JPH06298569A - Heating method for refractory material and refractory - Google Patents

Heating method for refractory material and refractory

Info

Publication number
JPH06298569A
JPH06298569A JP5108820A JP10882093A JPH06298569A JP H06298569 A JPH06298569 A JP H06298569A JP 5108820 A JP5108820 A JP 5108820A JP 10882093 A JP10882093 A JP 10882093A JP H06298569 A JPH06298569 A JP H06298569A
Authority
JP
Japan
Prior art keywords
refractory
heating
frequency
refractory material
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5108820A
Other languages
Japanese (ja)
Inventor
Atsushi Nakao
淳 中尾
Hatsuo Taira
初雄 平
Takeshi Matsui
剛 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5108820A priority Critical patent/JPH06298569A/en
Publication of JPH06298569A publication Critical patent/JPH06298569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To provide a method for uniformly and quickly heating a refractory raw material and to obtain a refractory material having excellent mechanical characteristics and corrosion resistance by using the heating method. CONSTITUTION:(1) A green refractory material obtained by compounding refractory raw materials at prescribed ratios and kneading and forming the mixture is heated or baked with microwave having frequency of 20-50GHz. (2) An oxide- based refractory or a carbon-containing refractory is produced by heating or baking with microwave having frequency of 20-50GHz. The heating process for the production of a refractory can be shortened to improve the productivity of refractory and reduce the production cost. The strength and corrosion resistance of refractory can be improved and the operation cost can be reduced by the prolongation of the life of steel-making refractory to reduce the material consumption and unit cost and decrease the mending frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄鋼業で使用される耐
火物素材の加熱方法及び耐火物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory material heating method and refractory material used in the steel industry.

【0002】[0002]

【従来の技術】耐火物を製造する場合の加熱工程は、炭
素含有耐火物では硬化処理や還元焼成を行なう場合に、
酸化物系耐火物では焼成を行なう際に必要不可欠な工程
である。これらの工程ではトンネルキルンによる加熱を
行なっている。一方、マイクロ波を用いた加熱には、家
庭用の電子レンジがよく知られており、工業用としては
陶磁器等の乾燥(例えば、特公平1−16788号公
報、特開昭54−64840号公報)、ゴムの加硫、木
材や印刷物の乾燥、食品の乾燥や殺菌等がある。また、
マイクロ波による加熱を行なえば、物質自体が発熱する
ために均一かつ急速に加熱することが出来る。これらの
乾燥に用いられている周波数は主に2.45GHzであ
る。(例えば、特開昭54−64840号公報)
2. Description of the Related Art The heating process for producing refractory materials is such that when carbon-containing refractory materials are subjected to hardening treatment or reduction firing,
Oxide-based refractory is an indispensable step when firing. In these steps, heating is performed by a tunnel kiln. On the other hand, for heating using microwaves, household microwave ovens are well known, and for industrial use, drying ceramics and the like (for example, Japanese Patent Publication No. 1-16788 and Japanese Patent Laid-Open No. 54-64840). ), Vulcanization of rubber, drying of wood and printed matter, drying of food and sterilization. Also,
If heating is performed by microwaves, the substance itself generates heat, so that heating can be performed uniformly and rapidly. The frequency used for these dryings is mainly 2.45 GHz. (For example, JP-A-54-64840)

【0003】[0003]

【発明が解決しようとする課題】しかしながら、耐火物
は一般に誘電損率が小さいために、周波数2.45GH
zのマイクロ波による加熱または焼成は困難である。本
発明は、均一かつ急速に耐火物素材を少なくとも100
0℃以上に安定に加熱または焼成する方法及びこれによ
って機械的特性や耐食性に優れた耐火物を得ることを目
的とする。
However, refractory materials generally have a small dielectric loss factor, so that the frequency is 2.45 GHz.
Microwave heating or firing of z is difficult. The present invention provides a uniform and rapid method for producing refractory materials of at least 100.
It is an object of the present invention to obtain a refractory having excellent mechanical properties and corrosion resistance by a method of stably heating or firing at 0 ° C. or higher and by this method.

【0004】[0004]

【課題を解決するための手段】本発明は、以下の特徴を
有するものである。 (1)耐火原料を所定の割合に配合し、混練、成形した
耐火物素材を、周波数20〜50GHzのマイクロ波に
より加熱または焼成したことを特徴とする耐火物素材の
加熱方法。 (2)周波数20〜50GHzのマイクロ波により加熱
または焼成した酸化物系耐火物または炭素含有系耐火物
であることを特徴とする耐火物。
The present invention has the following features. (1) A method for heating a refractory material, comprising mixing a refractory material in a predetermined ratio, kneading and molding, and heating or firing the refractory material by a microwave having a frequency of 20 to 50 GHz. (2) A refractory material which is an oxide refractory material or a carbon-containing refractory material that is heated or fired by a microwave having a frequency of 20 to 50 GHz.

【0005】[0005]

【作用】マイクロ波加熱による発熱量は(1)式で与え
られる。 P=0.556・εr・tanδ・f・Ε2・10-10 …(1) P;発熱量(W/m3) εr;物質の比誘電率 tanδ;物質の誘電損失 f;周波数(Hz) Ε;電界強度(V/m)
The amount of heat generated by microwave heating is given by equation (1). P = 0.556 · εr · tanδ · f · E 2 · 10 −10 (1) P; calorific value (W / m 3 ) εr; relative permittivity of substance tanδ; dielectric loss of substance f; frequency (Hz) ) Ε; electric field strength (V / m)

【0006】(1)式より、マイクロ波加熱による発熱
量は、周波数に比例し、電界強度の2乗に比例すること
が判る。電界強度はマイクロ波発振出力のことである。
例えば、物質の比誘電率;εr及び誘電損失;tanδ
は物質に固有の特性値であることから、発熱量;Pを2
倍にするためには、周波数;fが一定では電界強度;Ε
を約1.4倍にする必要があり、電界強度;Eが一定で
は周波数;fを2倍にすれば良い。従って、耐火物の加
熱または焼成に要するエネルギーコストを抑制し、加熱
または焼成効率を高めるためには、周波数を高くするこ
とが有効である。
From equation (1), it can be seen that the amount of heat generated by microwave heating is proportional to the frequency and to the square of the electric field strength. The electric field strength is the microwave oscillation output.
For example, the relative permittivity of a substance; εr and the dielectric loss; tan δ
Is a characteristic value peculiar to the substance, so the calorific value; P is 2
In order to double the frequency, if the frequency f is constant, the electric field strength;
Should be approximately 1.4 times, and if the electric field strength; E is constant, the frequency; f should be doubled. Therefore, in order to suppress the energy cost required for heating or firing the refractory and increase the heating or firing efficiency, it is effective to increase the frequency.

【0007】特に、誘電損率の小さい、即ち、マイクロ
波による加熱が困難な耐火物素材についても、周波数を
高くすることによって、短時間、小出力で高温まで容易
に加熱することが可能となる。図1に本発明者らの実験
によるAl23と炭素を主成分とする炭素含有系耐火物
のマイクロ波による加熱実験結果を示す。実験は100
×100×100mm3のサンプルをマイクロ波出力;
5kWで1時間加熱した。
In particular, even for a refractory material having a low dielectric loss factor, that is, it is difficult to heat it by microwaves, it is possible to easily heat it to a high temperature with a small output for a short time by increasing the frequency. . FIG. 1 shows the results of a heating experiment by microwaves of a carbon-containing refractory material containing Al 2 O 3 and carbon as the main components according to the experiments by the present inventors. 100 experiments
Microwave output of × 100 × 100mm 3 sample;
Heated at 5 kW for 1 hour.

【0008】この図より、1000℃以上に加熱するた
めには20GHz以上の周波数が必要であることが判
る。また、50GHz以上の周波数ではサンプルの温度
は1000℃以上に達するが、耐火物組織が破壊されて
しまう。本発明において、マイクロ波周波数を20〜5
0GHzとしたのは前記理由によるものである。
From this figure, it can be seen that a frequency of 20 GHz or higher is required to heat to 1000 ° C. or higher. Further, at a frequency of 50 GHz or higher, the temperature of the sample reaches 1000 ° C. or higher, but the refractory structure is destroyed. In the present invention, the microwave frequency is 20 to 5
The reason why 0 GHz is set is due to the above reason.

【0009】本発明の方法により得られる主成分として
MgO、Al23、ZrO2 、MgAl24、CaZr
3 等のいずれかと炭素から成る炭素含有系耐火物は、
短時間で所定の温度まで加熱できることから、バインダ
ー中に含まれる揮発成分に起因する組織欠陥の大きさを
小さく出来る。また、MgO、Al23、マグクロ等の
酸化物系耐火物では粒成長や気孔の成長を抑制できる。
このため、強度等の機械的特性や、耐食性に優れた耐火
物を得ることが出来る。
The main components obtained by the method of the present invention are MgO, Al 2 O 3 , ZrO 2 , MgAl 2 O 4 and CaZr.
Carbon-containing refractory consisting of carbon such as O 3
Since it can be heated to a predetermined temperature in a short time, the size of the tissue defect caused by the volatile components contained in the binder can be reduced. In addition, oxide-based refractory materials such as MgO, Al 2 O 3 and magcro can suppress grain growth and pore growth.
Therefore, it is possible to obtain a refractory having excellent mechanical properties such as strength and corrosion resistance.

【0010】[0010]

【実施例】【Example】

実施例1 実施例1では、本発明の炭素含有系耐火物に関する実施
例について述べる。表1に本発明の実施例を示す。表1
に示す配合組成100に対して、フェノール樹脂系バイ
ンダーを3〜5重量%添加し、成形した耐火物素材を周
波数20〜50GHz、出力5kWのマイクロ波により
加熱して炭素含有系耐火物を得た。
Example 1 In Example 1, an example relating to the carbon-containing refractory material of the present invention will be described. Table 1 shows examples of the present invention. Table 1
3 to 5% by weight of a phenol resin-based binder was added to the compounding composition 100 shown in 1), and the molded refractory material was heated by a microwave having a frequency of 20 to 50 GHz and an output of 5 kW to obtain a carbon-containing refractory material. .

【0011】得られた耐火物の評価は強度及び耐食性に
より行なった。耐食性評価は、高周波誘導炉内張り法に
より、試験温度及び時間は1600℃×3時間とし、メ
タルは溶銑、スラグは化学組成C/S=3.0,T.F
e=10%を使用して行なった。
The refractories thus obtained were evaluated based on their strength and corrosion resistance. For the corrosion resistance evaluation, the test temperature and time were set to 1600 ° C. × 3 hours by the high-frequency induction furnace lining method, the metal was hot metal, the slag had a chemical composition C / S = 3.0, and the T.I. F
Performed using e = 10%.

【0012】加熱に関する評価は、外観上の亀裂の発
生、変形等の問題なく所定の温度に達したものを○、外
観に問題があるか所定の温度に達しなかったものを×と
した。耐食性については、耐食性指数が100未満のも
のが耐食性に優れることを示す。判定は、外観評価が○
で、強度、耐食性に優れるものを○、外観評価が×また
はいずれかの特性に劣るものを×とした。
Regarding the evaluation of heating, the case where the predetermined temperature was reached without any problems such as the occurrence of cracks and deformation on the appearance was evaluated as ◯, and the case where the appearance was problematic or did not reach the predetermined temperature was evaluated as x. Regarding the corrosion resistance, those having a corrosion resistance index of less than 100 show excellent corrosion resistance. Appearance is evaluated as ○
A sample having excellent strength and corrosion resistance was evaluated as ◯, and a sample having an external appearance evaluation of × or one having inferior properties was evaluated as ×.

【0013】表1に炭素含有系耐火物の比較例を示す。
表1に示す配合組成100に対して、フェノール樹脂系
バインダーを3〜5重量%添加し、成形した耐火物素材
を周波数0.915〜10GHzまたは55〜100G
Hz、出力5kWのマイクロ波により1時間加熱して炭
素含有系耐火物を得た。
Table 1 shows comparative examples of carbon-containing refractories.
A refractory material formed by adding 3 to 5% by weight of a phenolic resin-based binder to the composition 100 shown in Table 1 has a frequency of 0.915 to 10 GHz or 55 to 100 G.
A carbon-containing refractory was obtained by heating for 1 hour with a microwave having a frequency of 5 kW and an output of 5 kW.

【0014】得られた耐火物の評価は実施例1の評価と
同様の方法により行なった。本発明の方法によって加熱
すれば、外観上の亀裂の発生や変形等の組織破壊がな
く、1時間の加熱時間で所定の温度に加熱できると共
に、強度、耐食性に優れている。一方、比較例では所定
の温度に加熱できないか、組織破壊を起こし、強度、耐
食性に劣る。
The refractories thus obtained were evaluated in the same manner as in Example 1. When heated by the method of the present invention, there is no appearance of cracks, deformation or other tissue destruction, and it is possible to heat to a predetermined temperature in a heating time of 1 hour, and the strength and corrosion resistance are excellent. On the other hand, in the comparative example, it cannot be heated to a predetermined temperature, or causes tissue destruction, resulting in poor strength and corrosion resistance.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例2 実施例2では、本発明の酸化物系耐火物に関する実施例
について述べる。表2に本発明の実施例を示す。表2に
示す配合組成100に対して、フェノール樹脂系バイン
ダーを3〜5重量%添加し、成形した耐火物素材を周波
数20〜50Hz、出力5kWのマイクロ波により加熱
して炭素含有系耐火物を得た。
Example 2 Example 2 describes an example of the oxide refractory material of the present invention. Table 2 shows examples of the present invention. 3-5 wt% of a phenol resin binder was added to the compounding composition 100 shown in Table 2, and a molded refractory material was heated by a microwave having a frequency of 20-50 Hz and an output of 5 kW to obtain a carbon-containing refractory material. Obtained.

【0017】得られた耐火物の評価は実施例1の評価と
同様の方法により行なった。表2に酸化物系耐火物の比
較例を示す。表2に示す配合組成100に対して、フェ
ノール樹脂系バインダーを3〜5重量%添加し、成形し
た耐火物素材を周波数0.915〜10GHzまたは5
5〜100GHz、出力5kWのマイクロ波により1時
間加熱して炭素含有系耐火物を得た。
The refractories thus obtained were evaluated in the same manner as in Example 1. Table 2 shows a comparative example of oxide refractories. A refractory material formed by adding 3 to 5% by weight of a phenol resin binder to the compounding composition 100 shown in Table 2 has a frequency of 0.915 to 10 GHz or 5
A carbon-containing refractory was obtained by heating for 1 hour with a microwave of 5 to 100 GHz and an output of 5 kW.

【0018】得られた耐火物の評価は実施例1の評価と
同様の方法により行なった。本発明の方法によって加熱
すれば、外観上の亀裂の発生や変形等の組織破壊がな
く、1時間の加熱時間で所定の温度で加熱できると共
に、強度、耐食性に優れている。一方、比較例では所定
の温度に加熱できないか、組織破壊を起こし、強度、耐
食性に劣る。
The refractories thus obtained were evaluated in the same manner as in Example 1. By heating according to the method of the present invention, there is no appearance of cracks, deformation or other structural destruction, and it is possible to heat at a predetermined temperature for a heating time of 1 hour, and the strength and corrosion resistance are excellent. On the other hand, in the comparative example, it cannot be heated to a predetermined temperature, or causes tissue destruction, resulting in poor strength and corrosion resistance.

【0019】[0019]

【表2】 [Table 2]

【0020】なお、本実施例においては、炭素含有系耐
火物と酸化物系耐火物について述べたが、本発明はこれ
に限らず、カーボン質、SiC−C質、非酸化物系耐火
物等に適用できることは当然である。
Although the carbon-containing refractory and the oxide refractory have been described in the present embodiment, the present invention is not limited to this, and carbonaceous, SiC-C, non-oxide refractory, etc. Of course, it can be applied to.

【0021】[0021]

【発明の効果】本発明によって以下の効果を奏すること
が出来る。本発明の加熱または焼成方法によって、これ
まで長時間を要していた耐火物製造時の加熱または焼成
工程が短縮でき、耐火物の生産性の向上が可能となり、
耐火物製造コストの削減が可能となる。更に、本発明の
耐火物によって、強度、耐食性が向上でき、鉄鋼用耐火
物の寿命延長による原単位、原単価の削減、修理回数の
減少による作業費の削減が可能となる。
According to the present invention, the following effects can be obtained. By the heating or firing method of the present invention, it is possible to shorten the heating or firing step during the refractory production, which required a long time until now, and it is possible to improve the productivity of the refractory,
The refractory manufacturing cost can be reduced. Further, the refractory material of the present invention can improve strength and corrosion resistance, and can reduce the unit cost and unit cost by extending the life of the refractory material for steel, and the work cost by reducing the number of repairs.

【図面の簡単な説明】[Brief description of drawings]

【図1】Al23と炭素を主成分とする炭素含有系耐火
物のマイクロ波周波数(GHz)による加熱と到達温度
(℃)との関係を示す。
FIG. 1 shows a relationship between heating by a microwave frequency (GHz) and ultimate temperature (° C.) of a carbon-containing refractory containing Al 2 O 3 and carbon as main components.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 耐火原料を所定の割合に配合し、混練、
成形した耐火物素材を、周波数20〜50GHzのマイ
クロ波により加熱または焼成したことを特徴とする耐火
物素材の加熱方法。
1. A refractory raw material is blended in a predetermined ratio and kneaded,
A method for heating a refractory material, characterized in that the formed refractory material is heated or fired by a microwave having a frequency of 20 to 50 GHz.
【請求項2】 周波数20〜50GHzのマイクロ波に
より加熱または焼成した酸化物系耐火物または炭素含有
系耐火物であることを特徴とする耐火物。
2. A refractory material which is an oxide refractory material or a carbon-containing refractory material that is heated or fired by microwaves having a frequency of 20 to 50 GHz.
JP5108820A 1993-04-13 1993-04-13 Heating method for refractory material and refractory Pending JPH06298569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5108820A JPH06298569A (en) 1993-04-13 1993-04-13 Heating method for refractory material and refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5108820A JPH06298569A (en) 1993-04-13 1993-04-13 Heating method for refractory material and refractory

Publications (1)

Publication Number Publication Date
JPH06298569A true JPH06298569A (en) 1994-10-25

Family

ID=14494356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5108820A Pending JPH06298569A (en) 1993-04-13 1993-04-13 Heating method for refractory material and refractory

Country Status (1)

Country Link
JP (1) JPH06298569A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199571A (en) * 2004-10-21 2006-08-03 Nippon Steel Chem Co Ltd Furnace and method for firing carbon material
WO2015163496A1 (en) * 2014-04-23 2015-10-29 주식회사 동일알앤이 Apparatus and method for recycling magnesia-carbon refractories

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199571A (en) * 2004-10-21 2006-08-03 Nippon Steel Chem Co Ltd Furnace and method for firing carbon material
JP4740715B2 (en) * 2004-10-21 2011-08-03 新日鐵化学株式会社 Carbon material firing furnace and carbon material firing method
WO2015163496A1 (en) * 2014-04-23 2015-10-29 주식회사 동일알앤이 Apparatus and method for recycling magnesia-carbon refractories
KR20150122448A (en) * 2014-04-23 2015-11-02 주식회사 동일 알앤이 Apparatus and method for recycling for Magnesia(MgO) using Mg0-C refractories

Similar Documents

Publication Publication Date Title
CN107311626A (en) A kind of magnesia carbon brick for adding aluminium nitride and preparation method thereof
CN107954697A (en) A kind of magnesia carbon brick for adding boron carbide and preparation method thereof
JP4617190B2 (en) Refractory manufacturing method
KR20210072753A (en) High emissivity coating composition and substrate coated therewith
JPH06298569A (en) Heating method for refractory material and refractory
JP2003238250A (en) Yttria refractory
JP3034808B2 (en) Thermal shock resistant ceramics and manufacturing method thereof
JPH08259311A (en) Production of magnesia-carbonaceous refractory brick
KR19990045852A (en) Pottery manufacturing method used by loess
JP4630111B2 (en) Refractory, manufacturing method thereof, and heating furnace
JP2002080272A (en) Magnesia-spinel-carbonaceous brick
JP2021147275A (en) Magnesia-spinel refractory brick
KR100356736B1 (en) Silicon carbide (SiC) quality urinary ware and its manufacturing method
JPH026371A (en) Production of silicon carbide brick having sialon linkage
KR101402773B1 (en) Method for manufacturing unburned refractory
KR100310050B1 (en) method for forming canbon brick with fire resistance and corrosion resestance
JP2001253765A (en) Magnesia-alumina-titania-based brick
JP3368035B2 (en) Setter
JP2004307323A (en) Alumina ceramic composition, and its production method
JP7397281B2 (en) Manufacturing method of precast blocks for coke ovens
JP2000109359A (en) Refractory composition and refractory
KR20040049586A (en) A burned magnesia-chrome firebrick using broken Mg-Cr brick
JP2016064956A (en) Silica brick for hot repairing
JP2001192259A (en) Spinel-carbonaceous brick for hearth of direct current electric furnace
KR970008737B1 (en) Process for the preparation of lightweight insulating material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011009