JP4304237B2 - Gasification method of organic matter - Google Patents

Gasification method of organic matter Download PDF

Info

Publication number
JP4304237B2
JP4304237B2 JP2002277949A JP2002277949A JP4304237B2 JP 4304237 B2 JP4304237 B2 JP 4304237B2 JP 2002277949 A JP2002277949 A JP 2002277949A JP 2002277949 A JP2002277949 A JP 2002277949A JP 4304237 B2 JP4304237 B2 JP 4304237B2
Authority
JP
Japan
Prior art keywords
gas
water
gasification
organic
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002277949A
Other languages
Japanese (ja)
Other versions
JP2003201486A (en
Inventor
猛 佐古
いづみ 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2002277949A priority Critical patent/JP4304237B2/en
Publication of JP2003201486A publication Critical patent/JP2003201486A/en
Application granted granted Critical
Publication of JP4304237B2 publication Critical patent/JP4304237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機物を水素を含む有用ガスに変換させる有機物のガス化方法に関するものである。
【0002】
【従来の技術】
廃自動車、廃家電製品および廃電線などの処理工程から排出されるシュレッダーダストなどのプラスチック混合廃棄物、あるいは臭素化難燃プラスチックなどは、塩素や臭素などのハロゲン原子を含んでいるために、焼却処理過程でダイオキシン類の生成が懸念されることから、現在は大部分が埋立処理されている。また、ガラス繊維強化プラスチックや水酸化マグネシウムなどを含有する廃プラスチックは、焼却時に炉壁をいためたりするために、同様に埋立処理されている。しかし、近年、埋立地の確保が難しくなってきており、また、確保できたとしても、周囲の環境悪化を招く恐れがあるために、難処理廃プラスチックの安全で経済的な処理方法の碓立が急務とされている。これまでに廃プラスチックの様々なリサイクル法が検討されているが、ハロゲン原子を含んだプラスチックやガラス繊維などの添加物を含有するプラスチックおよびプラスチック混合廃棄物の経済的なリサイクル技術に関するものはほとんどない。
【0003】
プラスチック等の有機物質のガス化に関しては、すでにいくつかの関連特許がある。特開2001−19402号公報(特許文献1)では、超臨界水に酸化カルシウムや水酸化カルシウム等の二酸化炭素吸収剤多量を加えて石炭やプラスチックから水素を製造する方法が提案されている。しかし、この方法の場合、ガス化反応で副生する二酸化炭素を除去するために多量の非水溶性のCaOやCa(OH)等の二酸化炭素吸収剤を反応系に加えるので、反応効率が悪くなる上、ガス化生成物からその二酸化炭素吸収剤を高純度で分離回収し、再使用することに大きな困難を生じる等の問題がある。
また、特開2000−239672号公報(特許文献2)では、石炭等の炭素資源のガス化を3段階の反応で行う方法が記載されているが、この方法の場合、装置コストが高くなる等の問題を含むものであった。
【0004】
【特許文献1】
特開2001−19402号公報
【特許文献2】
特開2000−239672号公報
【0005】
【発明が解決しようとする課題】
本発明は、プラスチックや食品廃棄物等の有機物を効率よくかつ簡易にガス化させる方法を提供することをその課題とする。
【0006】
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。即ち、本発明によれば、以下に示すガス化方法が提供される。
(1)プラスチックを、反応圧力5〜50MPa、反応温度500〜800℃で水素活性化金属からなる金属触媒及び酸化剤の存在下において、亜臨界水又は超臨界水と接触させて水素とメタンの生成比を制御する有機物のガス化方法であって、酸化剤を、乾燥状態のプラスチック100重量部当り5〜100重量部含有させる有機物のガス化方法
(2)有機物と水を含む被処理原料をガス化する方法において、被処理原料を、1.5〜50MPaの条件下で200〜500℃の温度に加熱して可溶化させる可溶化工程、可溶化物を、反応圧力5〜50MPa、反応温度500〜800℃、有機物に対して20〜100wt%の水溶性アルカリ性物質からなるアルカリ触媒の存在下で亜臨界水又は超臨界水と接触させて水素とメタンの生成比を制御する有機物のガス化工程、ガス化工程で得られたガス化生成物を冷却し、減圧した後、気液分離する気液分離工程、気液分離工程で得られたガスを、少なくとも水素とメタンと二酸化炭素ととに分離するガス分離工程、気液分離工程で得られた液体を、固液分離する固液分離工程、を包含することを特徴とする有機物のガス化方法。
【0007】
【発明の実施の形態】
本発明の有機物には、常温で固体状を示す各種の有機物が包含される。このような有機物には、低分子有機化合物、高分子有機化合物(プラスチック、ゴム、多糖類等)、有機廃棄物(家畜糞尿、バガス、下水汚染の他、生ごみやビール粕、酒粕、しょう油粕、しょうちゅう粕等の食品廃棄物等)等が挙げられる。
有機物の形状は、粉末や塊状等の各種の形状であることができ、特に制約されない。
【0008】
プラスチック(樹脂)としては、従来公知の各種のものが挙げられる。このようなものには、ポリオレフィン系樹脂、スチレン系樹脂、ABS樹脂、エチレン/酢酸ビニル共重合体、フェノキシ樹脂、ポリアセタール樹脂、ポリアミド、ポリエステル、熱可塑性ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリカーボネート、ポリサルホン、ポリフェニレンエーテル等の熱可塑性樹脂やエポキシ樹脂、グアナミン樹脂、ビニルエステル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド、ポリウレタン、ユリア樹脂等の熱硬化性樹脂、さらに、セルロースや蛋白質などの天然高分子が包含される。
これらのプラスチックは、難燃化剤や充填剤等の各種の添加剤を含有するものであることができる。本発明で用いるプラスチックは、好ましくは、廃棄プラスチックである。
プラスチックは、粉体の他、フィルム、板体、容器等の成形物であることができる。成形物の場合、これを粉砕して粉砕物の形状で被処理原料として用いることができる。その寸法はできるだけ小さい寸法であることが望ましいが、通常、20mm以下、好ましくは10mm以下である。その下限値は、特に制約されないが、通常、2mm程度である。
【0009】
本発明においては、被処理原料として用いる有機物を、水素活性化金属からなる金属触媒及び/又は水溶性アルカリ性物質からなるアルカリ触媒の存在下において、亜臨界水又は超臨界水と接触させる。
本発明で用いる水素化活性金属(触媒金属)としては、従来公知の各種の遷移金属が用いられる。このようなものには、Cu、Ti、V、Cr、Mo、W、Mn、Fe、Co、Ni、Pt、Pd、Ir、Rh、Re等の金属が包含される。本発明では、特に、8族金属を好ましく用いることができる。
本発明で用いる触媒金属はそれ単独で用いることも可能であるが、通常は、担体に担持させた担持触媒として用いられる。担体としては、シリカ、アルミナ、シリカ−アルミナ、チタニア、マグネシア等の金属酸化物の他、ゼオライト、セピオライト、粘土等の多孔性無機物を挙げることができる。担体に担持させる方法としては、含浸法等の従来公知の各種の方法を用いることができる。
担体に触媒金属を担持させた触媒において、その触媒金属の含有量は、全触媒中、5〜70重量%、好ましくは10〜30重量%である。触媒金属の形態は、金属状態の他、酸化物や硫化物等であることができる。触媒の寸法は、0.2〜3mm、好ましくは0.5〜1mmである。
【0010】
本発明で用いる水溶性アルカリ性物質からなるアルカリ触媒において、該アルカリ性物質には、NaOH、NaCO、NaHCO、KOH、KCO、KHCO等を挙げることができる。
本発明では、このアルカリ触媒は、前記金属触媒と併用することができる。
【0011】
本発明においては、有機物は、水素を含むガスに変換される。この場合のガス化反応を示すと、以下の通りである。
CmHn + mH2
→ mCO + (n/2+m)H2 (1)
CO + H2O → CO2 + H2 (2)
CO + 3H2O → CH4 + H2O (3)
【0012】
亜臨界水又は超臨界水の使用割合は、有機物100重量部(乾燥物基準、以下同じ)当り、300〜5000重量部、好ましくは500〜2000重量部である。触媒の使用割合は、水素化活性金属からなる金属触媒の場合、触媒金属量で、有機物100重量部当り、5〜100重量部、好ましくは10〜60重量部である。アルカリ触媒の場合、有機物100重量部当り、5〜100重量部、好ましくは10〜80重量部である。
【0013】
本発明のガス化反応温度は400〜1000℃、好ましくは500〜800℃、反応圧力は水の亜臨界圧力以上(5MPa以上)、特に超臨界圧力以上(22.1MPa以上)である。その上限値は50MPa、好ましくは40MPaである。本発明では、反応圧力は、一般的には、5〜50MPa、好ましくは10〜40MPaである。反応時聞は1分〜120分、好ましくは10分〜30分である。本発明によれば、有機物は熱分解し、さらに亜臨界水又は超臨界水と反応して水素、メタン、二酸化炭素を主成分とするガスを生成する。本発明では、この時水素とメタンの生成比を制御することが可能である。水素の生成割合を上げるためには、反応温度が高いほど、また、水/有機物の仕込比が大きいほど有利である。また、本発明では分解・ガス化溶媒として亜臨界水又は超臨界水を使用しているので、反応時に有害なダイオキシン類が副生することを完全に抑制できる。生成ガスとして、水素、二酸化炭素の他、メタンなどの低級炭化水素などからなる混合ガスが得られる。この混合ガスは、これをアルカリ溶液中に流通することにより、二酸化炭素を吸収・除去し、水素、メタンなどの燃料あるいは化学原料として有用なガスを主成分とする混合ガスを得ることができる。
【0014】
本発明を実施する場合、亜臨界水又は超臨界水中には、有機物の分解を促進させるために、酸化剤を含有させることができる。酸化剤としては、空気、酸素、過酸化水素、オゾン等が挙げられる。酸化剤の使用量は、有機物(乾燥物)100重量部当り、5〜100重量部、好ましくは10〜50重量部である。
酸化剤として空気又は酸素を用いる場合、その反応器における酸素分圧は、1〜20MPa、好ましくは1〜10MPaである。
【0015】
本発明により有機物のガス化を行う場合、有機物は、これをあらかじめ亜臨界水〜超臨界水条件に保持して可溶化した後、亜臨界水又は超臨界水に接触させるのが好ましい。この場合、有機物の可溶化は、具体的には、有機物を水の存在下で1.5〜50MPa、好ましくは3〜30MPaの圧力下で200〜500℃、好ましくは300〜400℃に加熱することにより実施することができる。水の使用割合は、有機物100重量部当り、100〜5000重量部、好ましくは200〜2000重量部の割合である。また、その水には、触媒、好ましくはアルカリ触媒を含有させるのが好ましい。
【0016】
次に、本発明の実施態様について図面を参照しながら説明する。
図1は、本発明を実施する場合のフローシートの1つの例を示す。
このフローシートに従って有機物をガス化するには、被処理原料である有機物(廃プラスチック等)は、前処理装置1において、脱ハロゲン処理される。この脱ハロゲン処理は、従来公知の方法により実施することができる。例えば、被処理原料を、大気圧下、温度100〜450℃、好ましくは200〜400℃程度に加熱する。これにより、有機物中に含まれたハロゲン(塩素、臭素等)は、ハロゲン化水素として除去される。被処理原料がハロゲン含有量の少ないものである場合には、この前処理装置1は必要とされない。
【0017】
ハロゲンの除去された有機物は、亜臨界水又は超臨界水ガス化槽2において、ガス化される。このガス化槽2においては、水はその超臨界条件に保持されており、この亜臨界水又は超臨界水中には、触媒が含まれている。
このガス化槽2でプラスチックのガス化により生成したガスは、ガス分離塔3に導入される。このガス分離塔3は、CO2を選択的に分離する分離膜を有する分離装置であることができる。このガス分離塔3においては、水素やメタンからなるガスと、CO2とが分離される。
【0018】
ガス分離塔3は、CO2吸収剤を充填した充填塔であることができる。CO2吸収剤としては、酸化カルシウムや、水酸化カルシウム、酸化マグネシウム、水酸化マグネシウム、シリカ/アルミナ等が挙げられる。
【0019】
亜臨界水又は超臨界水ガス化槽2においては、ガス化されなかった残渣(金属、ガラス等)が排出される。またこのガス化槽2においては、槽内の水を亜臨界又は超臨界圧以上に保持するために、その槽内の水の一部を抜出し、高圧ポンプにより加圧してガス化槽2に圧入させる。
【0020】
本発明によると、有機物を、水素、メタン、CO2等のガスに分解させることができる。プラスチック中に窒素原子が存在する場合には、窒素ガスやアンモニアガスが副生する。
【0021】
被処理原料がハロゲンを含有する場合には、ガス化槽2の亜臨界水又は超臨界水には、水溶性アルカリ(NaOH、Na2CO、NaHCO等)をあらかじめ添加しておき、ハロゲンをこのアルカリと反応させることによって除去することができる。この場合には、前処理装置1を省略することが可能である。
【0022】
次に、本発明を実施する場合のフローシートの他の例を図2に示す。
図2に示されたフローシートに従って有機物を連続ガス化するには、アルカリ触媒を含む水をそのタンク11からライン31及びポンプ15、ライン34、ライン35を通って亜臨界水又は超臨界水ガス化槽17に導入し、亜臨界又は超臨界条件に保持する。また、水とアルカリ触媒を含む有機物を、タンク12からライン32、亜〜超臨界水可溶化槽13に導入させ、ここで有機物を可溶化させた後、ライン33、ポンプ16及びライン35を通って、超臨界ガス化槽17に導入する。
亜臨界水又は超臨界水は、ガス化槽17で作ってもよいが、あらかじめ別の装置で作り、これをガス化槽17に導入することもできる。
【0023】
亜臨界水又は超臨界水ガス化槽においては、有機物と亜臨界水又は超臨界水とが触媒の存在下で触媒反応して、有機物はガス化される。
【0024】
この有機物のガス化生成物は、触媒とともに、ライン36を通ってガス化槽17から排出させ、冷却器18、ライン37を通り、さらに背圧弁19を通って減圧されて気液分離器20に導入する。
【0025】
気液分離器20で分離されたガス(気体)は、これをガス分離塔21に送り、ここで、水素、メタン及び二酸化炭素(CO)に分離する。一方、気液分離器20で分離された液体は、ライン39を通って固液分離器22送り、ここでアルカリ触媒を含む水と残渣とに分離する。触媒を含む水は、タンク11に送り、再利用する。
【0026】
前記可溶化槽13においては、可溶化しないものを残渣として分離する。このような残渣には、金属、ガラス、砂等が包含される。
【0027】
気液分離器20において、その温度は、20〜100℃、好ましくは25〜60℃であり、その圧力は0.1〜10MPa、好ましくは0.1〜8MPaである。
【0028】
亜臨界水又は超臨界水ガス化槽17において、その温度は400〜1000℃、好ましくは500〜800℃であり、その圧力は5〜50MPa、好ましくは10〜40MPaである。
【0029】
亜〜超臨界水可溶化槽13において、その温度は200〜500℃、その圧力は1.5〜50MPaである。
【0030】
【実施例】
以下に、実施例により本発明を詳細に説明する。なお、以下の実施例では、廃自動車の処理工程から排出されたシュレッダーダスト、及びその主要構成成分であるポリエチレンと、前処理により脱塩化水素したポリ塩化ビニル(ポリエンと呼ぶ)等の有機物を使用した。
【0031】
参考例1
ポリエチレン0.05gとニッケル系触媒0.01gを分解・ガス化反応器に充填し、650℃、30MPaの超臨界水によりポリエチレンを分解・ガス化した。この時の反応時間は10分又は30分だった。実験結果を表1のNo.1、No.2に示す。表1からわかるように、ポリエチレンを超臨界水で処理すると100%分解し、水素、メタン、二酸化炭素が主成分の混合ガスが得られること、反応時間が10分の場合でもポリエチレンは100%分解し、ガスの生成量と組成は30分の場合とほぼ同じことから、短時間に完全にガス化することがわかった。
【0032】
【表1】

Figure 0004304237
【0033】
参考例2
前処理により脱塩化水素処理を行ったポリエン0.05gとニッケル系触媒又はアルカリ触媒(Na2CO3)0〜0.05gを分解・ガス化反応器に充填し、650℃、30MPaの超臨界水によりガス化反応を行った。この時の反応時間は30分だった。実験結果を表2のNo.3〜No.7に示す。No.3に示すように、触媒を添加しないと分解率は35%とかなり低く、ガス生成量も250ml/g−樹脂と少なかったが、触媒を加えると分解・ガス化が促進され、触媒量の増加とともに分解率・ガス生成量が増加した。また、触媒量が増加すると、生成ガス中の水素と二酸化炭素の生成量は増加したが、メタンの量は横ばいだった。
【0034】
実施例1
ポリエン0.05gとアルカリ触媒の炭酸ナトリウム0.02gを分解・ガス化反応器に充填し、650℃、30MPaの超臨界水によりガス化反応を行った。この時の反応時間は30分だった。実験結果を表2のNo.8に示す。ポリエンに対して同じ重量分率のニッケル触媒を加えた時と比較して、分解率は少し低い程度だったが、水素、メタン、二酸化炭素の生成量は大幅に減少した。これは低分子化の程度が小さいためにかなりの量の分解生成物が水溶性オリゴマーとして水中に残存し、ガス化されなかったためである。
【0035】
【表2】
Figure 0004304237
【0036】
実施例2
前処理により構成ポリマー中のポリ塩化ビニルの脱塩化水素を行ったシュレッダーダスト0.05gとニッケル触楳0.01gを分解・ガス化反応器に充填し、650〜800℃、30MPaの超臨界水によりガス化反応を行った。この時の反応時間は30分だった。実験結果を表3のNo.9、No.10に示す。No.9に示すように、650℃の時の樹脂分解率は77%とかなり高い値が得られたが、単位樹脂重量当たりのガス生成量は少なかった。これは、実施例3のNo.8と同様に、相当量の分解生成物が水中に残存したためである。このために、反応温度を800℃まで上げて分解・ガス化を行った。その時の結果をNo.10に示す。反応温度の上昇により、プラスチックの低分子化・ガス化が促進され、高い分解率とガス生成量が得られた。
【0037】
実施例3
シュレッダーダストの処理条件を緩和するために、酸化剤を添加して分解・ガス化を行った。すなわち、脱塩素化したシュレッダーダスト0.05gとニッケル触媒0.01gを分解・ガス化反応器に充填し、酸化剤として空気を混合して、超臨界水によりガス化反応を行った。この時の反応温度は650℃、反応圧力は30MPa、反応時間は30分だった。実験結果を表3のNo.11に示す。酸化剤の添加により、シュレッダーダスト中のプラスチックの部分酸化反応が起こり、後続するガス化が大幅に促進された。その結果、No.10の800℃の時に匹敵するガス生成量が得られた。一方、酸化剤により生成ガス中の一部の水素とメタンの酸化が起こった結果、これらのガスの生成割合は少し下がり、逆に二酸化炭素の割合が増加した。
【0038】
【表3】
Figure 0004304237
【0039】
実施例4
ポリエンと各種触媒を分解・ガス化反応器に充填し、700℃、30MPaの超臨界水によりガス化を行った。このときの反応時間は30分だった。実験結果を表4に示す。水素生成量に関して、No.12のニッケル触媒と比較して、ナトリウムイオンを含む触媒では、No.13の水酸化ナトリウムの時に約80%、No.14と15の炭酸塩、炭酸水素塩では約50%の水素が生成した。一方カリウムイオンを含む触媒では、No.16の水酸化カリウムの時にはニッケル触媒を用いた時の約96%、No.17の炭酸塩では80%、No.18の炭酸水素塩では70%の水素が得られた。
【0040】
【表4】
Figure 0004304237
【0041】
実施例5
生ごみと各種触媒を分解・ガス化反応器に充填し、650℃、30MPaの超臨界水によりガス化を行った。このときの反応時間は30分だった。実験結果を表5に示す。No.19に示すようにニッケル触媒を用いた時が水素生成量が最も多かった。またNo.20と23のようなアルカリ触媒、No.21と24のような炭酸塩、No.22と25のような炭酸水素塩を用いると、ニッケル触媒の35〜77%の水素を発生した。
【0042】
【表5】
Figure 0004304237
【0043】
実施例6
図2に示す違続式超臨界水ガス化フローシートに従って、触媒として安価なアルカリ、アルカリ炭酸塩又はアルカリ炭酸水素塩を用いて、ポリエチレンを超臨界水ガス化した。可溶化槽13の温度は350℃、圧力は飽和蒸気圧の16.5MPa、ガス化糟17の温度は700℃、圧力は30MPa、滞留時間30分だった。可溶化槽に仕込んだポリエチレンは100g、水は500g、触媒は20g、可溶化槽からの可溶化ポリエチレン+水+触媒混合液の供給速度は1.54g/分、超臨界水ガス化糟上部からの追加用の水の供給速度は1ml/分だった。この時の生成ガス量を表6のNo.26〜No.31に示す。表6からわかるように、ポリエチレンを分解・ガス化すると水素、メタンを主成分とする混含ガスが得られること、KOH、K2CO3、NaOHの場合、ニッケル触蝶を用いた同一反応条件の水素生成量274ml/分に匹敵する水素が得られることがわかった。
【0044】
【表6】
Figure 0004304237
【0045】
実施例7
図2に示す連続式式超臨界水ガスフローシートに従って、触媒として水酸化カリウム又は水酸化ナトリウムを用いてポリエチレンを超臨界水ガス化した。可溶化槽の温度は350℃、圧力は飽和蒸気圧の16.5MPa、ガス化糟の温度は700℃、圧力は30MPa、滞留時間30分だった。可溶化槽に仕込んだポリエチレンは100g、水は500g、触媒は20〜100g、可溶化槽からの可溶化ポリエチレン+水+触媒混合液の供給速度は1.54g/分、超臨界水ガス化槽上部からの追加用の水の供給速度は1ml/分だった。水素生成量に対する触媒添加量の効果を表7のNo.32〜No.37に示す。表7からわかるように、水酸化カリウム、水酸化ナトリウムともに触媒量を増やすと水素生成量が大幅に増加することがわかった。
【0046】
【表7】
Figure 0004304237
【0047】
実施例8
図2に示す連続式超臨界水ガス化フローシートに従って、触媒として水酸化カリウムを用いてシュレッダーダストを超臨界水ガス化した。可溶化槽の温度は350℃、圧力は飽和蒸気庄の16.5MPa、ガス化槽の温度は700℃、圧力は30MPa、滞留時間は30分だった。可溶化槽に仕込んだシュレッダーダスストは100g、水は500g、触媒は100g、可溶化槽からの可溶化シュレッダーダスト+水+触媒混合液の供給速度は1.54g/分、超臨界水ガス化槽上部からの追加用の水の供給速度は1ml/分だった。この時のガス生成量は、シュレッダーダスト供給量0.256g/分に対して水素212ml/分、メタン65ml/分、二酸化炭素116ml/分、エタン9ml/分だった。
【0048】
【発明の効果】
本発明によれば、有機物を水素を含むガスに効率よくかつ簡便に分解ガス化させることができる。
【図面の簡単な説明】
【図1】本発明を実施する場合のフローシートの1例を示す。
【図2】本発明を実施する場合のフローシートの他の例を示す。
【符号の説明】
[図1]
1 前処理装置
2 超臨界水ガス化槽
3 ガス分離塔
[図2]
13 亜〜臨界水可溶化槽
17 超臨界水ガス化槽
20 気液分離器
21 ガス分離塔
22 固液分離器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for gasifying an organic substance that converts the organic substance into a useful gas containing hydrogen.
[0002]
[Prior art]
Incinerated plastic waste such as shredder dust, brominated flame retardant plastics, etc. emitted from processing processes such as scrap automobiles, waste home appliances and waste electric wires contain halogen atoms such as chlorine and bromine. Currently, most of the landfill is being treated because there is concern about the formation of dioxins during the treatment process. In addition, waste plastics containing glass fiber reinforced plastic, magnesium hydroxide, and the like are similarly landfilled in order to damage the furnace wall during incineration. However, in recent years, it has become difficult to secure landfills, and even if they can be secured, there is a risk of deteriorating the surrounding environment. Is urgently needed. Various recycling methods for waste plastics have been studied so far, but there is almost nothing related to economical recycling technology for plastics containing halogen atoms, plastics containing additives such as glass fibers, and plastic mixed wastes. .
[0003]
There are already several related patents related to gasification of organic substances such as plastics. Japanese Patent Laid-Open No. 2001-19402 (Patent Document 1) proposes a method of producing hydrogen from coal or plastic by adding a large amount of a carbon dioxide absorbent such as calcium oxide or calcium hydroxide to supercritical water. However, in this method, a large amount of water-insoluble carbon dioxide absorbent such as CaO or Ca (OH) 2 is added to the reaction system in order to remove carbon dioxide by-produced in the gasification reaction. In addition, the carbon dioxide absorbent is separated and recovered with high purity from the gasification product, and there are problems such as great difficulty in reuse.
Japanese Patent Laid-Open No. 2000-239672 (Patent Document 2) describes a method in which gasification of carbon resources such as coal is performed in a three-stage reaction. The problem was included.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-19402 [Patent Document 2]
Japanese Patent Laid-Open No. 2000-239672
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently and simply gasifying organic substances such as plastic and food waste.
[0006]
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, according to the present invention, the following gasification method is provided.
(1) A plastic is brought into contact with subcritical water or supercritical water in the presence of a metal catalyst comprising a hydrogen activated metal and an oxidizing agent at a reaction pressure of 5 to 50 MPa and a reaction temperature of 500 to 800 ° C. An organic gasification method for controlling a production ratio , wherein an oxidizing agent is contained in an amount of 5 to 100 parts by weight per 100 parts by weight of a dry plastic .
(2) In a method of gasifying a raw material to be treated containing an organic substance and water, a solubilization step in which the raw material to be treated is heated to a temperature of 200 to 500 ° C. under a condition of 1.5 to 50 MPa, Hydrogen is obtained by bringing a lysate into contact with subcritical water or supercritical water in the presence of an alkali catalyst composed of a water-soluble alkaline substance having a reaction pressure of 5 to 50 MPa, a reaction temperature of 500 to 800 ° C., and 20 to 100 wt% with respect to the organic matter. Obtained by gas-liquid separation process, gas-liquid separation process, gas-liquid separation after cooling and depressurizing the gasification product obtained in the gasification process of organic matter, controlling the production ratio of methane and methane An organic gas characterized by comprising a gas separation step for separating the gas into at least hydrogen, methane, and carbon dioxide, and a solid-liquid separation step for solid-liquid separation of the liquid obtained in the gas-liquid separation step Method.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The organic material of the present invention includes various organic materials that are solid at room temperature. Such organic substances include low molecular weight organic compounds, high molecular weight organic compounds (plastics, rubber, polysaccharides, etc.), organic waste (livestock manure, bagasse, sewage contamination, garbage, beer lees, sake lees, soy sauce lees, etc. Food waste such as shochu rice cake).
The shape of the organic substance can be various shapes such as powder and lump, and is not particularly limited.
[0008]
Examples of the plastic (resin) include various conventionally known ones. These include polyolefin resins, styrene resins, ABS resins, ethylene / vinyl acetate copolymers, phenoxy resins, polyacetal resins, polyamides, polyesters, thermoplastic polyimides, polyetherimides, polyetheretherketones, polycarbonates , Thermoplastic resins such as polysulfone and polyphenylene ether, epoxy resins, guanamine resins, vinyl ester resins, phenol resins, unsaturated polyester resins, polyimides, polyurethanes, urea resins, and other thermosetting resins, and natural materials such as cellulose and proteins Macromolecules are included.
These plastics can contain various additives such as flame retardants and fillers. The plastic used in the present invention is preferably waste plastic.
The plastic can be a molded product such as a film, a plate, and a container in addition to powder. In the case of a molded product, it can be crushed and used as a material to be treated in the form of a pulverized product. The dimension is desirably as small as possible, but is usually 20 mm or less, preferably 10 mm or less. The lower limit is not particularly limited, but is usually about 2 mm.
[0009]
In the present invention, an organic substance used as a material to be treated is brought into contact with subcritical water or supercritical water in the presence of a metal catalyst composed of a hydrogen-activated metal and / or an alkali catalyst composed of a water-soluble alkaline substance.
As the hydrogenation active metal (catalyst metal) used in the present invention, conventionally known various transition metals are used. Such materials include metals such as Cu, Ti, V, Cr, Mo, W, Mn, Fe, Co, Ni, Pt, Pd, Ir, Rh, and Re. In the present invention, a group 8 metal can be particularly preferably used.
Although the catalyst metal used in the present invention can be used alone, it is usually used as a supported catalyst supported on a carrier. Examples of the carrier include metal oxides such as silica, alumina, silica-alumina, titania and magnesia, and porous inorganic materials such as zeolite, sepiolite and clay. As a method for supporting the carrier, various conventionally known methods such as an impregnation method can be used.
In the catalyst in which the catalyst metal is supported on the support, the content of the catalyst metal is 5 to 70% by weight, preferably 10 to 30% by weight in the total catalyst. The form of the catalyst metal can be an oxide or sulfide in addition to the metal state. The size of the catalyst is 0.2 to 3 mm, preferably 0.5 to 1 mm.
[0010]
In the alkaline catalyst composed of a water-soluble alkaline substance used in the present invention, examples of the alkaline substance include NaOH, Na 2 CO 3 , NaHCO 3 , KOH, K 2 CO 3 , KHCO 3 and the like.
In the present invention, the alkali catalyst can be used in combination with the metal catalyst.
[0011]
In the present invention, the organic substance is converted into a gas containing hydrogen. The gasification reaction in this case is as follows.
CmHn + mH 2 O
→ mCO + (n / 2 + m) H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)
CO + 3H 2 O → CH 4 + H 2 O (3)
[0012]
The use ratio of subcritical water or supercritical water is 300 to 5000 parts by weight, preferably 500 to 2000 parts by weight, per 100 parts by weight of the organic matter (based on dry matter, hereinafter the same). In the case of a metal catalyst composed of a hydrogenation active metal, the catalyst is used in an amount of 5 to 100 parts by weight, preferably 10 to 60 parts by weight, per 100 parts by weight of organic matter, in terms of the amount of catalyst metal. In the case of an alkali catalyst, it is 5 to 100 parts by weight, preferably 10 to 80 parts by weight, per 100 parts by weight of the organic matter.
[0013]
The gasification reaction temperature of the present invention is 400 to 1000 ° C., preferably 500 to 800 ° C., and the reaction pressure is not less than the subcritical pressure of water (5 MPa or more), particularly not less than the supercritical pressure (22.1 MPa or more). The upper limit is 50 MPa, preferably 40 MPa. In the present invention, the reaction pressure is generally 5 to 50 MPa, preferably 10 to 40 MPa. The reaction time is 1 minute to 120 minutes, preferably 10 minutes to 30 minutes. According to the present invention, the organic matter is thermally decomposed and further reacted with subcritical water or supercritical water to generate a gas mainly composed of hydrogen, methane, and carbon dioxide. In the present invention, it is possible to control the production ratio of hydrogen and methane at this time. In order to increase the production rate of hydrogen, it is advantageous that the reaction temperature is higher and the water / organic charge ratio is higher. Moreover, since subcritical water or supercritical water is used as the decomposition / gasification solvent in the present invention, it is possible to completely suppress the formation of harmful dioxins as a by-product during the reaction. As the product gas, a mixed gas composed of lower hydrocarbons such as methane in addition to hydrogen and carbon dioxide can be obtained. By passing this mixed gas in an alkaline solution, carbon dioxide is absorbed and removed, and a mixed gas containing as a main component a gas useful as a fuel or chemical raw material such as hydrogen or methane can be obtained.
[0014]
In practicing the present invention, the subcritical water or supercritical water can contain an oxidizing agent in order to promote the decomposition of organic matter. Examples of the oxidizing agent include air, oxygen, hydrogen peroxide, ozone and the like. The amount of the oxidizing agent used is 5 to 100 parts by weight, preferably 10 to 50 parts by weight, per 100 parts by weight of the organic matter (dry matter).
When air or oxygen is used as the oxidant, the oxygen partial pressure in the reactor is 1 to 20 MPa, preferably 1 to 10 MPa.
[0015]
When gasifying an organic substance according to the present invention, the organic substance is preferably kept in subcritical water to supercritical water conditions and solubilized in advance, and then contacted with subcritical water or supercritical water. In this case, the solubilization of the organic substance is specifically performed by heating the organic substance to 200 to 500 ° C., preferably 300 to 400 ° C. under a pressure of 1.5 to 50 MPa, preferably 3 to 30 MPa in the presence of water. Can be implemented. The ratio of water used is 100 to 5000 parts by weight, preferably 200 to 2000 parts by weight, per 100 parts by weight of organic matter. The water preferably contains a catalyst, preferably an alkali catalyst.
[0016]
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a flow sheet when the present invention is implemented.
In order to gasify the organic matter according to this flow sheet, the organic matter (waste plastic or the like) that is the raw material to be treated is dehalogenated in the pretreatment device 1. This dehalogenation treatment can be performed by a conventionally known method. For example, the raw material to be treated is heated to a temperature of 100 to 450 ° C., preferably about 200 to 400 ° C. under atmospheric pressure. Thereby, halogen (chlorine, bromine, etc.) contained in the organic substance is removed as hydrogen halide. When the raw material to be processed has a low halogen content, the pretreatment device 1 is not required.
[0017]
The organic substance from which the halogen has been removed is gasified in the subcritical water or supercritical water gasification tank 2. In the gasification tank 2, water is maintained at the supercritical condition, and the subcritical water or supercritical water contains a catalyst.
The gas generated by gasification of plastic in the gasification tank 2 is introduced into the gas separation tower 3. This gas separation tower 3 can be a separation device having a separation membrane for selectively separating CO 2 . In the gas separation tower 3, a gas composed of hydrogen or methane and CO 2 are separated.
[0018]
The gas separation tower 3 can be a packed tower filled with a CO 2 absorbent. Examples of the CO 2 absorbent include calcium oxide, calcium hydroxide, magnesium oxide, magnesium hydroxide, and silica / alumina.
[0019]
In the subcritical water or supercritical water gasification tank 2, residues (metal, glass, etc.) that have not been gasified are discharged. Further, in this gasification tank 2, in order to maintain the water in the tank at a subcritical or supercritical pressure, a part of the water in the tank is withdrawn and pressurized with a high-pressure pump and pressed into the gasification tank 2. Let
[0020]
According to the present invention, organic substances can be decomposed into gases such as hydrogen, methane, and CO 2 . When nitrogen atoms are present in the plastic, nitrogen gas and ammonia gas are by-produced.
[0021]
When the raw material to be treated contains halogen, a water-soluble alkali (NaOH, Na 2 CO 3 , NaHCO 3, etc.) is added to the subcritical water or supercritical water in the gasification tank 2 in advance. Can be removed by reacting with this alkali. In this case, the pretreatment device 1 can be omitted.
[0022]
Next, FIG. 2 shows another example of a flow sheet for carrying out the present invention.
In order to continuously gasify the organic matter according to the flow sheet shown in FIG. 2, water containing an alkali catalyst is sublimated or supercritical water gas from the tank 11 through the line 31 and the pump 15, the line 34, and the line 35. It introduce | transduces into the chemical conversion tank 17, and is hold | maintained at subcritical or supercritical conditions. In addition, an organic substance containing water and an alkali catalyst is introduced from the tank 12 into the line 32, the sub-supercritical water solubilization tank 13, and after the organic substance is solubilized, it passes through the line 33, the pump 16 and the line 35. And introduced into the supercritical gasification tank 17.
The subcritical water or supercritical water may be made in the gasification tank 17, but may be made in advance by another device and introduced into the gasification tank 17.
[0023]
In the subcritical water or supercritical water gasification tank, the organic matter and the subcritical water or supercritical water undergo a catalytic reaction in the presence of a catalyst to gasify the organic matter.
[0024]
The gasification product of the organic matter is discharged from the gasification tank 17 through the line 36 together with the catalyst, passed through the cooler 18 and the line 37, and further reduced in pressure through the back pressure valve 19 to the gas-liquid separator 20. Introduce.
[0025]
The gas (gas) separated by the gas-liquid separator 20 is sent to the gas separation tower 21 where it is separated into hydrogen, methane and carbon dioxide (CO 2 ). On the other hand, the liquid separated by the gas-liquid separator 20 is sent to the solid-liquid separator 22 through the line 39, where it is separated into water containing an alkali catalyst and residue. The water containing the catalyst is sent to the tank 11 and reused.
[0026]
In the solubilization tank 13, those not solubilized are separated as residues. Such residues include metals, glass, sand and the like.
[0027]
In the gas-liquid separator 20, the temperature is 20-100 degreeC, Preferably it is 25-60 degreeC, The pressure is 0.1-10 MPa, Preferably it is 0.1-8 MPa.
[0028]
In the subcritical water or supercritical water gasification tank 17, the temperature is 400 to 1000 ° C., preferably 500 to 800 ° C., and the pressure is 5 to 50 MPa, preferably 10 to 40 MPa.
[0029]
In the sub-supercritical water solubilization tank 13, the temperature is 200 to 500 ° C. and the pressure is 1.5 to 50 MPa.
[0030]
【Example】
Hereinafter, the present invention will be described in detail by way of examples. In the following examples, shredder dust discharged from the disposal process of scrapped automobiles, polyethylene as its main component, and organic substances such as polyvinyl chloride (called polyene) dehydrochlorinated by pretreatment are used. did.
[0031]
Reference example 1
A decomposition / gasification reactor was charged with 0.05 g of polyethylene and 0.01 g of a nickel-based catalyst, and the polyethylene was decomposed / gasified with supercritical water at 650 ° C. and 30 MPa. The reaction time at this time was 10 minutes or 30 minutes. The experimental results are shown in Table 1. 1, no. It is shown in 2. As can be seen from Table 1, when polyethylene is treated with supercritical water, it decomposes 100%, and a mixed gas mainly composed of hydrogen, methane and carbon dioxide is obtained, and even when the reaction time is 10 minutes, polyethylene is 100% decomposed. Since the amount of gas produced and the composition were almost the same as in the case of 30 minutes, it was found that the gas was completely gasified in a short time.
[0032]
[Table 1]
Figure 0004304237
[0033]
Reference example 2
A polyene that has been dehydrochlorinated by pretreatment and 0.05 to 0.05 g of a nickel-based catalyst or an alkali catalyst (Na 2 CO 3 ) are charged into a decomposition / gasification reactor, and supercritical at 650 ° C. and 30 MPa. A gasification reaction was performed with water. The reaction time at this time was 30 minutes. The experimental results are shown in Table 2. 3-No. 7 shows. No. As shown in Fig. 3, the decomposition rate was as low as 35% without adding a catalyst, and the amount of gas produced was as low as 250 ml / g-resin. However, when a catalyst was added, decomposition and gasification were promoted and the amount of catalyst increased The decomposition rate and gas generation increased with the increase. As the amount of catalyst increased, the amount of hydrogen and carbon dioxide in the product gas increased, but the amount of methane remained unchanged.
[0034]
Example 1
A decomposition / gasification reactor was charged with 0.05 g of polyene and 0.02 g of alkali catalyst sodium carbonate, and a gasification reaction was performed with supercritical water at 650 ° C. and 30 MPa. The reaction time at this time was 30 minutes. The experimental results are shown in Table 2. It is shown in FIG. Compared with the addition of the same weight fraction of nickel catalyst to polyene, the decomposition rate was slightly lower, but the production of hydrogen, methane, and carbon dioxide was greatly reduced. This is because since the degree of molecular weight reduction is small, a considerable amount of decomposition products remain in water as water-soluble oligomers and are not gasified.
[0035]
[Table 2]
Figure 0004304237
[0036]
Example 2
The shredding dust 0.05g and the nickel catalyst 0.01g which dehydrochlorinated polyvinyl chloride in the constituent polymer by pre-treatment were charged into the cracking and gasification reactor, and 650-800 ° C, 30MPa supercritical water. The gasification reaction was carried out. The reaction time at this time was 30 minutes. The experimental results are shown in Table 3. 9, no. 10 shows. No. As shown in FIG. 9, the resin decomposition rate at 650 ° C. was as high as 77%, but the amount of gas generated per unit resin weight was small. This is because of No. 3 in Example 3. This is because a considerable amount of decomposition products remained in water as in the case of No. 8. For this purpose, the reaction temperature was raised to 800 ° C. to perform decomposition and gasification. The result at that time is No. 10 shows. As the reaction temperature rose, plastics were reduced in molecular weight and gasified, and a high decomposition rate and high gas production were obtained.
[0037]
Example 3
In order to ease the processing conditions of shredder dust, an oxidizing agent was added to decompose and gasify. That is, 0.05 g of dechlorinated shredder dust and 0.01 g of nickel catalyst were charged in a decomposition / gasification reactor, air was mixed as an oxidant, and a gasification reaction was performed with supercritical water. At this time, the reaction temperature was 650 ° C., the reaction pressure was 30 MPa, and the reaction time was 30 minutes. The experimental results are shown in Table 3. 11 shows. The addition of the oxidant caused a partial oxidation reaction of the plastic in the shredder dust, greatly promoting the subsequent gasification. As a result, no. A comparable gas production was obtained at 10 800 ° C. On the other hand, as a result of oxidation of some hydrogen and methane in the product gas by the oxidant, the production rate of these gases decreased slightly, and conversely the rate of carbon dioxide increased.
[0038]
[Table 3]
Figure 0004304237
[0039]
Example 4
Polyene and various catalysts were packed in a decomposition / gasification reactor, and gasification was performed with supercritical water at 700 ° C. and 30 MPa. The reaction time at this time was 30 minutes. The experimental results are shown in Table 4. Regarding the amount of hydrogen produced, In comparison with the nickel catalyst of No. 12, the catalyst containing sodium ions is No. No. 13 at about 13% sodium hydroxide About 14% and 15% carbonates and bicarbonates produced about 50% hydrogen. On the other hand, no. In the case of 16 potassium hydroxide, about 96% when using a nickel catalyst, No. 17 carbonate is 80%, No. 17 With 18 bicarbonates, 70% hydrogen was obtained.
[0040]
[Table 4]
Figure 0004304237
[0041]
Example 5
Garbage and various catalysts were packed in a decomposition / gasification reactor and gasified with supercritical water at 650 ° C. and 30 MPa. The reaction time at this time was 30 minutes. The experimental results are shown in Table 5. No. As shown in FIG. 19, the amount of hydrogen produced was highest when a nickel catalyst was used. No. No. 20 and 23 alkaline catalysts, No. Carbonates such as 21 and 24, no. When bicarbonates such as 22 and 25 were used, 35 to 77% of the hydrogen of the nickel catalyst was generated.
[0042]
[Table 5]
Figure 0004304237
[0043]
Example 6
According to the intermittent supercritical water gasification flow sheet shown in FIG. 2, polyethylene was supercritical water gasified using an inexpensive alkali, alkali carbonate or alkali hydrogen carbonate as a catalyst. The temperature of the solubilization tank 13 was 350 ° C., the pressure was 16.5 MPa of the saturated vapor pressure, the temperature of the gasifier 17 was 700 ° C., the pressure was 30 MPa, and the residence time was 30 minutes. 100 g of polyethylene charged in the solubilization tank, 500 g of water, 20 g of catalyst, the feed rate of the solubilized polyethylene + water + catalyst mixture from the solubilization tank is 1.54 g / min, from the top of the supercritical water gasification tank The additional water supply rate was 1 ml / min. The amount of generated gas at this time is shown in Table 6 No. 26-No. 31. As can be seen from Table 6, when polyethylene is decomposed and gasified, a mixed gas mainly composed of hydrogen and methane is obtained. In the case of KOH, K 2 CO 3 and NaOH, the same reaction conditions using a nickel butterfly It was found that hydrogen equivalent to a hydrogen production amount of 274 ml / min was obtained.
[0044]
[Table 6]
Figure 0004304237
[0045]
Example 7
According to the continuous supercritical water gas flow sheet shown in FIG. 2, polyethylene was supercritical water gasified using potassium hydroxide or sodium hydroxide as a catalyst. The temperature of the solubilization tank was 350 ° C., the pressure was 16.5 MPa of the saturated vapor pressure, the temperature of the gasification tank was 700 ° C., the pressure was 30 MPa, and the residence time was 30 minutes. 100 g of polyethylene charged in the solubilization tank, 500 g of water, 20 to 100 g of catalyst, the supply rate of the solubilized polyethylene + water + catalyst mixture from the solubilization tank is 1.54 g / min, a supercritical water gasification tank The supply rate of additional water from the top was 1 ml / min. The effect of the catalyst addition amount on the hydrogen production amount is shown in No. 32-No. 37. As can be seen from Table 7, it was found that the amount of hydrogen produced increased greatly when the catalyst amount was increased for both potassium hydroxide and sodium hydroxide.
[0046]
[Table 7]
Figure 0004304237
[0047]
Example 8
According to the continuous supercritical water gasification flow sheet shown in FIG. 2, shredder dust was supercritical water gasified using potassium hydroxide as a catalyst. The temperature of the solubilization tank was 350 ° C., the pressure was 16.5 MPa of saturated steam, the temperature of the gasification tank was 700 ° C., the pressure was 30 MPa, and the residence time was 30 minutes. Shredder dust charged in the solubilization tank is 100 g, water is 500 g, catalyst is 100 g, solubilization shredder dust + water + catalyst mixture feed rate from the solubilization tank is 1.54 g / min, supercritical water gasification The supply rate of additional water from the upper part of the tank was 1 ml / min. At this time, the amount of gas produced was 212 ml / min for hydrogen, 65 ml / min for methane, 116 ml / min for carbon dioxide, and 9 ml / min for ethane with respect to 0.256 g / min for the shredder dust supply rate.
[0048]
【The invention's effect】
According to the present invention, an organic substance can be efficiently and easily decomposed into a gas containing hydrogen.
[Brief description of the drawings]
FIG. 1 shows an example of a flow sheet for carrying out the present invention.
FIG. 2 shows another example of a flow sheet for carrying out the present invention.
[Explanation of symbols]
[Figure 1]
1 Pretreatment device 2 Supercritical water gasification tank 3 Gas separation tower [Fig. 2]
13 Sub-critical water solubilization tank 17 Supercritical water gasification tank 20 Gas-liquid separator 21 Gas separation tower 22 Solid-liquid separator

Claims (3)

プラスチックを、反応圧力5〜50MPa、反応温度500〜800℃で水素活性化金属からなる金属触媒及び酸化剤の存在下において、亜臨界水又は超臨界水と接触させて水素とメタンの生成比を制御する有機物のガス化方法であって、
前記酸化剤を、乾燥状態の前記プラスチック100重量部当り5〜100重量部含有させることを特徴とする有機物のガス化方法
The plastic is brought into contact with subcritical water or supercritical water in the presence of a metal catalyst comprising a hydrogen activated metal and an oxidizing agent at a reaction pressure of 5 to 50 MPa and a reaction temperature of 500 to 800 ° C. An organic gasification method to be controlled ,
A method for gasifying an organic substance, comprising containing 5 to 100 parts by weight of the oxidizing agent per 100 parts by weight of the plastic in a dry state .
1.5〜50MPaの条件下で200〜500℃の温度に加熱して可溶化させた後、前記亜臨界水又は超臨界水と接触させることを特徴とする請求項1に記載の有機物のガス化方法。  The organic gas according to claim 1, wherein the organic gas is brought into contact with the subcritical water or supercritical water after being solubilized by heating to a temperature of 200 to 500 ° C under a condition of 1.5 to 50 MPa. Method. 有機物と水を含む被処理原料をガス化する方法において、
該被処理原料を、1.5〜50MPaの条件下で200〜500℃の温度に加熱して可溶化させる可溶化工程、
該可溶化物を、反応圧力5〜50MPa、反応温度500〜800℃、前記有機物に対して20〜100wt%の水溶性アルカリ性物質からなるアルカリ触媒の存在下で亜臨界水又は超臨界水と接触させて水素とメタンの生成比を制御する有機物のガス化工程、
該ガス化工程で得られたガス化生成物を冷却し、減圧した後、気液分離する気液分離工程、
該気液分離工程で得られたガスを、少なくとも水素とメタンと二酸化炭素ととに分離するガス分離工程、
該気液分離工程で得られた液体を、固液分離する固液分離工程、
を包含することを特徴とする有機物のガス化方法。
In a method of gasifying a raw material to be treated containing organic matter and water,
A solubilization step of solubilizing the material to be treated by heating to a temperature of 200 to 500 ° C. under a condition of 1.5 to 50 MPa;
The solubilized product is contacted with subcritical water or supercritical water in the presence of an alkali catalyst composed of a water-soluble alkaline substance having a reaction pressure of 5 to 50 MPa, a reaction temperature of 500 to 800 ° C., and 20 to 100 wt% with respect to the organic substance. An organic gasification process that controls the production ratio of hydrogen and methane,
A gas-liquid separation step in which the gasification product obtained in the gasification step is cooled and decompressed, and then gas-liquid separation is performed;
A gas separation step of separating the gas obtained in the gas-liquid separation step into at least hydrogen, methane, and carbon dioxide;
A solid-liquid separation step for solid-liquid separation of the liquid obtained in the gas-liquid separation step;
An organic material gasification method comprising:
JP2002277949A 2001-09-21 2002-09-24 Gasification method of organic matter Expired - Lifetime JP4304237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277949A JP4304237B2 (en) 2001-09-21 2002-09-24 Gasification method of organic matter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-290003 2001-09-21
JP2001290003 2001-09-21
JP2002277949A JP4304237B2 (en) 2001-09-21 2002-09-24 Gasification method of organic matter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008260117A Division JP2009030071A (en) 2001-09-21 2008-10-06 Method for gasifying organic substance

Publications (2)

Publication Number Publication Date
JP2003201486A JP2003201486A (en) 2003-07-18
JP4304237B2 true JP4304237B2 (en) 2009-07-29

Family

ID=27666261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277949A Expired - Lifetime JP4304237B2 (en) 2001-09-21 2002-09-24 Gasification method of organic matter

Country Status (1)

Country Link
JP (1) JP4304237B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030071A (en) * 2001-09-21 2009-02-12 National Univ Corp Shizuoka Univ Method for gasifying organic substance
KR20210034530A (en) * 2019-09-20 2021-03-30 (주)골드앤스노우 월드와이드 Hydrogen gas generating composition and hydrogen gas trapping nanostructure

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814537B2 (en) * 2004-03-09 2011-11-16 ハビックス株式会社 Hydrogen production method and apparatus
JP4522193B2 (en) * 2004-08-27 2010-08-11 メタウォーター株式会社 Method for recovering useful hydrocarbons from sludge
JP5344510B2 (en) * 2006-07-28 2013-11-20 国立大学法人東北大学 Oxidation method
JP5088951B2 (en) * 2007-11-22 2012-12-05 新日鐵化学株式会社 Method for producing water-soluble saccharide raw material from beer-added koji
CN102906502A (en) * 2009-11-24 2013-01-30 三角洲热能公司 Waste to energy by way of hydrothermal decomposition and resource recycling
JP4814403B1 (en) * 2011-06-17 2011-11-16 民朗 金辺 Methane production equipment
JP6161364B2 (en) * 2013-03-29 2017-07-12 大阪瓦斯株式会社 Method for producing fuel gas
JP6156870B2 (en) * 2013-07-11 2017-07-05 日曹エンジニアリング株式会社 Gasification method for organic waste
PT3283239T (en) * 2015-04-13 2019-04-23 Archimede S R L Plant for waste disposal and associated method
EP3766834A1 (en) * 2019-07-18 2021-01-20 SCW Systems B.V. Process for converting hydrocarbons to products
CN114479174B (en) * 2022-03-28 2023-12-01 广西丰林木业集团股份有限公司 Environment-friendly efficient degradation recycling method for waste solidified urea resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030071A (en) * 2001-09-21 2009-02-12 National Univ Corp Shizuoka Univ Method for gasifying organic substance
KR20210034530A (en) * 2019-09-20 2021-03-30 (주)골드앤스노우 월드와이드 Hydrogen gas generating composition and hydrogen gas trapping nanostructure
KR102250826B1 (en) 2019-09-20 2021-05-11 (주)골드앤스노우 월드와이드 Hydrogen gas generating composition and hydrogen gas trapping nanostructure

Also Published As

Publication number Publication date
JP2003201486A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
JP4304237B2 (en) Gasification method of organic matter
KR102158694B1 (en) Dechlorination apparatus and method for converting low grade fuel oil into low chlorine clean light fuel oil
CN1197694C (en) Method for treatment of fire retardant resin composition
NZ272367A (en) Waste processing; comprises pyrolysis of chlorinated polymer waste to form gaseous products, use of fluidised bed reactor (comprising available calcium oxide) and fluidising gas
JP2009030071A (en) Method for gasifying organic substance
KR100256401B1 (en) Device & method for recycling scrapped material with hydrogen oxygen plasma torch
KR20040105883A (en) Method for recovering toluene diamine from solid wastes of toluene diisocyanate plant
JP4465851B2 (en) Chemical recycling method and apparatus for waste plastic
Jiang et al. An Integrated Plasma–Photocatalytic System for Upcycling of Polyolefin Plastics
KR100322291B1 (en) Process for degrading complex hydrocarbons to produce simpler hydrocarbons
JPH07286062A (en) Method for treating chlorine-containing plastic waste
JP2005270768A (en) Method for gasifying papermaking sludge and used paper waste and making hydrogen
Chen et al. Upcycling of plastic wastes for hydrogen production: Advances and perspectives
JP2001288480A (en) Method and apparatus for plastic waste gasification
CN114561221A (en) Catalytic pyrolysis gasification method for scrap automobile crushing residue
JP4601576B2 (en) Method and apparatus for producing hydrogen gas and carbon monoxide gas from combustible waste
JP2006231249A (en) Treating method and treatment apparatus of packaging material
JPH0885736A (en) Method for thermally decomposing thermosetting resin and apparatus therefor
JP2005279361A (en) Method for treating waste
CN112175647B (en) Process for controllably and selectively converting medical wastes into oil by non-catalytic thermal cracking
JP2004131358A (en) Method and apparatus for producing hydrogen by using mixed molten salt
JP2005281343A (en) Method for producing high-pressure hydrogen
JPH1180745A (en) Waste plastic recycling system
JP2005306974A (en) Apparatus and method for converting plastic into oil
JP6276723B2 (en) Hazardous polystyrene foam waste disposal method and hazardous foam polystyrene waste disposal equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060720

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090325

R150 Certificate of patent or registration of utility model

Ref document number: 4304237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term