JPH06299169A - Method for gasifying plastics - Google Patents

Method for gasifying plastics

Info

Publication number
JPH06299169A
JPH06299169A JP5093014A JP9301493A JPH06299169A JP H06299169 A JPH06299169 A JP H06299169A JP 5093014 A JP5093014 A JP 5093014A JP 9301493 A JP9301493 A JP 9301493A JP H06299169 A JPH06299169 A JP H06299169A
Authority
JP
Japan
Prior art keywords
reactor
reaction
gas
gasifying
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5093014A
Other languages
Japanese (ja)
Other versions
JP3469604B2 (en
Inventor
Heiji Enomoto
兵治 榎本
Nakamichi Yamazaki
仲道 山崎
Hisaaki Makino
久昭 牧野
Takehiko Moriya
武彦 守谷
Shiro Ishii
四郎 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Taiheiyo Cement Corp
Original Assignee
Tohoku Electric Power Co Inc
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Onoda Cement Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP09301493A priority Critical patent/JP3469604B2/en
Publication of JPH06299169A publication Critical patent/JPH06299169A/en
Application granted granted Critical
Publication of JP3469604B2 publication Critical patent/JP3469604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE:To reform plastic wastes into useful gases such as hydrogen gas and hydrocarbon gases by bringing the plastic wastes into contact with high temperature water including supercritical water in a reactor to gasify the plastic wastes. CONSTITUTION:A method for gasifying a plastics into useful gases such as hydrogen gas and hydrocarbon gases comprises feeding the plastics and pure water in a tubular reactor 1, inserting the reactor 1 into a crucible 3, mounting a cap 2, setting the reaction temperature to >=200 deg.C with a temperature controller 6, and subsequently bringing the plastics into contact with high temperature hot water including supercritical water in the reactor 1 for their reaction for a reaction time of 1hr. Thermoplastic resins such as polyethylene, polypropylene, polystyrene and polyvinyl chloride, and thermosetting resins such as polyurethanes and melamine resins can be used as the plastics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラスチック、すなわ
ちポリエチレン、ポリプロピレン、ポリスチレン、ポリ
塩化ビニルなどの熱可塑性樹脂、ポリウレタン、メラミ
ン、PETなどの熱硬化性樹脂を水素ガス、炭化水素ガ
スなどの有用なガスに転化する方法に関する。
The present invention relates to plastics, that is, thermoplastic resins such as polyethylene, polypropylene, polystyrene and polyvinyl chloride, thermosetting resins such as polyurethane, melamine and PET, which are useful in hydrogen gas and hydrocarbon gas. The method of converting to pure gas.

【0002】[0002]

【従来の技術】従来、プラスチックは生活廃棄物、産業
廃棄物として膨大な量が排出されており、その処分ある
いは再利用が現在急務の課題となっている。そのため、
これら廃棄物としてのプラスチックをガス化し、再利用
する方法が従来、種々提案されている。その方法の一つ
として、800℃前後の高温で熱分解する方法が知られ
ているが、塩素ガス、炭酸ガスなど多くの有害ガスの発
生を伴うことなどの問題があった。
2. Description of the Related Art In the past, enormous amounts of plastics have been discharged as domestic wastes and industrial wastes, and the disposal or reuse thereof has become an urgent issue. for that reason,
Various methods for gasifying and recycling these plastics as waste have been proposed. As one of the methods, a method of thermally decomposing at a high temperature of about 800 ° C. is known, but there is a problem in that many harmful gases such as chlorine gas and carbon dioxide gas are generated.

【0003】[0003]

【発明が解決しようとする課題】したがって、本発明
は、廃棄されるプラスチックを有効利用するため、簡単
な方法でプラスチックを有用なガス状物質に分解する方
法を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for decomposing plastic into useful gaseous substances in a simple manner in order to make effective use of discarded plastic.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記課題を
解決するため、プラスチックのガス化に超臨界水を含む
高温熱水を利用するという手段を採用した。すなわち、
本発明は、プラスチックを反応器内で超臨界水を含む高
温熱水と接触、反応せしめ、ガス化することを特徴とす
るプラスチックのガス化方法を提供するものである。
In order to solve the above problems, the present inventor has adopted a means of utilizing high temperature hot water containing supercritical water for gasification of plastics. That is,
The present invention provides a method for gasifying plastic, which comprises contacting and reacting plastic with high-temperature hot water containing supercritical water in a reactor to gasify the plastic.

【0005】この場合、反応器内に予め充填される水の
充填率は反応器内の圧力の大きさに直接影響し、かつ、
得られるガス化率に関係し、目的に応じ適宜選択しうる
が、通常、1容量%以上90容量%以下、好ましくは5
〜40容量%の範囲で適宜選択することができる。
In this case, the filling rate of the water pre-filled in the reactor directly affects the magnitude of the pressure in the reactor, and
Although it can be appropriately selected depending on the purpose in relation to the obtained gasification rate, it is usually 1% by volume or more and 90% by volume or less, preferably 5% by volume or less.
It can be appropriately selected within the range of ˜40% by volume.

【0006】また、反応温度としては200℃以上、好
ましくは250ないし450℃とする。本発明の方法は
ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩
化ビニルなどの熱可塑性樹脂、ポリエチレンテレフタレ
ート、ポリウレタン、メラミン樹脂などの熱硬化性樹脂
など、ほとんど全てのプラスチックに適用することがで
きる。
The reaction temperature is 200 ° C. or higher, preferably 250 to 450 ° C. The method of the present invention can be applied to almost all plastics such as thermoplastic resins such as polyethylene, polypropylene, polystyrene and polyvinyl chloride, and thermosetting resins such as polyethylene terephthalate, polyurethane and melamine resin.

【0007】本発明の方法は反応器内に予め、反応触媒
(反応助剤)を添加してもよい。この場合の反応触媒の
例としては、NaOHなどのアルカリ、金属イオン(N
iイオン、Feイオン)、SDBS(アルキルベンゼン
スルホン酸ナトリウム)などの界面活性剤、メチルアル
コール、エチルアルコールなどアルコール類、その他固
体触媒などを挙げることができる。なお、反応器として
ステンレス鋼製など、反応触媒としての金属イオン源を
含むものを用いてもよい。
In the method of the present invention, a reaction catalyst (reaction aid) may be added in advance in the reactor. Examples of the reaction catalyst in this case include alkali such as NaOH and metal ions (N
Examples thereof include surfactants such as i ions, Fe ions), SDBS (sodium alkylbenzene sulfonate), alcohols such as methyl alcohol and ethyl alcohol, and other solid catalysts. The reactor may be made of stainless steel or the like and includes a metal ion source as a reaction catalyst.

【0008】用いられる水としては、純水のほか、上述
のように必要に応じて添加物、例えば触媒を含むもので
あってもよく、また、一度用いられた水を再度利用する
こともできるし、むしろ水を再度利用することによりガ
ス化に好ましい場合もある。これは一度反応に使用した
水に本発明の方法によるガス化に有用な成分(反応助
剤)が含まれることによるものである。
As the water used, in addition to pure water, additives such as catalysts may be added as necessary as described above, and water used once may be reused. However, it may be preferable for gasification by reusing water. This is because the water once used for the reaction contains a component (reaction aid) useful for gasification by the method of the present invention.

【0009】[0009]

【作用】本発明によれば、反応器内での水の充填率、反
応温度、反応時間に応じて、プラスチックを任意の成分
のガス状物質に短時間で改質することができる。
According to the present invention, the plastic can be reformed into a gaseous substance of any component in a short time according to the filling rate of water in the reactor, the reaction temperature and the reaction time.

【0010】[0010]

【実施例】以下、図示の実施例を参照して本発明をより
具体的に説明する。 (実施例1)図1および図2に示すオートクレーブ装置
を用いて、ポリ塩化ビニルのガス化実験をおこなった。
すなわち、240℃ないし280℃までは図1のチュー
ブ型反応容器を用い、300℃ないし400℃までは図
2のHASTELLOY−C製オートクレーブ装置を用
いた。図1において、1は反応容器(公称容量100m
l)、2はキャップ、3はるつぼ、4は熱電対、5は圧
力変換器、6は温度コントローラー、7は記録計、8は
シグナルコンデショナー、9はボールバルブである。ま
た、図2において、11は反応容器(公称容量100m
l)、12は蓋板、13はヒーター、14は熱電対、1
5は圧力変換器、16は温度コントローラー、17はサ
イリスタレギュレーター、18はシグナルコンデショナ
ー、19はバルブ、20はコネクター、21は回転コン
トローラー、22はレコーダーである。
The present invention will be described more specifically below with reference to the illustrated embodiments. (Example 1) A gasification experiment of polyvinyl chloride was carried out using the autoclave apparatus shown in FIGS. 1 and 2.
That is, the tube-type reaction container of FIG. 1 was used from 240 ° C. to 280 ° C., and the HASTELLOY-C autoclave device of FIG. 2 was used from 300 ° C. to 400 ° C. In FIG. 1, 1 is a reaction vessel (nominal capacity 100 m
l) 2 is a cap, 3 is a crucible, 4 is a thermocouple, 5 is a pressure transducer, 6 is a temperature controller, 7 is a recorder, 8 is a signal conditioner, and 9 is a ball valve. Further, in FIG. 2, 11 is a reaction vessel (nominal volume 100 m
l), 12 is a cover plate, 13 is a heater, 14 is a thermocouple, 1
5 is a pressure converter, 16 is a temperature controller, 17 is a thyristor regulator, 18 is a signal conditioner, 19 is a valve, 20 is a connector, 21 is a rotation controller, and 22 is a recorder.

【0011】実験条件は図1のチューブ型反応容器の場
合は、試料3.0g、純水26cc、反応時間20時間
とした。図2のHASTELLOY−C製オートクレー
ブ装置の場合は、試料4.0g(但し、400℃では
0.5gとした)、純水40cc、反応時間1時間とし
た。なお、実験は反応容器を脱気したのちに行った。以
下に述べる発生ガス量は、容器に残っているガスの量は
入っていない。従って、実際に発生したガス量は、容器
の気相の体積を加えたものになる。図3にガス発生量と
反応温度との関係を示す。図3から明らかなように、ガ
ス発生量は反応温度の上昇とともに著しく増加した。
In the case of the tube type reaction vessel of FIG. 1, the experimental conditions were 3.0 g of sample, 26 cc of pure water, and a reaction time of 20 hours. In the case of the HASTELLOY-C autoclave apparatus of FIG. 2, the sample was 4.0 g (however, it was 0.5 g at 400 ° C.), pure water was 40 cc, and the reaction time was 1 hour. The experiment was conducted after deaeration of the reaction vessel. The amount of generated gas described below does not include the amount of gas remaining in the container. Therefore, the amount of gas actually generated is the sum of the volume of the gas phase of the container. FIG. 3 shows the relationship between the gas generation amount and the reaction temperature. As is clear from FIG. 3, the gas generation amount increased remarkably as the reaction temperature increased.

【0012】また、図4にガス組成と反応温度との関係
を示す。図4から明らかなように、280℃までは各成
分の割合はほぼ等しく、CO2 は約20%、H2 は約8
0%であり、その他のガスはほとんど検出されなかっ
た。また300℃以上ではH2が発生ガスのほとんどを
占め、温度の上昇とともに炭化水素ガスが増加した。
FIG. 4 shows the relationship between the gas composition and the reaction temperature. As is apparent from FIG. 4, the proportion of each component is almost equal up to 280 ° C., CO 2 is about 20%, and H 2 is about 8%.
0%, and almost no other gas was detected. At 300 ° C. or higher, H 2 occupies most of the generated gas, and the hydrocarbon gas increases as the temperature rises.

【0013】(実施例2)図5に示すオートクレーブ装
置を用いて、ポリエチレン、ポリプロピレンおよびポリ
スチレンのガス化実験をおこなった。ただし、試料がポ
リエチレンで240℃での実験においては図1に示すチ
ューブ型オートクレーブ装置を用いた。なお図5におい
て、31は反応容器(公称容量100ml)、32は蓋
体、33はヒーター、34は熱電対、35は圧力変換
器、36は温度コントローラー、38はシグナルコンデ
ショナー、39はバルブ、40はコネクター、41は回
転コントローラーである。実験条件はチューブ型オート
クレーブ装置を用いた場合は、試料3.0g、純水26
cc、反応時間20時間とし、図5に示すオートクレー
ブ装置を用いた場合は、試料4.0g、純水40cc、
反応時間6時間とした。図6にポリエチレン、ポリプロ
ピレンおよびポリスチレンのそれぞれについてガス発生
量と反応温度との関係を示す。図6から明らかなよう
に、いずれの場合も、ガス発生量は反応温度の上昇とと
もに著しく増加した。特にポリエチレンでは超臨界状態
で著しいガスの発生量が見られた。
Example 2 A gasification experiment of polyethylene, polypropylene and polystyrene was carried out using the autoclave apparatus shown in FIG. However, in the experiment at 240 ° C. using polyethylene as the sample, the tube type autoclave apparatus shown in FIG. 1 was used. In FIG. 5, 31 is a reaction vessel (nominal volume 100 ml), 32 is a lid, 33 is a heater, 34 is a thermocouple, 35 is a pressure converter, 36 is a temperature controller, 38 is a signal conditioner, 39 is a valve, 40 Is a connector and 41 is a rotation controller. As for the experimental conditions, when a tube type autoclave was used, a sample of 3.0 g, pure water 26
cc, the reaction time was 20 hours, and when the autoclave apparatus shown in FIG. 5 was used, a sample of 4.0 g, pure water of 40 cc,
The reaction time was 6 hours. FIG. 6 shows the relationship between the gas generation amount and the reaction temperature for each of polyethylene, polypropylene and polystyrene. As is clear from FIG. 6, in any case, the gas generation amount remarkably increased as the reaction temperature increased. Especially in polyethylene, a remarkable amount of gas was observed in the supercritical state.

【0014】また、図7にポリエチレンからの発生ガス
組成と反応温度との関係、図8にポリプロピレンからの
発生ガス組成と反応温度との関係、図9にポリスチレン
からの発生ガス組成と反応温度との関係を示す。図7か
ら明らかなように、300℃まではH2 ガスが殆どであ
り、残りはCO2 であった。しかし反応温度が300℃
以上では炭化水素ガスが増加しCO2 は減少した。ま
た、図8から明らかなように、ポリプロピレンからの発
生ガスは365℃から415℃にかけてH2 ガスが増加
し、CO2 は減少した。炭化水素ガスは常に50%以上
存在し、殆ど変化しなかった。また、図9から明らかな
ように、ポリスチレンからの発生ガスは365℃から4
15℃の範囲では、炭化水素ガス以外の全てのガスの割
合が温度の上昇とともに減少しており、415℃では炭
化水素ガスがほぼ100%となり、ポリエチレン、ポリ
プロピレンと比較してCH4 の割合が大きく、H2 の割
合は小さかった。
Further, FIG. 7 shows the relationship between the gas composition from polyethylene and the reaction temperature, FIG. 8 shows the relationship between the gas composition from polypropylene and the reaction temperature, and FIG. 9 shows the gas composition from polystyrene and the reaction temperature. Shows the relationship. As is apparent from FIG. 7, most of the H 2 gas was up to 300 ° C., and the rest was CO 2 . However, the reaction temperature is 300 ℃
With the above, the hydrocarbon gas increased and CO 2 decreased. Further, as is clear from FIG. 8, in the gas generated from polypropylene, H 2 gas increased and CO 2 decreased from 365 ° C. to 415 ° C. The hydrocarbon gas was always present at 50% or more and hardly changed. Further, as is clear from FIG. 9, the gas generated from polystyrene is 4 ° C from 365 ° C.
In the range of 15 ° C, the proportions of all gases other than the hydrocarbon gas decrease with increasing temperature, and at 415 ° C, the hydrocarbon gas becomes almost 100%, and the proportion of CH 4 is much higher than that of polyethylene and polypropylene. It was large and the proportion of H 2 was small.

【0015】(実施例3)図5に示すオートクレーブ装
置を用い、触媒(反応助剤)としてSDBSおよびNa
OH等を添加し、ポリエチレンのガス化実験をおこなっ
た。実験条件は試料4.0g、純水40cc、反応温度
415℃、反応時間2時間、攪拌回転数300rpmと
した。下記表1にその結果を示す。
Example 3 Using the autoclave apparatus shown in FIG. 5, SDBS and Na as catalysts (reaction aids) were used.
A gasification experiment of polyethylene was carried out by adding OH and the like. The experimental conditions were 4.0 g of a sample, 40 cc of pure water, a reaction temperature of 415 ° C., a reaction time of 2 hours, and a stirring rotation speed of 300 rpm. The results are shown in Table 1 below.

【0016】[0016]

【表1】 [Table 1]

【0017】この結果からSDBSおよびNaOHがポ
リエチレンのガス化に有効であることが確認された。N
aOHを添加した場合と触媒無添加の場合を比較する
と、ガス発生量は3倍以上に増加した。
From these results, it was confirmed that SDBS and NaOH are effective for the gasification of polyethylene. N
Comparing the case where aOH was added and the case where no catalyst was added, the gas generation amount increased three times or more.

【0018】(実施例4)図5に示すオートクレーブ装
置を用い、触媒(反応助剤)としてCH3 OH、SDB
SおよびNaOHを添加し、ポリスチレンのガス化実験
をおこなった。実験条件は試料4.0g、純水40c
c、反応温度415℃、反応時間2時間、攪拌回転数3
00rpmとした。下記表2にその結果を示す。
Example 4 Using the autoclave apparatus shown in FIG. 5, CH 3 OH and SDB were used as catalysts (reaction aids).
A gasification experiment of polystyrene was conducted by adding S and NaOH. The experimental conditions are 4.0 g of sample and 40 c of pure water.
c, reaction temperature 415 ° C., reaction time 2 hours, stirring rotation number 3
It was set to 00 rpm. The results are shown in Table 2 below.

【0019】[0019]

【表2】 [Table 2]

【0020】この結果からCH3 OH、SDBSおよび
NaOHがポリスチレンのガス化に有効であることが確
認され、触媒無添加の場合を比較すると、ガス発生量は
約3倍以上に増加した。
From these results, it was confirmed that CH 3 OH, SDBS and NaOH are effective for the gasification of polystyrene, and the gas generation amount increased about three times or more when comparing the case where no catalyst was added.

【0021】(実施例5)図5に示すオートクレーブ装
置を用いて、PET(ポリエチレンテレフタレート)、
ポリウレタン、ウレタンフォームおよびメラミンのガス
化実験をおこなった。実験条件は、試料4.0g、純水
40cc、反応時間6時間とした。図10にPET、ポ
リウレタン、ウレタンフォームおよびメラミンのそれぞ
れについてガス発生量と反応温度との関係を示す。図1
0から明らかなように、温度365℃ではPETとポリ
ウレタンはほぼ等しいガス発生量を示したが、温度41
5℃ではPETのガス発生量が著しく増加した。
Example 5 PET (polyethylene terephthalate), using the autoclave apparatus shown in FIG.
Gasification experiments of polyurethane, urethane foam and melamine were conducted. The experimental conditions were a sample of 4.0 g, pure water of 40 cc, and a reaction time of 6 hours. FIG. 10 shows the relationship between the gas generation amount and the reaction temperature for each of PET, polyurethane, urethane foam and melamine. Figure 1
As is clear from 0, PET and polyurethane showed almost the same gas generation amount at a temperature of 365 ° C.
At 5 ° C., the amount of PET gas generation increased remarkably.

【0022】また、図11にPETからの発生ガス組成
と反応温度との関係、図12にポリウレタンからの発生
ガス組成と反応温度との関係、表3に400℃でのウレ
タンフォームおよびメラミンからの発生ガス組成を示
す。
FIG. 11 shows the relationship between the gas composition from PET and the reaction temperature, FIG. 12 shows the relationship between the gas composition from polyurethane and the reaction temperature, and Table 3 shows the relationship between the urethane foam and melamine at 400 ° C. The generated gas composition is shown.

【0023】[0023]

【表3】 [Table 3]

【0024】図11から明らかなように、実験の温度範
囲ではCO2 が全体の70〜80%を占めていたが、こ
れはPETに多量の酸素原子が含まれているためと考え
られ、このことは脱炭酸反応が比較的容易に起こり得る
ことを示唆している。また、365℃から415℃にか
けてCO2 、COが減少し、H2 ガスおよび炭化水素ガ
スが増加した。
As is clear from FIG. 11, CO 2 occupies 70 to 80% of the whole in the temperature range of the experiment, which is considered to be because PET contains a large amount of oxygen atoms. This suggests that the decarboxylation reaction can occur relatively easily. Further, CO 2 and CO decreased from 365 ° C. to 415 ° C., and H 2 gas and hydrocarbon gas increased.

【0025】ポリウレタンについては、図12から明ら
かなように、CO2 の占める割合が大きく、365℃か
ら415℃にかけてCO2 が減少し、CH4 を含む炭化
水素ガスの割合が増加した。
As for the polyurethane, as is clear from FIG. 12, the proportion of CO 2 was large, the CO 2 decreased from 365 ° C. to 415 ° C., and the proportion of hydrocarbon gas containing CH 4 increased.

【0026】ウレタンフォームおよびメラミンについて
は、表3から明らかなように、PET、ポリウレタンに
比較してCO2 が少なく、H2 ガスおよび炭化水素ガス
が多い。
As is clear from Table 3, urethane foam and melamine contain less CO 2 and more H 2 gas and hydrocarbon gas than PET and polyurethane.

【0027】(実施例6)図5に示すオートクレーブ装
置を用い、ポリエチレンのガス化実験をおこなった。こ
の場合、水の充填率、反応温度、反応時間が発生ガス量
に及ぼす影響について調べた。その結果を図13〜15
に示す。図13は水の充填率を変え、反応温度415
℃、反応時間3時間、ポリエチレン試料10.0gとし
た場合、図14は反応時間を変え、水の充填率を40
%、反応温度415℃、ポリエチレン試料10.0gと
した場合、図15は反応温度を変え、水の充填率を40
%、反応時間3時間、ポリエチレン試料10.0gとし
た場合をそれぞれ示すものである。
Example 6 A polyethylene gasification experiment was conducted using the autoclave apparatus shown in FIG. In this case, the effects of the filling rate of water, the reaction temperature, and the reaction time on the amount of generated gas were investigated. The results are shown in FIGS.
Shown in. FIG. 13 shows the reaction temperature 415 when the filling rate of water is changed.
14 ° C., reaction time 3 hours, polyethylene sample 10.0 g, the reaction time was changed and the filling rate of water was 40%.
%, The reaction temperature was 415 ° C., and the polyethylene sample was 10.0 g, FIG. 15 shows that the reaction temperature was changed and the filling rate of water was 40%.
%, A reaction time of 3 hours, and a polyethylene sample of 10.0 g are shown.

【0028】ポリエチレン試料量等の実験条件の相違に
よりガスの発生量と組成は若干変化は見られるが、これ
らの結果から明らかなように、水の充填率が低いほど、
反応時間が長いほど、反応温度が高いほど発生ガス量が
多いことが確認された。
Although the amount and composition of gas slightly changed due to the difference in experimental conditions such as the amount of polyethylene sample, as is clear from these results, the lower the filling rate of water,
It was confirmed that the longer the reaction time and the higher the reaction temperature, the larger the amount of generated gas.

【0029】なお、上記のいずれの実施例においても、
反応温度が375℃以下の場合は、固体残渣は油状には
なっておらず、反応温度が375℃以上のときはプラス
チックの残渣物は非水溶性の油状物質となっている。さ
らに反応温度が高いほどより軽質な油状物質が得られ
る。
In any of the above embodiments,
When the reaction temperature is 375 ° C or lower, the solid residue is not oily, and when the reaction temperature is 375 ° C or higher, the plastic residue is a water-insoluble oily substance. Further, the higher the reaction temperature, the lighter the oily substance is obtained.

【0030】[0030]

【発明の効果】以上詳述したように、本発明によれば、
プラスチックを反応器内で超臨界水を含む高温熱水と接
触、反応せしめることにより、プラスチックを効率良く
短時間でガス化することができる。
As described in detail above, according to the present invention,
By contacting and reacting the plastic with high-temperature hot water containing supercritical water in the reactor, the plastic can be efficiently gasified in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するために用いられるオー
トクレーブの模式図。
FIG. 1 is a schematic diagram of an autoclave used to carry out the method of the present invention.

【図2】本発明の方法を実施するために用いられるオー
トクレーブの模式図。
FIG. 2 is a schematic diagram of an autoclave used to carry out the method of the present invention.

【図3】本発明の方法における反応温度と発生ガス量と
の関係を示す図。
FIG. 3 is a diagram showing a relationship between a reaction temperature and a generated gas amount in the method of the present invention.

【図4】本発明の方法における反応温度と発生ガス濃度
との関係を示す図。
FIG. 4 is a diagram showing a relationship between reaction temperature and generated gas concentration in the method of the present invention.

【図5】本発明の方法を実施するために用いられるオー
トクレーブの模式図。
FIG. 5 is a schematic diagram of an autoclave used to carry out the method of the present invention.

【図6】本発明の方法における反応温度と発生ガス量と
の関係を示す図。
FIG. 6 is a graph showing the relationship between the reaction temperature and the amount of generated gas in the method of the present invention.

【図7】本発明の方法における反応温度と発生ガス濃度
との関係を示す図。
FIG. 7 is a graph showing the relationship between reaction temperature and generated gas concentration in the method of the present invention.

【図8】本発明の方法における反応温度と発生ガス濃度
との関係を示す図。
FIG. 8 is a graph showing the relationship between reaction temperature and generated gas concentration in the method of the present invention.

【図9】本発明の方法における反応温度と発生ガス濃度
との関係を示す図。
FIG. 9 is a graph showing the relationship between reaction temperature and generated gas concentration in the method of the present invention.

【図10】本発明の方法における反応温度と発生ガス量
との関係を示す図。
FIG. 10 is a graph showing the relationship between the reaction temperature and the amount of generated gas in the method of the present invention.

【図11】本発明の方法における反応温度と発生ガス濃
度との関係を示す図。
FIG. 11 is a graph showing the relationship between reaction temperature and generated gas concentration in the method of the present invention.

【図12】本発明の方法における反応温度と発生ガス濃
度との関係を示す図。
FIG. 12 is a graph showing the relationship between reaction temperature and generated gas concentration in the method of the present invention.

【図13】本発明の方法における水充填率と発生ガス量
との関係を示す図。
FIG. 13 is a diagram showing the relationship between the water filling rate and the amount of generated gas in the method of the present invention.

【図14】本発明の方法における反応時間と発生ガス量
との関係を示す図。
FIG. 14 is a diagram showing the relationship between the reaction time and the amount of generated gas in the method of the present invention.

【図15】本発明の方法における反応温度と発生ガス量
との関係を示す図。
FIG. 15 is a graph showing the relationship between the reaction temperature and the amount of generated gas in the method of the present invention.

【符号の説明】[Explanation of symbols]

1、11、31…反応容器 2…キャップ 3…るつぼ 4、14、34…熱電対 5、15、35…圧力変換器 6、16、36…温度コントローラー 12、32…蓋体 13、33…ヒーター 1, 11, 31 ... Reaction container 2 ... Cap 3 ... Crucible 4, 14, 34 ... Thermocouple 5, 15, 35 ... Pressure converter 6, 16, 36 ... Temperature controller 12, 32 ... Lid 13, 33 ... Heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 仲道 高知県高岡郡佐川町甲107 (72)発明者 牧野 久昭 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社応用技術研究所内 (72)発明者 守谷 武彦 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社応用技術研究所内 (72)発明者 石井 四郎 千葉県佐倉市大作2丁目4番2号 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yamazaki Nakamichi Ko Sagawa, Takaoka-gun, Kochi 107 Ko (72) Inventor Hisaki Makino 7-2-1, Nakayama, Aoba-ku, Sendai-shi, Miyagi Tohoku Electric Power Co., Inc. (72) Inventor Takehiko Moriya 72-1 Nakayama, Aoba-ku, Sendai City, Miyagi Prefecture, Tohoku Electric Power Co., Inc. Applied Technology Laboratory (72) Inventor Shiro Ishii 2-4-2 Daisaku Sakura City, Chiba Prefecture

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 プラスチックを反応器内で超臨界水を含
む高温熱水と接触、反応せしめ、ガス化することを特徴
とするプラスチックのガス化方法。
1. A method of gasifying a plastic, which comprises contacting and reacting plastic with high-temperature hot water containing supercritical water in a reactor to gasify the plastic.
【請求項2】 該反応器内での水の充填率を1容量%以
上とすることを特徴とする請求項1記載のプラスチック
のガス化方法。
2. The method for gasifying plastic according to claim 1, wherein the filling rate of water in the reactor is 1% by volume or more.
【請求項3】 該反応器内での水の充填率を5ないし4
0容量%とすることを特徴とする請求項2記載のプラス
チックのガス化方法。
3. The filling rate of water in the reactor is 5 to 4
3. The method for gasifying plastic according to claim 2, wherein the content is 0% by volume.
【請求項4】 反応温度を200℃以上とすることを特
徴とする請求項1記載のプラスチックのガス化方法。
4. The method for gasifying plastic according to claim 1, wherein the reaction temperature is 200 ° C. or higher.
【請求項5】 反応温度を250ないし450℃とする
ことを特徴とする請求項4記載のプラスチックのガス化
方法。
5. The method for gasifying plastic according to claim 4, wherein the reaction temperature is 250 to 450 ° C.
【請求項6】 反応器内に予め、反応触媒を添加するこ
とを特徴とする請求項1記載のプラスチックのガス化方
法。
6. The method for gasifying a plastic according to claim 1, wherein a reaction catalyst is added to the inside of the reactor in advance.
【請求項7】 反応触媒が、アルカリ、金属イオン、界
面活性剤、アルコール類、固体触媒等から選ばれるもの
であることを特徴とする請求項6記載のプラスチックの
ガス化方法。
7. The method of gasifying a plastic according to claim 6, wherein the reaction catalyst is selected from alkali, metal ions, surfactants, alcohols, solid catalysts and the like.
【請求項8】 反応器として、反応触媒としての金属イ
オン源を含むものを用いることを特徴とする請求項1記
載のプラスチックのガス化方法。
8. The method for gasifying plastic according to claim 1, wherein a reactor containing a metal ion source as a reaction catalyst is used as the reactor.
JP09301493A 1993-04-20 1993-04-20 Gasification method of plastic Expired - Fee Related JP3469604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09301493A JP3469604B2 (en) 1993-04-20 1993-04-20 Gasification method of plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09301493A JP3469604B2 (en) 1993-04-20 1993-04-20 Gasification method of plastic

Publications (2)

Publication Number Publication Date
JPH06299169A true JPH06299169A (en) 1994-10-25
JP3469604B2 JP3469604B2 (en) 2003-11-25

Family

ID=14070598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09301493A Expired - Fee Related JP3469604B2 (en) 1993-04-20 1993-04-20 Gasification method of plastic

Country Status (1)

Country Link
JP (1) JP3469604B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770664A1 (en) * 1995-10-23 1997-05-02 Mitsubishi Jukogyo Kabushiki Kaisha Oil-forming method of chlorine-containing plastic refuse
JPH11253786A (en) * 1998-01-16 1999-09-21 General Atomics Inc Pressure reaction vessel
JP2009030071A (en) * 2001-09-21 2009-02-12 National Univ Corp Shizuoka Univ Method for gasifying organic substance
WO2009048312A1 (en) * 2008-04-08 2009-04-16 Young-Mok Kim A method for treating waste plastic
KR101218661B1 (en) * 2012-06-19 2013-01-09 김영목 Clean substitute energy of Hydrogen and apparatus thereof
WO2017115019A1 (en) 2015-12-30 2017-07-06 Forestgas Oy Arrangement and method for preparing a gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770664A1 (en) * 1995-10-23 1997-05-02 Mitsubishi Jukogyo Kabushiki Kaisha Oil-forming method of chlorine-containing plastic refuse
US5728910A (en) * 1995-10-23 1998-03-17 Mitsubishi Jukogyo Kabushiki Kaisha Oil-forming method of chlorine-containing plastic refuse
JPH11253786A (en) * 1998-01-16 1999-09-21 General Atomics Inc Pressure reaction vessel
JP2009030071A (en) * 2001-09-21 2009-02-12 National Univ Corp Shizuoka Univ Method for gasifying organic substance
WO2009048312A1 (en) * 2008-04-08 2009-04-16 Young-Mok Kim A method for treating waste plastic
KR101218661B1 (en) * 2012-06-19 2013-01-09 김영목 Clean substitute energy of Hydrogen and apparatus thereof
WO2017115019A1 (en) 2015-12-30 2017-07-06 Forestgas Oy Arrangement and method for preparing a gas
US10752851B2 (en) 2015-12-30 2020-08-25 Forestgas Oy Arrangement and method for preparing a gas

Also Published As

Publication number Publication date
JP3469604B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
EP1446354B1 (en) Production of hydrogen from hydrocarbons and oxygenated hydrocarbons
EP0890388B1 (en) Carbon dioxide fixation system
US5630854A (en) Method for catalytic destruction of organic materials
Glória et al. Stripping and dissipation techniques for the removal of dissolved gases from anaerobic effluents
JP2003034794A (en) Method of simultaneous removal of chlorine and nitrogen present in oil
JPH06299169A (en) Method for gasifying plastics
EP1509926B1 (en) New recovery process
TW580507B (en) Oil-forming method of chlorine-containing plastic refuse
KR19980702096A (en) Method and apparatus for treating oil and solvent contaminated with radioactive material
JP4304237B2 (en) Gasification method of organic matter
WO2007037813A2 (en) Production of hydrogen from non-cyclic organic substances having multiple alcohol functionality
US7700071B2 (en) Production of hydrogen via a base-facilitated reaction of carbon monoxide
JP2009030071A (en) Method for gasifying organic substance
JP2001288480A (en) Method and apparatus for plastic waste gasification
CN209343793U (en) Decomposition device of organic waste
JPH1180745A (en) Waste plastic recycling system
JP2004131358A (en) Method and apparatus for producing hydrogen by using mixed molten salt
US5817288A (en) Process for treating a non-distillable halogenated organic feed stream
JPH11140460A (en) Thermal decomposition of plastics, and device and dechlorinating agent used therefor
JP3478324B2 (en) Gasification method of plastic
Bjerre et al. Thermal and oxidative decomposition of lower fatty acids with special attention to formic acid
Boock A quantitative analysis of reactions in supercritical water: experimental kinetics and mechanistic modelling
Kemmler et al. Pilot-scale testing of pyrolysis for the volume reduction of organic waste
Rosen State-of-the-art of ozonation for commercial applications in the US
GB1602647A (en) Separation of tritium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees