinder diameter of the regenerator 505 joined at the upper end has a three-stepped shape, and the diameter of the pulse tube 507 disposed at the axial center of the regenerator 505 has a three-stepped shape. Providing directional portions 520, 519, 519A for directing the flow of the working fluid at the upper ends of the small diameter portion, the medium diameter portion, and the large diameter portion,
Two pre-cooling parts 517, 51 provided on the outer cylinder of the regenerator 505
7A is cooled from the inside by a working fluid. At the center of the lower surface of the cold head 506, a conical portion 506A is provided as in the case of the first example.

【0031】第1〜第5実施例ではパルス管を低温部か
ら常温部まで同一径または低温部から常温部に近づくに
従って段階的に太くなる形状としたが、作動流体の粘性
は温度が高くなると大きくなることを考慮すると、低温
部では直径を小さく(断面積を小さく)、常温部に近づ
くに従って太くなるような円錐形のパルス管ならば理想
的である。
In the first to fifth embodiments, the pulse tube has the same diameter from the low temperature portion to the normal temperature portion or has a shape that gradually increases as the temperature approaches the normal temperature portion, but the viscosity of the working fluid increases as the temperature increases. Considering the increase in size, it is ideal to use a conical pulse tube having a small diameter (small cross-sectional area) at a low temperature portion and becoming thicker as it approaches a room temperature portion.

【0032】[0032]

【発明の効果】以上説明したように、この出願の発明に
よれば、常温からコールドヘッドへの侵入熱を低減して
冷凍効率を高くすることができる。その上、クライオス
タットを非常にコンパクトに構成できるため、クライオ
スタットの取扱いが容易である等の優れた効果が得られ
るものである。
As described above, according to the invention of this application, the heat entering the cold head from room temperature can be reduced and the refrigeration efficiency can be increased. In addition, since the cryostat can be made extremely compact, it is possible to obtain excellent effects such as easy handling of the cryostat.

【図面の簡単な説明】[Brief description of drawings]

【図1】この出願の発明の第1実施例の構成の詳細を示
す図である。
FIG. 1 is a diagram showing details of the configuration of a first embodiment of the invention of this application.

【図2】図2の要部の拡大図である。FIG. 2 is an enlarged view of a main part of FIG.

【図3】この出願の発明の第1実施例の構成の概略を示
す図である。
FIG. 3 is a diagram showing a schematic configuration of a first embodiment of the invention of this application.

【図4】この出願の発明の第2実施例の構成の概略を示
す図である。
FIG. 4 is a diagram showing an outline of a configuration of a second embodiment of the invention of this application.

【図5】この出願の発明の第3実施例の構成の概略を示
す図である。
FIG. 5 is a diagram showing an outline of a configuration of a third embodiment of the invention of this application.

【図6】この出願の発明の第4実施例の構成の概略を示
す図である。
FIG. 6 is a diagram showing a schematic configuration of a fourth embodiment of the invention of this application.

【図7】この出願の発明の第5実施例の構成の概略を示
す図である。
FIG. 7 is a diagram showing a schematic configuration of a fifth embodiment of the invention of this application.

【図8】パルス管式冷凍機の構成の概略を示す図であ
る。
FIG. 8 is a diagram showing a schematic configuration of a pulse tube refrigerator.

【符号の説明】[Explanation of symbols]

1・・・圧縮空間 2・・・膨張空間 3,103・・・配管 4,104・・・放熱器 5,105,205,305,405,505・・・蓄
冷器 6,106,206,306,406,506・・・コ
ールドヘッド 7,107,207,307,407,507・・・パ
ルス管 8・・・配管 9・・・圧縮ピストン 10・・・膨張ピストン 11・・・クランクシャフト 12,13・・・クランクピン 14・・・ピストンリング 15・・・クランク角設定機構 106A,206A,306A,406A,506A・
・・円錐形状部 117,217,317,417,517・・・予冷部 117A・・・内部フィン 119,219,319,419,519・・・方向部 121・・・熱遮蔽板
1 ... Compression space 2 ... Expansion space 3,103 ... Piping 4,104 ... Radiator 5,105,205,305,405,505 ... Regenerator 6,106,206,306 , 406, 506 ... Cold head 7, 107, 207, 307, 407, 507 ... Pulse tube 8 ... Piping 9 ... Compression piston 10 ... Expansion piston 11 ... Crank shaft 12, 13 ... Crank pin 14 ... Piston ring 15 ... Crank angle setting mechanism 106A, 206A, 306A, 406A, 506A
..Cone shaped parts 117, 217, 317, 417, 517 ... Pre-cooling part 117A ... Internal fins 119, 219, 319, 419, 519 ... Direction part 121 ... Heat shield plate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 パルス管式冷凍機の蓄冷器、コールドヘ
ッド、パルス管等からなるクライオスタッドにおいて、
コールドヘッドに接合した蓄冷器の軸中心にパルス管を
配設するとともに、このパルス管には作動流体の流れに
方向性を与える方向部を低温部から常温部までの間に設
け、且つ、この方向部の周方向の蓄冷器の外筒に設けた
予冷部を内部より作動流体で冷却するようにした、パル
ス管式冷凍機の予冷部付クライオスタット。
1. A cryostat comprising a regenerator, a cold head, a pulse tube and the like of a pulse tube refrigerator,
A pulse tube is arranged at the axial center of the regenerator joined to the cold head, and the pulse tube is provided with a directional section for directing the flow of the working fluid between the low temperature section and the room temperature section. A cryostat with a precooling unit for a pulse tube refrigerator, in which a precooling unit provided in an outer cylinder of a regenerator in a circumferential direction is cooled from inside by a working fluid.
【請求項2】 コールドヘッドおよびパルス管の低温部
を覆う熱遮蔽板を予冷部に接合した、請求項1記載のパ
ルス管式冷凍機の予冷部付クライオスタット。
2. The cryostat with a precooling section for a pulse tube refrigerator according to claim 1, wherein a heat shield plate covering the cold head and the low temperature section of the pulse tube is joined to the precooling section.
【請求項3】 作動流体の加速および減速を効率的に行
うと同時に伝熱面積大きくする円錐形状部をコールドヘ
ッドに設けた、請求項1または2に記載のパルス管式冷
凍機の予冷部付クライオスタット。
3. The pulse tube refrigerator with a precooling portion according to claim 1, wherein the cold head is provided with a conical portion for efficiently accelerating and decelerating the working fluid and at the same time increasing the heat transfer area. Cryostat.
【請求項4】 作動流体との熱交換のための内部フィン
を予冷部に設けた、請求項1〜3のいずれか1つに記載
のパルス管式冷凍機の予冷部付クライオスタット。
4. The cryostat with a precooling section for a pulse tube refrigerator according to claim 1, wherein the precooling section is provided with internal fins for heat exchange with a working fluid.
【請求項5】 パルス管が蓄冷器内で低温部からほぼ常
温部までを複数の直径の異なるパルス管を方向部に設け
た接続口により接続して構成したものである、請求項1
〜4のいずれか1つに記載のパルス管式冷凍機の予冷部
付クライオスタット。
5. The pulse tube is configured by connecting a low temperature portion to a substantially normal temperature portion in a regenerator by connecting ports provided with a plurality of pulse tubes having different diameters in a direction portion.
The cryostat with a precooling section of the pulse tube refrigerator according to any one of 4 to 4.
JP8831793A 1993-04-15 1993-04-15 Cryostat with precooling part of pulse-tube type refrigerator Pending JPH06300376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8831793A JPH06300376A (en) 1993-04-15 1993-04-15 Cryostat with precooling part of pulse-tube type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8831793A JPH06300376A (en) 1993-04-15 1993-04-15 Cryostat with precooling part of pulse-tube type refrigerator

Publications (1)

Publication Number Publication Date
JPH06300376A true JPH06300376A (en) 1994-10-28

Family

ID=13939554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8831793A Pending JPH06300376A (en) 1993-04-15 1993-04-15 Cryostat with precooling part of pulse-tube type refrigerator

Country Status (1)

Country Link
JP (1) JPH06300376A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821150A1 (en) * 2001-02-17 2002-08-23 Lg Electronics Inc Pulse tube refrigerator has cover partially inserted into hollow cylinder with central cylinder combined with pulse tube and regenerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821150A1 (en) * 2001-02-17 2002-08-23 Lg Electronics Inc Pulse tube refrigerator has cover partially inserted into hollow cylinder with central cylinder combined with pulse tube and regenerator

Similar Documents

Publication Publication Date Title
EP1422485B1 (en) Refrigeration method for high temperature superconductivity
JP3702964B2 (en) Multistage low temperature refrigerator
JP4365188B2 (en) Pulse tube type refrigeration equipment
JP4673380B2 (en) Multistage cryogenic cooling device having a coaxial second stage
JP2697707B2 (en) Pulse tube refrigerator
US11649989B2 (en) Heat station for cooling a circulating cryogen
US3147600A (en) Multi-stage cryogenic engine
JPH06300376A (en) Cryostat with precooling part of pulse-tube type refrigerator
JPH0730963B2 (en) Helium cooling system
JP3293538B2 (en) Cool storage refrigerator
JPS63302259A (en) Cryogenic generator
US4281517A (en) Single stage twin piston cryogenic refrigerator
JP2983215B1 (en) Pulse tube refrigerator heat exchanger
JPH05126426A (en) Cryogenic refrigerator
CN2062805U (en) Coaxial pulse tube refrigerating machine with small hole and air vesicle
JP2000292022A (en) Gas cycle engine refrigerating machine
JPH06137696A (en) Thermal insulation pulse-tube-type refrigerator
JPH0674584A (en) Cryogenic refrigerator and operating method thereof
JPH08313095A (en) Cold storage type refrigerating machine
JPH06323660A (en) Cryostat for pulse tube type refrigerator
JPH0528438Y2 (en)
JPH05312423A (en) Double inlet type freezer device
JP3691169B2 (en) Equipment structure of room temperature section of pulse tube refrigerator
JP2731766B2 (en) Expansion cylinder device for refrigerator
JP2845724B2 (en) Regenerator for cryogenic refrigerator