JP2001288480A - Method and apparatus for plastic waste gasification - Google Patents

Method and apparatus for plastic waste gasification

Info

Publication number
JP2001288480A
JP2001288480A JP2000100422A JP2000100422A JP2001288480A JP 2001288480 A JP2001288480 A JP 2001288480A JP 2000100422 A JP2000100422 A JP 2000100422A JP 2000100422 A JP2000100422 A JP 2000100422A JP 2001288480 A JP2001288480 A JP 2001288480A
Authority
JP
Japan
Prior art keywords
reactor
water
reaction
gas
waste plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000100422A
Other languages
Japanese (ja)
Inventor
Takeyoshi Den
建順 傳
Ko Hatakeyama
耕 畠山
Kenji Nishimura
建二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000100422A priority Critical patent/JP2001288480A/en
Publication of JP2001288480A publication Critical patent/JP2001288480A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PROBLEM TO BE SOLVED: To inhibit the reactor from corrosion and dioxins from generation by utilizing the characters of hot and supercritical water for the efficient disintegration of plastic waste into gas mainly comprising hydrogen and methane and by simultaneously causing dehalogenation in the reactor. SOLUTION: The halogen containing plastic waste is, together with an alkali metal compound, brought into contact with the high temperature water containing supercritical water for reaction for gasification. Pressure in a reactor 16 is kept at 15-40MPa, continuous temperature distribution of 200 deg.C-1,200 deg.C is formed from the reactor top down through the reactor bottom, thermal hydrolysis occurs in a hot water state 1st reaction region 16a for the generation of hydrogen halide, the hydrogen halide reacts with the alkali metal compound for the generation of its halide, the plastic waste reacts with subsupercritical water or supercritical water in a 2nd reaction region 16b for the generation of gas mainly comprising hydrogen and methane and a residue, and the residue is partially oxidized in a 3rd reaction region 16c for the generation of carbon monoxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄されたプラス
チックを有用なガスに分解し、再利用する方法及びその
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for decomposing waste plastic into useful gas and reusing the gas.

【0002】[0002]

【従来の技術】近年、プラスチックは生活廃棄物、産業
廃棄物として膨大な量が排出されており、その処分また
は再利用が重要な課題となっている。そのため、廃棄さ
れたプラスチックをガス化して再利用する方法が種々提
案されている。そのひとつとして800℃以上の高温で
熱分解する方法が知られているが、塩素ガス、炭酸ガス
など多くの有害ガスの発生を伴うなどの問題があった。
特に発生する塩素は反応器の材料を腐食する主原因とな
る他、ダイオキシンの発生など環境への深刻な影響を与
えている。上記ガス化方法における問題点を解決するた
め、簡易な方法でプラスチックをガス状物質に分解する
方法が開示されている(特開平6−299169)。こ
の分解方法ではプラスチックのガス化に超臨界水を含む
高温熱水を利用し、反応触媒の下で高温熱水と接触、反
応させてガス化するものである。
2. Description of the Related Art In recent years, an enormous amount of plastic has been discharged as domestic waste and industrial waste, and disposal or reuse thereof has become an important issue. Therefore, various methods have been proposed for gasifying and recycling waste plastic. As one of the methods, a method of thermally decomposing at a high temperature of 800 ° C. or more is known, but there is a problem that many harmful gases such as a chlorine gas and a carbon dioxide gas are generated.
In particular, the generated chlorine is a main cause of corrosion of the material of the reactor, and has a serious effect on the environment such as generation of dioxin. In order to solve the above-mentioned problems in the gasification method, a method of decomposing plastic into a gaseous substance by a simple method has been disclosed (JP-A-6-299169). In this decomposition method, high-temperature hot water including supercritical water is used for gasification of plastics, and gasification is performed by contacting and reacting with high-temperature hot water under a reaction catalyst.

【0003】しかしながらこの特開平6−299169
号公報に示された方法ではプラスチックの分解で生成す
るガス中の水素ガス等の有用ガスの割合は低く、またガ
スへの転換も実用上十分ではなかった。この点を解決す
るために本出願人は、プラスチックを水と200℃以上
の温度で反応させてガス化する際、反応時に廃プラスチ
ック中にあるハロゲン(例えば、塩素)を放出する化合
物を反応触媒として使用することを特徴とするガス化方
法を提案した(特開平11−181449)。この公報
に記載されたガス化方法では、反応時にハロゲンを放出
する化合物を反応触媒として使用してガス化することに
より効率よく水素ガスに分解することができる。
[0003] However, Japanese Patent Application Laid-Open No. 6-299169
In the method disclosed in the above publication, the ratio of useful gas such as hydrogen gas in the gas generated by decomposition of plastic is low, and the conversion to gas is not practically sufficient. In order to solve this problem, the present applicant, when gasifying plastic by reacting it with water at a temperature of 200 ° C. or higher, uses a compound that releases halogen (eg, chlorine) in waste plastic during the reaction as a reaction catalyst. A gasification method characterized by using as a method has been proposed (JP-A-11-181449). In the gasification method described in this publication, a compound that releases a halogen at the time of reaction is used as a reaction catalyst to perform gasification, so that it can be efficiently decomposed into hydrogen gas.

【0004】[0004]

【発明が解決しようとする課題】しかし、特開平11−
181449号公報に示されたガス化方法では、ハロゲ
ンはガス化を促進する触媒効果を有するが、ハロゲン化
水素が発生して反応器内部を腐食するおそれがあった。
またこの方法では反応器外にハロゲン化水素を中和する
槽を設けていたがこれでは効果的な抑制とはならなかっ
た。更に、特開平6−299169号公報、特開平11
−181449号公報に示された方法はともに500℃
以下で行われる低温のガス化のため、ガス化後に残渣と
して残ったチャーを更にガスに転換することが難しく、
全体におけるガス化率が上がらない問題もあった。
However, Japanese Patent Application Laid-Open No.
In the gasification method disclosed in Japanese Patent No. 181449, although halogen has a catalytic effect of accelerating gasification, there is a risk that hydrogen halide is generated and corrodes the inside of the reactor.
In this method, a tank for neutralizing hydrogen halide was provided outside the reactor, but this did not provide effective suppression. Further, JP-A-6-299169 and JP-A-11-11
Both methods described in JP-A-181449 are 500 ° C.
Due to the low temperature gasification performed below, it is difficult to further convert the char remaining as a residue after gasification to gas,
There was also a problem that the gasification rate in the whole did not increase.

【0005】本発明の目的は、熱水及び超臨界水の特徴
を利用して効率よく水素、メタンを主成分とするガスに
分解し、且つ反応器で同時に脱ハロゲンすることにより
反応器の腐食及びダイオキシン類の生成を抑制する廃プ
ラスチックのガス化方法及びその装置を提供することに
ある。
[0005] An object of the present invention is to efficiently decompose a gas containing hydrogen and methane as main components by utilizing the characteristics of hot water and supercritical water, and simultaneously dehalogenate the gas in the reactor to corrode the reactor. Another object of the present invention is to provide a method and an apparatus for gasifying waste plastic, which suppress generation of dioxins.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明は、
廃プラスチックを反応器16内でアルカリ金属化合物と
ともに超臨界水を含む高温熱水と接触、反応させてガス
化する廃プラスチックのガス化方法において、廃プラス
チックがハロゲンを含む粉砕された廃プラスチック粉末
であって、反応器16内を圧力15〜40MPaに維持
し、かつ反応器頂部から反応器底部にかけて200℃以
上1200℃以下の連続的な温度分布を形成し、反応器
頂部及びその近傍を熱水状態の第1反応領域16aと
し、反応器底部及びその近傍を水の亜臨界又は超臨界状
態の第3反応領域16cとし、更に反応器内部の第1及
び第3反応領域16a,16cの間を水の亜臨界又は超
臨界状態の第2反応領域16bとするとき、第1反応領
域16aに供給されたスラリー中の廃プラスチックを第
1反応領域16aで熱・加水分解してハロゲン化水素を
生成させ、かつこのハロゲン化水素をスラリー中のアル
カリ金属化合物と反応させてハロゲン化物を生成し、第
1反応領域16aに供給されたスラリー中の廃プラスチ
ックを第2反応領域16bで亜臨界水又は超臨界水と反
応させて水素及びメタンを主成分とするガス及び一次分
解物の残渣を生成し、第3反応領域16cに残渣を供給
して酸化剤により残渣を部分酸化させて一酸化炭素を主
成分とするガスを生成することを特徴とする廃プラスチ
ックのガス化方法である。請求項1に係る発明では、反
応器16内部に温度制御によってそれぞれ温度範囲の異
なる第1〜第3反応領域16a,16b,16cを形成
する。頂部の第1反応領域16aでは廃プラスチックを
熱・加水分解反応してハロゲン化水素を生成させ、かつ
このハロゲン化水素をアルカリ金属化合物と反応させて
ハロゲン化物を生成し、中間部の第2反応領域16bで
は廃プラスチックを亜臨界水又は超臨界水と反応させて
水素及びメタンを主成分とするガス及び一次分解物の残
渣を生成し、底部の第3反応領域16cに残渣を供給し
て酸化剤により残渣を部分酸化させて一酸化炭素を主成
分とするガスを生成することができる。従って、上記方
法により反応器16内で熱・加水分解・ガス化により生
じたハロゲン化水素を中和する領域が形成され、ガス化
と同時に中和も行うため、反応器の腐食を抑制できる。
The invention according to claim 1 is
In a gasification method of waste plastics in which waste plastics are contacted and reacted with high-temperature hot water containing supercritical water together with an alkali metal compound in a reactor 16 to gasify the waste plastics, the waste plastics are formed by crushed waste plastic powder containing halogen. The pressure inside the reactor 16 is maintained at 15 to 40 MPa, and a continuous temperature distribution of 200 ° C. or more and 1200 ° C. or less is formed from the top of the reactor to the bottom of the reactor. The first reaction region 16a in a state, the bottom of the reactor and the vicinity thereof are a third reaction region 16c in a subcritical or supercritical state of water, and the space between the first and third reaction regions 16a and 16c inside the reactor is further defined. When the second reaction region 16b is in a subcritical or supercritical state of water, waste plastic in the slurry supplied to the first reaction region 16a is removed by the first reaction region 16a. Hydrolyzing to generate hydrogen halide, and reacting this hydrogen halide with an alkali metal compound in the slurry to generate a halide, and removing the waste plastic in the slurry supplied to the first reaction region 16a; The second reaction region 16b reacts with subcritical water or supercritical water to generate a gas mainly composed of hydrogen and methane and a residue of a primary decomposition product, and supplies the residue to the third reaction region 16c to remove the residue with an oxidizing agent. A gas containing carbon monoxide as a main component to produce a gas containing carbon monoxide as a main component. In the invention according to claim 1, the first to third reaction regions 16a, 16b, and 16c having different temperature ranges are formed in the reactor 16 by temperature control. In the first reaction region 16a at the top, waste plastic is thermally and hydrolyzed to generate hydrogen halide, and the hydrogen halide is reacted with an alkali metal compound to generate a halide. In the region 16b, the waste plastic is reacted with subcritical water or supercritical water to generate a gas mainly composed of hydrogen and methane and a residue of a primary decomposition product, and the residue is supplied to the bottom third reaction region 16c to be oxidized. The residue can be partially oxidized by the agent to generate a gas containing carbon monoxide as a main component. Accordingly, a region for neutralizing hydrogen halide generated by heat, hydrolysis and gasification is formed in the reactor 16 by the above method, and neutralization is performed simultaneously with gasification, so that corrosion of the reactor can be suppressed.

【0007】請求項2に係る発明は、請求項1に係る発
明であって、反応器16で生成した灰分を除く反応生成
物を固気分離器36で水素、メタン及び水分を含むガス
と、固体ハロゲン化物とに分離し、ガスを冷却して気液
分離器42で水素及びメタンを含むガスと、水とに分離
する廃プラスチックのガス化方法である。請求項2に係
る発明では、灰分を除く反応生成物を固気分離器36、
気液分離器42でハロゲン化物、水素及びメタンを含む
ガス、水にそれぞれ分離する。反応器16内で生成した
固体ハロゲン化物は溶解しているため上記固気分離器3
6により容易に分離できる。
[0007] The invention according to claim 2 is the invention according to claim 1, wherein the reaction product excluding the ash produced in the reactor 16 is subjected to a gas containing hydrogen, methane and moisture in the solid-gas separator 36, This is a gasification method for waste plastics in which the gas is cooled, and the gas is cooled and the gas-liquid separator 42 separates the gas into a gas containing hydrogen and methane and water. In the invention according to claim 2, the reaction product excluding ash is separated into a solid-gas separator 36,
The gas-liquid separator 42 separates the mixture into a gas containing halide, hydrogen and methane, and water. Since the solid halide produced in the reactor 16 is dissolved, the solid-gas separator 3
6 facilitates separation.

【0008】請求項3に係る発明は、図2に示すよう
に、両端が封止され周囲にヒータが設けられた耐圧耐熱
性の縦型の管状反応器16を備え、反応器16の頂部が
大径部に反応器16の底部が小径部に反応器16の頂部
と底部の中間部が錐部にそれぞれ形成され、大径部内が
熱水状態の第1反応領域16aを形成可能に構成され、
錐部内が水の亜臨界又は超臨界状態の第2反応領域16
bを形成可能に構成され、小径部内が水の亜臨界又は超
臨界状態の第3反応領域16cを形成可能に構成され、
反応器16の頂部に廃プラスチックと水とアルカリ金属
化合物を混合したスラリーの供給口17と、灰分を除く
反応生成物の排出口28とがそれぞれ設けられ、反応器
16の底部又は底部近傍の側部に水及び酸化剤の供給口
29と、灰分の排出口31とがそれぞれ設けられたこと
を特徴とする廃プラスチックのガス化装置である。請求
項3に係る発明では、上記のような構造を有する装置で
廃プラスチックを分解することにより、ハロゲン化水素
が触媒として作用するため廃プラスチックを効率よく水
素及びメタンガス等に分解し、なおかつ熱水状態である
第1反応領域16aではアルカリ金属が溶解しており、
上記ハロゲン化水素と中和反応するため反応器内の腐食
を抑制できる。
As shown in FIG. 2, the invention according to claim 3 includes a pressure-resistant and heat-resistant vertical tubular reactor 16 in which both ends are sealed and a heater is provided around the reactor. The bottom portion of the reactor 16 is formed in the large diameter portion, the middle portion between the top and the bottom of the reactor 16 is formed in the cone portion in the small diameter portion, and the first reaction region 16a in the hot water state is formed in the large diameter portion. ,
The second reaction region 16 in a subcritical or supercritical state of water in the cone portion
b can be formed, and the inside of the small diameter portion can be formed to form the third reaction region 16c in a subcritical or supercritical state of water,
At the top of the reactor 16, there are provided a supply port 17 for a slurry obtained by mixing waste plastic, water and an alkali metal compound, and an outlet 28 for a reaction product excluding ash, and a bottom at or near the bottom of the reactor 16. The waste plastic gasifier is characterized in that a supply port 29 for water and an oxidant and a discharge port 31 for ash are provided in the respective sections. According to the third aspect of the present invention, the waste plastic is decomposed by the apparatus having the above-described structure, so that the waste plastic is efficiently decomposed into hydrogen, methane gas, and the like because the hydrogen halide acts as a catalyst. In the first reaction region 16a in the state, the alkali metal is dissolved,
Due to the neutralization reaction with the hydrogen halide, corrosion in the reactor can be suppressed.

【0009】請求項4に係る発明は、請求項3に係る発
明であって、反応器16の側壁及び底壁がそれぞれ所定
の間隔を有する外壁16dと内壁16eからなる二重構
造をなし、大径部に相応する外壁16dの上部に水及び
酸化剤の導入口24が設けられ、小径部に相応する内壁
16eの底部又は底部近傍の側部に水及び酸化剤の供給
口29が設けられた廃プラスチックのガス化装置であ
る。請求項4に係る発明では、酸化剤が反応器内壁16
eの外面から熱を受けて昇温されるため熱効率がよい。
また、内壁16eの存在により外壁16dの内面温度が
低下するため耐圧性が向上する。
The invention according to claim 4 is the invention according to claim 3, wherein the side wall and the bottom wall of the reactor 16 have a double structure consisting of an outer wall 16d and an inner wall 16e having a predetermined interval, respectively. An inlet 24 for water and oxidant was provided at the top of the outer wall 16d corresponding to the diameter, and a supply port 29 for water and oxidant was provided at the bottom or near the bottom of the inner wall 16e corresponding to the small diameter. It is a gasifier for waste plastic. In the invention according to claim 4, the oxidizing agent contains the reactor inner wall 16.
Since the temperature is raised by receiving heat from the outer surface of e, the thermal efficiency is good.
Also, the presence of the inner wall 16e lowers the inner surface temperature of the outer wall 16d, thereby improving the pressure resistance.

【0010】[0010]

【発明の実施の形態】本発明の廃プラスチックは、ハロ
ゲンを含有するプラスチックであって、具体的にはポリ
塩化ビニル、塩化ビニル・酢酸ビニル共重合体等の樹
脂、ポリテトラフルオロエチレン(製品名:テフロン)
のようなフッ素系樹脂が挙げられる。アルカリ金属化合
物はカリウム、ナトリウム等のアルカリ金属の酸化物、
水酸化物、炭酸塩等が挙げられる。アルカリ金属化合物
はこれらの混合物であってもよい。また酸化剤には、酸
素、空気、過酸化水素水等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The waste plastic of the present invention is a plastic containing halogen, specifically, resins such as polyvinyl chloride, vinyl chloride / vinyl acetate copolymer, and polytetrafluoroethylene (product name). :Teflon)
Such as a fluorine-based resin. Alkali metal compounds are alkali metal oxides such as potassium and sodium,
Hydroxide, carbonate and the like. The alkali metal compound may be a mixture thereof. Examples of the oxidizing agent include oxygen, air, and hydrogen peroxide.

【0011】次に本発明の実施の形態について説明す
る。図1に示すように、本発明の廃プラスチックのガス
化装置10は水と廃プラスチックとアルカリ金属化合物
を混合してスラリーを調製するミキサー11を有する。
このミキサー11は管路12、ポンプ13及び管路14
を介して反応器16頂部に設けられた供給口17からス
ラリーを供給するように接続される。管路14には加熱
器18が設けられる。ミキサー11の外周にはヒータ1
1aが、またその内部には撹拌器11bが設けられる。
廃プラスチックは予め数mm以下の、好ましくはポンプ
13の能力に応じて100μm以下の粒径に図示しない
粉砕器により微粉砕されてミキサー11に供給される。
水100重量%に対して廃プラスチック粉末を20〜6
0重量%、アルカリ金属化合物粉末を1〜10重量%、
それぞれ添加混合してスラリーを調製することが好まし
い。水貯蔵槽19は管路21、ポンプ22、管路23を
介して導入口24に接続され、管路23には加熱器26
が設けられる。また、管路23には酸化剤を供給するポ
ンプ27が接続される。
Next, an embodiment of the present invention will be described. As shown in FIG. 1, the waste plastic gasifier 10 of the present invention has a mixer 11 for mixing water, waste plastic and an alkali metal compound to prepare a slurry.
The mixer 11 includes a pipe 12, a pump 13 and a pipe 14.
Is connected so as to supply the slurry from a supply port 17 provided at the top of the reactor 16 via the. A heater 18 is provided in the conduit 14. A heater 1 is provided on the outer periphery of the mixer 11.
1a, and a stirrer 11b is provided therein.
The waste plastic is pulverized in advance by a pulverizer (not shown) to a particle size of several mm or less, preferably 100 μm or less according to the capacity of the pump 13 and supplied to the mixer 11.
20-6 waste plastic powder per 100% by weight of water
0% by weight, 1 to 10% by weight of alkali metal compound powder,
It is preferable to add and mix each to prepare a slurry. The water storage tank 19 is connected to an inlet 24 via a pipe 21, a pump 22, and a pipe 23, and a heater 26 is connected to the pipe 23.
Is provided. In addition, a pump 27 for supplying an oxidizing agent is connected to the pipe 23.

【0012】図2に示すように、反応器16は耐熱耐圧
製であり両端が封止された縦型の管状に形成される。反
応器16の外周部には保温又は加熱のための図示しない
ヒータが設けられる。反応器16は頂部が大径部に、底
部が小径部に、頂部と底部の中間部が錐部にそれぞれ形
成され、大径部内が第1反応領域16a、錐部内が第2
反応領域16b、小径部内が第3反応領域16cをそれ
ぞれ形成可能に構成される。反応器16の頂部には灰分
を除く反応生成物の排出口28が設けられる。反応器1
6の底部には水及び酸化剤の供給口29と、灰分の排出
口31とがそれぞれ設けられる。反応器16の側壁及び
底壁はそれぞれ所定の間隔を有する外壁16dと内壁1
6eからなる二重構造をなし、大径部に相応する外壁1
6dの上部には水及び酸化剤の導入口24が、小径部に
相応する内壁16eの底部には水及び酸化剤の供給口2
9が設けられる。
As shown in FIG. 2, the reactor 16 is made of heat-resistant and pressure-resistant, and is formed in a vertical tubular shape with both ends sealed. A heater (not shown) for keeping heat or heating is provided on the outer peripheral portion of the reactor 16. The reactor 16 has a large diameter portion at the top, a small diameter portion at the bottom, and a cone at the middle between the top and bottom. The large diameter portion has a first reaction region 16a, and the cone portion has a second diameter.
The reaction region 16b and the inside of the small diameter portion are configured such that the third reaction region 16c can be formed. At the top of the reactor 16 is provided an outlet 28 for the reaction products excluding ash. Reactor 1
6 is provided with a water and oxidant supply port 29 and an ash discharge port 31 at the bottom. The side wall and the bottom wall of the reactor 16 have an outer wall 16d and an inner wall 1 having a predetermined interval, respectively.
Outer wall 1 corresponding to the large diameter portion, having a double structure of 6e
6d, an inlet 24 for water and oxidant is provided at an upper portion, and a supply port 2 for water and oxidant is provided at a bottom of the inner wall 16e corresponding to the small diameter portion.
9 are provided.

【0013】図1に戻って、排出口28は管路32、減
圧弁33、管路34を介して固気分離器36の供給口3
7に接続される。固気分離器36には上部にガスを取出
すガス取出口38が、底部には固形分を取出す固形分取
出口39がそれぞれ設けられる。ガス取出口38は管路
41を介して気液分離器42の供給口43に接続され
る。管路41には冷却器44が設けられる。気液分離器
42には上部にガスを排出するガス排出口46が、底部
には水取出口47がそれぞれ設けられる。水取出口47
は管路48を介してミキサー11及び水貯蔵槽19にそ
れぞれ接続される。
Returning to FIG. 1, the discharge port 28 is connected to the supply port 3 of the solid-gas separator 36 through a pipe 32, a pressure reducing valve 33, and a pipe 34.
7 is connected. The solid-gas separator 36 is provided with a gas outlet 38 for taking out gas at the top and a solid fraction outlet 39 for taking out solid content at the bottom. The gas outlet 38 is connected to a supply port 43 of a gas-liquid separator 42 via a pipe 41. A cooler 44 is provided in the conduit 41. The gas-liquid separator 42 is provided with a gas outlet 46 for discharging gas at the top and a water outlet 47 at the bottom. Water outlet 47
Are connected to the mixer 11 and the water storage tank 19 via a pipe 48, respectively.

【0014】次にこのような装置による反応について説
明する。先ず反応器16の内部は圧力15〜40MPa
に維持され、反応器16の頂部の第1反応領域16aか
ら中間部の第2反応領域16bを経て底部の第3反応領
域16cにかけて、この領域順に200℃以上1200
℃以下の連続的な温度分布が形成される。 (a) 熱・加水分解反応工程 先ず廃プラスチックとアルカリ金属化合物と水を混合し
たスラリーを供給口17より反応器16に導入する。反
応器16内に導入されたスラリーは反応器頂部及びその
近傍の第1反応領域16aに入る。スラリー中の廃プラ
スチックは第1反応領域16aにおいて、式(1)〜
(3)に示すように廃プラスチックの熱分解反応が促進
され、同時に式(4)に示すように廃プラスチックの加
水分解反応が促進され、結果としてハロゲン化水素が生
成する。生成したハロゲン化水素は廃プラスチック(例
えば、Clを多く含む塩化ビニル)の熱分解をその雰囲
気下で促進する。
Next, the reaction by such an apparatus will be described. First, the pressure inside the reactor 16 is 15 to 40 MPa.
And from the first reaction zone 16a at the top of the reactor 16 to the third reaction zone 16c at the bottom via the second reaction zone 16b at the middle, and in the order of 200 ° C. or more and 1200 ° C.
A continuous temperature distribution below ℃ is formed. (a) Heat / Hydrolysis Reaction Step First, a slurry in which waste plastic, an alkali metal compound and water are mixed is introduced into a reactor 16 through a supply port 17. The slurry introduced into the reactor 16 enters the first reaction zone 16a at and near the top of the reactor. The waste plastics in the slurry are mixed in the first reaction zone 16a with the formulas (1) to (1).
The thermal decomposition reaction of the waste plastic is promoted as shown in (3), and at the same time, the hydrolysis reaction of the waste plastic is promoted as shown in formula (4), and as a result, hydrogen halide is generated. The generated hydrogen halide promotes the thermal decomposition of waste plastic (eg, vinyl chloride containing a large amount of Cl) under the atmosphere.

【0015】 Cnm → Cn'm' + Cn"m" …… (1) Cnm → Cnm-2 + H2 …… (2) Cnm-1X → Cnm-2 + HX …… (3) Cnm-1X + H2O → Cnm-1OH + HX …… (4) ここでXはハロゲン元素を示す。 (b) 第1ガス化工程 第1反応領域16aで熱・加水分解されたスラリー中の
廃プラスチックは、第1反応領域16aに続く第2反応
領域16bに入り、スラリー中の廃プラスチックは上記
した熱分解反応または亜臨界水又は超臨界水と反応して
下記式(5)及び(6)に示す代表的なガス化反応を起
こし水素及びメタンを主成分とするガス及び一次分解物
の残渣を生成する。
[0015] C n H m → C n ' H m' + C n "H m" ...... (1) C n H m → C n H m-2 + H 2 ...... (2) C n H m- It represents a halogen element 1 X → C n H m- 2 + HX ...... (3) C n H m-1 X + H 2 O → C n H m-1 OH + HX ...... (4) wherein X . (b) First gasification step The waste plastic in the slurry thermally and hydrolyzed in the first reaction zone 16a enters the second reaction zone 16b following the first reaction zone 16a, and the waste plastic in the slurry is as described above. A pyrolysis reaction or a reaction with subcritical water or supercritical water to cause a typical gasification reaction represented by the following formulas (5) and (6) to generate a gas containing hydrogen and methane as main components and a residue of a primary decomposition product. Generate.

【0016】 C + 2H2O → CO2 + 2H2 …… (5) C + 2H2 → CH4 …… (6) ここでスラリーに含まれるアルカリ金属化合物の一部は
ガス化の触媒として作用する。他のアルカリ金属化合物
は反応器頂部及びその近傍の第1反応領域16aに移行
して、熱水中に溶解してイオンの状態で存在する。 (c) 第2ガス化工程 酸化剤と水は反応器16の外壁16dと内壁16eの間
を通って反応器16底部に設けられた水及び酸化剤供給
口29より反応器16内部に供給される。従って、水は
反応器16底部から頂部に向かって流動する。重力沈降
により第2反応領域16bから反応器底部及びその近傍
の第3反応領域16cに移行した残渣は酸化剤である酸
素と下記式に示す反応をして部分酸化する。
C + 2H 2 O → CO 2 + 2H 2 (5) C + 2H 2 → CH 4 (6) Here, a part of the alkali metal compound contained in the slurry acts as a gasification catalyst. I do. Other alkali metal compounds migrate to the first reaction region 16a at the top of the reactor and in the vicinity thereof, dissolve in hot water, and exist in the form of ions. (c) Second Gasification Step The oxidant and water are supplied into the reactor 16 from the water and oxidant supply port 29 provided at the bottom of the reactor 16 between the outer wall 16d and the inner wall 16e of the reactor 16. You. Thus, water flows from the bottom to the top of the reactor 16. The residue transferred from the second reaction region 16b to the bottom of the reactor and the third reaction region 16c in the vicinity thereof from the second reaction region 16b due to gravity settling is partially oxidized by reacting with oxygen as an oxidizing agent by the following formula.

【0017】 C + 1/2O2 → CO …… (7) 式(7)は発熱反応であるため、反応器16内に必要な
熱を提供することができる。部分酸化反応により生成し
た一酸化炭素は第2反応領域16bに移行し、式(8)
に示す水性ガスシフト反応に使用される。
C + 1 / 2O 2 → CO (7) Since the equation (7) is an exothermic reaction, it is possible to provide necessary heat in the reactor 16. The carbon monoxide generated by the partial oxidation reaction migrates to the second reaction region 16b, and the equation (8)
Is used for the water gas shift reaction shown in FIG.

【0018】 CO + H2O → H2 + CO2 …… (8) 反応により生成した残渣は灰分として反応器16底部に
設けられた灰分排出口31より抜き出され、回収され
る。 (d) 中和脱ハロゲン反応工程 第1反応領域16aは熱水状態で水のイオン積が高くア
ルカリ金属を高濃度で溶解している。前述した式(3)
及び式(4)に示す反応により発生したハロゲン化水素
を熱水中で高濃度に溶解しているアルカリ金属により式
(9)に示すように迅速に中和させ、ハロゲン化物を生
成させる。
CO + H 2 O → H 2 + CO 2 (8) The residue generated by the reaction is extracted as ash from the ash outlet 31 provided at the bottom of the reactor 16 and collected. (d) Neutralization-dehalogenation reaction step The first reaction region 16a has a high ionic product of water in a hot water state and has a high concentration of alkali metal dissolved therein. Equation (3) described above
And hydrogen halide generated by the reaction represented by the formula (4) is quickly neutralized as shown in the formula (9) by an alkali metal dissolved at a high concentration in hot water to produce a halide.

【0019】 HX + MOH → MX + H2O …… (9) ここでMはアルカリ金属元素を示す。この式(9)に示
す反応は中和反応であり平衡定数が非常に大きいため、
廃プラスチックの完全な脱ハロゲンが可能となり、反応
器の腐食やダイオキシンの発生が抑制される。第1反応
領域16aは熱水状態であるので、この生成したハロゲ
ン化物は熱水中に溶解する。この第1反応領域16aで
は熱・加水分解反応と中和脱ハロゲン化反応とは個別に
行われず、互いに複合的に行われる。
HX + MOH → MX + H 2 O (9) Here, M represents an alkali metal element. Since the reaction shown in this equation (9) is a neutralization reaction and the equilibrium constant is very large,
Complete dehalogenation of the waste plastic becomes possible, and corrosion of the reactor and generation of dioxin are suppressed. Since the first reaction region 16a is in a hot water state, the generated halide is dissolved in the hot water. In the first reaction region 16a, the heat / hydrolysis reaction and the neutralization dehalogenation reaction are not separately performed, but are performed in combination with each other.

【0020】反応器16内の圧力は15〜40MPaで
ある。好ましくは15〜25MPaである。15MPa
未満ではアルカリの溶解度及び水のイオン積が低いため
熱・加水分解及び中和反応が効率的に行われない。40
MPaを越えると反応器に負担がかかり過ぎるようにな
る。反応器16の温度は反応器頂部の温度を200℃以
上とし、反応器底部の温度を1200℃以下とする。2
00℃未満であると熱・加水分解が起こり難くなる不具
合を生じ、1200℃を越えると反応器に負担がかかり
すぎるようになる。
The pressure inside the reactor 16 is 15 to 40 MPa. Preferably it is 15 to 25 MPa. 15MPa
If it is less than 1, the thermal / hydrolysis and neutralization reactions are not efficiently performed because the solubility of alkali and the ionic product of water are low. 40
If it exceeds MPa, the reactor will be overloaded. The temperature of the reactor 16 is set such that the temperature at the top of the reactor is 200 ° C. or more and the temperature at the bottom of the reactor is 1200 ° C. or less. 2
If the temperature is lower than 00 ° C., a problem that heat and hydrolysis hardly occur is caused. If the temperature is higher than 1200 ° C., the load on the reactor becomes too high.

【0021】灰分を除く反応生成物は反応器16頂部の
排出口28より抜き出され、0.1MPaまで減圧され
て固気分離器36へと送られる。固気分離器36ではハ
ロゲン化物が析出し、固形分として生成ガスより分離さ
れる。生成ガスは冷却器44を介して冷やされ、温度1
00℃以下の気液分離器42に送られる。ここで水素、
メタンを主成分とするガスと水とに分離され、水は気液
分離器42底部より排出され、ミキサー11及び水貯蔵
槽19に送られ再利用される。水素、メタンを主成分と
するガスは気液分離器42上部より排出され、製品とし
て回収される。なお、本実施の形態では酸化剤を水とと
もに反応器内に供給する例を示したが、酸化剤のみを供
給するように構成してもよい。
The reaction product excluding the ash is withdrawn from the outlet 28 at the top of the reactor 16, reduced in pressure to 0.1 MPa, and sent to the solid-gas separator 36. In the solid-gas separator 36, a halide precipitates and is separated from the product gas as a solid. The generated gas is cooled through the cooler 44 and has a temperature of 1
It is sent to the gas-liquid separator 42 at a temperature of 00 ° C. or less. Where hydrogen,
The gas is separated into water and gas containing methane as a main component, and the water is discharged from the bottom of the gas-liquid separator 42, sent to the mixer 11 and the water storage tank 19, and reused. The gas containing hydrogen and methane as main components is discharged from the upper part of the gas-liquid separator 42 and is recovered as a product. In this embodiment, an example is shown in which the oxidizing agent is supplied into the reactor together with water, but it may be configured to supply only the oxidizing agent.

【0022】[0022]

【実施例】次に本発明の実施例を比較例とともに述べ
る。 <実施例>先ず、廃棄された塩化ビニルを含む廃プラス
チック模擬物を用意した。廃プラスチック模擬物に含ま
れる塩素とのモル比が1.2になるようにNaOHを添
加混合し、更に水をスラリー濃度が30〜80重量%と
なるように加えてスラリーを調製した。次に、図1及び
図2と同様の構造を有する装置を用いて、スラリーを1
kg/hの割合で反応器内に供給した。反応器内部は2
5MPaに維持し、反応器頂部の第1反応領域から中間
部の第2反応領域を経て底部の第3反応領域にかけて2
00℃以上1200℃以下の連続的な温度分布を形成し
た。具体的には、第1反応領域を200〜340℃、第
2反応領域を340〜800℃、第3反応領域を800
〜1200℃にそれぞれ温度を維持して反応させた。未
反応物は残渣として回収した。反応器の排出口から得ら
れた残渣を除く反応生成物は、固気分離器でハロゲン化
物を、気液分離器で水を分離し、取出した生成ガスは図
示しないガス凝縮器で凝縮し、流量計でガス量を測定し
た後、生成ガスを容器に一時貯蔵した。この容器に貯え
られたガスをサンプリングして成分を分析した。
Next, examples of the present invention will be described together with comparative examples. <Example> First, a waste plastic simulated material containing discarded vinyl chloride was prepared. NaOH was added and mixed so that the molar ratio with chlorine contained in the waste plastic imitation was 1.2, and water was further added so that the slurry concentration became 30 to 80% by weight to prepare a slurry. Next, using a device having the same structure as in FIGS.
It was fed into the reactor at a rate of kg / h. 2 inside the reactor
The pressure was maintained at 5 MPa, and from the first reaction zone at the top of the reactor to the third reaction zone at the bottom through the second reaction zone in the middle,
A continuous temperature distribution from 00 ° C to 1200 ° C was formed. Specifically, the first reaction region is 200 to 340 ° C., the second reaction region is 340 to 800 ° C., and the third reaction region is 800
The reaction was performed while maintaining the temperature at ~ 1200 ° C. Unreacted material was recovered as a residue. The reaction product excluding the residue obtained from the outlet of the reactor is separated into a halide by a solid-gas separator, water is separated by a gas-liquid separator, and the extracted product gas is condensed by a gas condenser not shown, After measuring the gas amount with a flow meter, the generated gas was temporarily stored in a container. The gas stored in this container was sampled to analyze the components.

【0023】<比較例>実施例と同一の廃プラスチック
模擬物を用意し、この廃プラスチック模擬物にNaOH
を添加しない以外は実施例と同様の構造を有する装置を
用い、同様の反応条件で反応させ、生成したガスのガス
成分を分析した。 <比較評価>供給した廃プラスチック模擬物の炭素含有
量(C1)とガス化装置により生成したガス中の炭素含
有量(C2)から炭素転換率(C2/C1×100%)を
求めた。また、気液分離器から抜き出した水のpH値を
測定した。表1に実施例及び比較例の結果を示す。
<Comparative Example> The same waste plastic simulated material as in the example was prepared.
The reaction was carried out under the same reaction conditions using an apparatus having the same structure as in the example except that was not added, and the gas components of the generated gas were analyzed. <Comparative evaluation> From the carbon content (C 1 ) of the supplied waste plastic simulated material and the carbon content (C 2 ) in the gas generated by the gasifier, the carbon conversion rate (C 2 / C 1 × 100%) was determined. I asked. Further, the pH value of the water extracted from the gas-liquid separator was measured. Table 1 shows the results of Examples and Comparative Examples.

【0024】[0024]

【表1】 [Table 1]

【0025】NaOHを添加していない比較例と比べて
実施例では気液分離器より抜き出した水のpHが高く、
酸濃度が低下していることが判る。また、触媒を添加し
たことで炭素転換率が高く、効率よくガスを生成してい
る。反応後に反応器を解体して表面等を調べたところ、
触媒添加した方がしなかった場合よりも腐食の程度が軽
くなっていた。
The pH of the water extracted from the gas-liquid separator is higher in the example than in the comparative example in which NaOH was not added,
It can be seen that the acid concentration has decreased. In addition, the addition of the catalyst results in a high carbon conversion rate and efficient gas generation. After disassembling the reactor after the reaction and examining the surface etc.,
The degree of corrosion was lower with the addition of the catalyst than without.

【0026】[0026]

【発明の効果】以上述べたように、本発明によれば、反
応器内部に温度制御によって第1〜第3反応領域を形成
し、廃プラスチックを第1反応領域で熱・加水分解して
ハロゲン化水素を生成させ、かつこのハロゲン化水素を
スラリー中のアルカリ金属化合物と反応させてハロゲン
化物を生成し、廃プラスチックを第2反応領域で亜臨界
水又は超臨界水と反応させて水素及びメタンを主成分と
するガス及び一次分解物の残渣を生成し、第3反応領域
に残渣を供給して酸化剤により残渣を部分酸化させて一
酸化炭素を主成分とするガスを生成することにより、熱
水及び超臨界水の特徴を利用して廃プラスチックをより
効率よく水素、メタンを主成分とするガスに転換し、且
つ反応器で同時に脱ハロゲンすることにより反応器の腐
食及びダイオキシン類の生成を抑制することができる。
その結果、装置の寿命を延ばすことができる。
As described above, according to the present invention, the first to third reaction zones are formed inside the reactor by controlling the temperature, and the waste plastic is heated and hydrolyzed in the first reaction zone to form a halogen. Hydrogen halide, and reacting the hydrogen halide with an alkali metal compound in the slurry to generate a halide; and, in the second reaction zone, reacting the waste plastic with subcritical water or supercritical water to produce hydrogen and methane. By generating a gas containing as a main component and a residue of a primary decomposition product, supplying the residue to the third reaction region, and partially oxidizing the residue with an oxidizing agent to generate a gas mainly containing carbon monoxide, Utilizing the characteristics of hot water and supercritical water, waste plastics can be more efficiently converted to gas containing hydrogen and methane as main components, and simultaneously dehalogenated in the reactor, resulting in corrosion of the reactor and dioxin. It is possible to suppress the generation of class.
As a result, the life of the device can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における廃プラスチックの
ガス化装置の構成図。
FIG. 1 is a configuration diagram of a waste plastic gasifier according to an embodiment of the present invention.

【図2】図1の装置の要部である反応器の断面構成図。FIG. 2 is a sectional configuration view of a reactor which is a main part of the apparatus of FIG.

【符号の説明】[Explanation of symbols]

16 反応器 16a 第1反応領域 16b 第2反応領域 16c 第3反応領域 17 スラリー供給口 24 水及び酸化剤導入口 28 反応生成物排出口 29 水及び酸化剤供給口 31 灰分排出口 36 固気分離器 42 気液分離器 Reference Signs List 16 reactor 16a first reaction area 16b second reaction area 16c third reaction area 17 slurry supply port 24 water and oxidant introduction port 28 reaction product discharge port 29 water and oxidant supply port 31 ash discharge port 36 solid-gas separation Vessel 42 gas-liquid separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 建二 茨城県那珂郡那珂町大字向山字六人頭1002 番地の14 三菱マテリアル株式会社環境・ エネルギー研究所内 Fターム(参考) 4F301 AA17 CA23 CA27 CA41 CA52 CA72 CA73 4G040 BA02 FA02 FB02 FC08 FE06 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Kenji Nishimura 1002, 6-headed, Mukaiyama, Naka-cho, Naka-gun, Naka-gun, Ibaraki Prefecture F-term in Mitsubishi Materials Corporation Environment and Energy Laboratory 4F301 AA17 CA23 CA27 CA41 CA52 CA72 CA73 4G040 BA02 FA02 FB02 FC08 FE06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 廃プラスチックを反応器(16)内でアルカ
リ金属化合物とともに超臨界水を含む高温熱水と接触、
反応させてガス化する廃プラスチックのガス化方法にお
いて、 前記廃プラスチックがハロゲンを含む粉砕された廃プラ
スチック粉末であって、 前記反応器(16)内を圧力15〜40MPaに維持し、か
つ前記反応器頂部から前記反応器底部にかけて200℃
以上1200℃以下の連続的な温度分布を形成し、 前記反応器頂部及びその近傍を熱水状態の第1反応領域
(16a)とし、前記反応器底部及びその近傍を水の亜臨界
又は超臨界状態の第3反応領域(16c)とし、更に前記反
応器内部の第1及び第3反応領域(16a,16c)の間を水の
亜臨界又は超臨界状態の第2反応領域(16b)とすると
き、 前記第1反応領域(16a)に供給されたスラリー中の廃プ
ラスチックを前記第1反応領域(16a)で熱・加水分解し
てハロゲン化水素を生成させ、かつこのハロゲン化水素
を前記スラリー中のアルカリ金属化合物と反応させてハ
ロゲン化物を生成し、 前記第1反応領域(16a)に供給されたスラリー中の廃プ
ラスチックを前記第2反応領域(16b)で亜臨界水又は超
臨界水と反応させて水素及びメタンを主成分とするガス
及び一次分解物の残渣を生成し、 前記第3反応領域(16c)に前記残渣を供給して前記酸化
剤により前記残渣を部分酸化させて一酸化炭素を主成分
とするガスを生成することを特徴とする廃プラスチック
のガス化方法。
1. Contacting waste plastic with high-temperature hot water containing supercritical water together with an alkali metal compound in a reactor (16);
In the gasification method of waste plastics to be gasified by reacting, the waste plastic is a crushed waste plastic powder containing halogen, the pressure in the reactor (16) is maintained at 15 to 40 MPa, and the reaction is performed. 200 ° C. from the top to the bottom of the reactor
Forming a continuous temperature distribution of not less than 1200 ° C. and the first reaction zone in a hot water state at the top of the reactor and in the vicinity thereof
(16a), the bottom of the reactor and the vicinity thereof is a third reaction region (16c) in a subcritical or supercritical state of water, and the first and third reaction regions (16a, 16c) inside the reactor are When the second reaction zone (16b) is in a subcritical or supercritical state of water, the waste plastic in the slurry supplied to the first reaction zone (16a) is heated in the first reaction zone (16a). Hydrolyzing to generate hydrogen halide, and reacting the hydrogen halide with the alkali metal compound in the slurry to generate a halide, and in the slurry supplied to the first reaction region (16a), The waste plastic is reacted with subcritical water or supercritical water in the second reaction zone (16b) to generate a gas mainly composed of hydrogen and methane and a residue of a primary decomposition product, and the third reaction zone (16c) And supplying the residue to the oxidizing agent to partially oxidize the residue, A gasification method for waste plastics, wherein a gas containing carbon as a main component is generated.
【請求項2】 反応器(16)で生成した灰分を除く反応生
成物を固気分離器(36)で水素、メタン及び水分を含むガ
スと、固体ハロゲン化物とに分離し、前記ガスを冷却し
て気液分離器(42)で水素及びメタンを含むガスと、水と
に分離する請求項1記載の廃プラスチックのガス化方
法。
2. A reaction product excluding ash generated in the reactor (16) is separated into a gas containing hydrogen, methane and moisture and a solid halide by a solid-gas separator (36), and the gas is cooled. The method for gasifying waste plastic according to claim 1, wherein the gas is separated into water and gas containing hydrogen and methane by a gas-liquid separator (42).
【請求項3】 両端が封止され周囲にヒータが設けられ
た耐圧耐熱性の縦型の管状反応器(16)を備え、 前記反応器(16)の頂部が大径部に前記反応器(16)の底部
が小径部に前記反応器(16)の頂部と底部の中間部が錐部
にそれぞれ形成され、 前記大径部内が熱水状態の第1反応領域(16a)を形成可
能に構成され、 前記錐部内が水の亜臨界又は超臨界状態の第2反応領域
(16b)を形成可能に構成され、 前記小径部内が水の亜臨界又は超臨界状態の第3反応領
域(16c)を形成可能に構成され、 前記反応器(16)の頂部に廃プラスチックと水とアルカリ
金属化合物を混合したスラリーの供給口(17)と、灰分を
除く反応生成物の排出口(28)とがそれぞれ設けられ、 前記反応器(16)の底部又は底部近傍の側部に水及び酸化
剤の供給口(29)と、前記灰分の排出口(31)とがそれぞれ
設けられたことを特徴とする廃プラスチックのガス化装
置。
3. A pressure-resistant and heat-resistant vertical tubular reactor (16) having both ends sealed and a heater provided on the periphery thereof, wherein the top of the reactor (16) has a large-diameter portion and the reactor ( The bottom part of (16) is formed in a small diameter part, and the middle part between the top part and the bottom part of the reactor (16) is formed in a cone part, and the large diameter part is capable of forming a first reaction area (16a) in a hot water state. A second reaction region in which the inside of the cone portion is in a subcritical or supercritical state of water.
(16b) is formed, and the inside of the small diameter portion is formed so as to be able to form a third reaction zone (16c) in a subcritical or supercritical state of water, and waste plastic and water are formed on top of the reactor (16). And a discharge port (28) for a reaction product excluding ash, and water is provided at the bottom or a side near the bottom of the reactor (16). And an oxidizing agent supply port (29) and the ash discharge port (31).
【請求項4】 反応器(16)の側壁及び底壁がそれぞれ所
定の間隔を有する外壁(16d)と内壁(16e)からなる二重構
造をなし、大径部に相応する前記外壁(16d)の上部に水
及び酸化剤の導入口(24)が設けられ、小径部に相応する
前記内壁(16e)の底部又は底部近傍の側部に前記水及び
酸化剤の供給口(29)が設けられた請求項3記載の廃プラ
スチックのガス化装置。
4. A side wall and a bottom wall of the reactor (16) have a double structure comprising an outer wall (16d) and an inner wall (16e) having a predetermined interval, and the outer wall (16d) corresponding to a large diameter portion. An inlet (24) for water and an oxidizing agent is provided at the upper part, and a supply port (29) for the water and the oxidizing agent is provided at the bottom or a side near the bottom of the inner wall (16e) corresponding to the small diameter portion. The waste plastic gasifier according to claim 3.
JP2000100422A 2000-04-03 2000-04-03 Method and apparatus for plastic waste gasification Withdrawn JP2001288480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000100422A JP2001288480A (en) 2000-04-03 2000-04-03 Method and apparatus for plastic waste gasification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000100422A JP2001288480A (en) 2000-04-03 2000-04-03 Method and apparatus for plastic waste gasification

Publications (1)

Publication Number Publication Date
JP2001288480A true JP2001288480A (en) 2001-10-16

Family

ID=18614630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000100422A Withdrawn JP2001288480A (en) 2000-04-03 2000-04-03 Method and apparatus for plastic waste gasification

Country Status (1)

Country Link
JP (1) JP2001288480A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154201A (en) * 2006-12-12 2007-06-21 Yuji Obara Decomposition treatment method and decomposition treatment apparatus for waste plastic material
JP2009030071A (en) * 2001-09-21 2009-02-12 National Univ Corp Shizuoka Univ Method for gasifying organic substance
CN106221811A (en) * 2016-08-31 2016-12-14 重庆赛迪热工环保工程技术有限公司 The zero-discharge treatment system of supercritical water gasification method associating Biochemical method high-concentration hardly-degradable organic hazardous garbage and method
CN107619686A (en) * 2017-11-10 2018-01-23 崔静思 A kind of gasification system and method for water-coal-slurry efflorescence
CN107847991A (en) * 2015-04-13 2018-03-27 阿基米德有限责任公司 Equipment and correlation technique for Waste disposal
JP2018522093A (en) * 2015-06-05 2018-08-09 ウ.テ.イ.ア.−エバリュアシオン テクノロジク,アンジェニリ エ アプリカシオン Apparatus for producing methane gas and use of the apparatus
WO2023055162A1 (en) * 2021-09-30 2023-04-06 이화여자대학교 산학협력단 Method for generating high purity hydrogen from plastic waste without generation of carbon dioxide
JP7258319B1 (en) 2021-10-29 2023-04-17 学校法人神奈川大学 Method for decomposing fluorine atom-containing polymer, and apparatus for decomposing fluorine atom-containing polymer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030071A (en) * 2001-09-21 2009-02-12 National Univ Corp Shizuoka Univ Method for gasifying organic substance
JP2007154201A (en) * 2006-12-12 2007-06-21 Yuji Obara Decomposition treatment method and decomposition treatment apparatus for waste plastic material
CN107847991A (en) * 2015-04-13 2018-03-27 阿基米德有限责任公司 Equipment and correlation technique for Waste disposal
JP2018522093A (en) * 2015-06-05 2018-08-09 ウ.テ.イ.ア.−エバリュアシオン テクノロジク,アンジェニリ エ アプリカシオン Apparatus for producing methane gas and use of the apparatus
CN106221811A (en) * 2016-08-31 2016-12-14 重庆赛迪热工环保工程技术有限公司 The zero-discharge treatment system of supercritical water gasification method associating Biochemical method high-concentration hardly-degradable organic hazardous garbage and method
CN107619686A (en) * 2017-11-10 2018-01-23 崔静思 A kind of gasification system and method for water-coal-slurry efflorescence
WO2023055162A1 (en) * 2021-09-30 2023-04-06 이화여자대학교 산학협력단 Method for generating high purity hydrogen from plastic waste without generation of carbon dioxide
JP7258319B1 (en) 2021-10-29 2023-04-17 学校法人神奈川大学 Method for decomposing fluorine atom-containing polymer, and apparatus for decomposing fluorine atom-containing polymer
WO2023074550A1 (en) * 2021-10-29 2023-05-04 学校法人神奈川大学 Method and apparatus for decomposing fluorine atom-containing polymer
JP2023066742A (en) * 2021-10-29 2023-05-16 学校法人神奈川大学 Method for decomposing fluorine atom-containing polymer, and apparatus for decomposing fluorine atom-containing polymer

Similar Documents

Publication Publication Date Title
JPH0138532B2 (en)
JP2001288480A (en) Method and apparatus for plastic waste gasification
US9090828B2 (en) Process and device for converting biomass to gaseous products
EP0502063A1 (en) A method for the destruction of halogen-containing substances
JP2003201486A (en) Method for gasifying organic material
US5464454A (en) Apparatus and methods for the utilization of combustible materials especially of industrial and household waste
US3592850A (en) Regeneration of formate from thiosulfate
JP4899145B2 (en) A vertical reactor equipped with a solid retention part.
UST104901I4 (en) Destruction of organic hazardous waste by partial oxidation/gasification
JP2009030071A (en) Method for gasifying organic substance
JP2002285171A (en) Biomass gasifier and method for gasifying biomass
JP2006021069A (en) Reaction apparatus using supercritical water
JP2006231249A (en) Treating method and treatment apparatus of packaging material
CN105779020A (en) Coarse coal gas purification and waste heat recovery system and method
JP4834811B2 (en) Method for producing formic acid
US20020071805A1 (en) Method and means of preparing chlorinated bicarbonates and carbonates of calcium and alkali metals
JP4441619B2 (en) Bunsen reactor with separation function
JP2004131358A (en) Method and apparatus for producing hydrogen by using mixed molten salt
JP2005270768A (en) Method for gasifying papermaking sludge and used paper waste and making hydrogen
JP4981202B2 (en) Biomass gasifier
JP2005231984A (en) Thermal decomposition recycling method of fluorine-containing solid
WO2022190659A1 (en) Fuel production method and fuel production system
JP2003082361A (en) Production process of hydrogen by thermochemical decomposition
JPH1180745A (en) Waste plastic recycling system
WO2022070464A1 (en) Fuel production method and fuel production system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605