JPH06297304A - Polishing device, cutting/grinding device, and cutting device for solid material - Google Patents

Polishing device, cutting/grinding device, and cutting device for solid material

Info

Publication number
JPH06297304A
JPH06297304A JP10594693A JP10594693A JPH06297304A JP H06297304 A JPH06297304 A JP H06297304A JP 10594693 A JP10594693 A JP 10594693A JP 10594693 A JP10594693 A JP 10594693A JP H06297304 A JPH06297304 A JP H06297304A
Authority
JP
Japan
Prior art keywords
sample
ultrasonic
cutting
polishing
vibrators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10594693A
Other languages
Japanese (ja)
Other versions
JP3412859B2 (en
Inventor
Toshiaki Aeba
利明 饗場
Akiyoshi Ishizaki
明美 石崎
Mitsuru Oba
満 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10594693A priority Critical patent/JP3412859B2/en
Publication of JPH06297304A publication Critical patent/JPH06297304A/en
Application granted granted Critical
Publication of JP3412859B2 publication Critical patent/JP3412859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To polish a sample without fixing it by means of an adhesive or the like by providing a device with two ultrasonic drivers that are opposite to each other and function as driving sources for polishing the surfaces of a solid body, and by constituting the device in such a way that the upper and lower surfaces of the solid body can be simultaneously or separately polished by these ultrasonic drivers. CONSTITUTION:A device is provided with ultrasonic drivers 21, 22 in which nickel vibrators have been used, and thereto ultrasonic vibrators 23, 24 which are arranged in the vertical direction so as to be opposite to each other are provided respectively. The surface of the upper ultrasonic vibrator 23 is formed in a curved shape, for example, of a radius of curvature of 5mm, and the surface of the lower ultrasonic vibrator 24 is formed in a plane shape. When a sample 27 is polished, carborundum aqueous solution is used as an abrasive, and polishing is carried out by operating only the ultrasonic vibrator 23. To mirror-polishing the upper and lower surfaces, the upper and lower ultrasonic vibrators 23, 24 are changed to another ultrasonic vibrators each of which has the same shape and whose surface has been covered with buff cloth, and also the abrasive is changed to alumina aqueous solution. In this condition, the upper and lower vibrators 23, 24 are driven, and the upper and lower surfaces of the sample 27 are simultaneously polished.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】[Industrial applications]

(第一の発明)本発明は研磨装置に関するものであり、
特に電子顕微鏡観察用の試料作製に使用される研磨装置
に関する。
(First Invention) The present invention relates to a polishing apparatus,
In particular, it relates to a polishing apparatus used for preparing a sample for electron microscope observation.

【0002】(第二の発明)本発明は所謂超音波加工法
による固体の切断研削装置に関するものであり、特に透
過型電子顕微鏡観察用の試料作製に使用される、固体試
料からのディスクの切り出し及びディンプリングを一度
の作業で行うことが出来る切断研削装置に関する。
(Second invention) The present invention relates to a solid cutting and grinding apparatus by a so-called ultrasonic machining method, and in particular, cutting out a disk from a solid sample used for preparing a sample for observation with a transmission electron microscope. Also, the present invention relates to a cutting and grinding device capable of performing dimples in a single operation.

【0003】(第三の発明)本発明は固体材料の切断装
置に関するものであり、特に電子顕微鏡観察用の試料作
製に使用される固体材料の切断装置に関する。
(Third Invention) The present invention relates to a solid material cutting apparatus, and more particularly to a solid material cutting apparatus used for preparing a sample for electron microscope observation.

【0004】[0004]

【従来の技術】[Prior art]

(第一の発明)透過型電子顕微鏡を用いて固体試料の構
造を観察する為には、入射電子が試料中を透過すること
が出来る様に、試料を薄く調製する必要がある。試料の
薄片化方法の1つとしては、一般的には、最初に機械的
研磨により試料の厚さを数10μm程度に薄くする。そ
の後、最終的に観察領域を1μm以下の厚さにする為
に、イオン照射や化学エッチング等が用いられる。機械
研磨の工程は通常は下記に示す様にして行なわれてい
る。 1)試料の片面aを可溶性の接着剤で接着して試料台に
固定する。 2)露出しているもう一方の面bを鏡面研磨する。 3)接着剤を溶かして試料を試料台からはずし、次に鏡
面研磨された面bを接着剤で試料台に固定する。 4)露出している面a側から研磨し、試料の中心部が1
00μm以下になるまで薄くする。 5)面aを境面研磨する。 6)接着剤を溶かして試料を試料台からはずす。 尚、研磨は、研磨剤(アルミナ砥粒及びダイヤモンド砥
粒等)が塗布された研磨台と試料間との相対的運動(並
進、回転)に伴う摩擦によって行われる。
(First Invention) In order to observe the structure of a solid sample using a transmission electron microscope, it is necessary to prepare the sample thin so that incident electrons can pass through the sample. As one of the sample thinning methods, generally, mechanical polishing is first performed to reduce the thickness of the sample to about several tens of μm. After that, ion irradiation, chemical etching, or the like is used to finally make the observation region have a thickness of 1 μm or less. The mechanical polishing step is usually performed as shown below. 1) One side a of the sample is bonded with a soluble adhesive and fixed to the sample table. 2) The other exposed surface b is mirror-polished. 3) Melt the adhesive to remove the sample from the sample table, and then fix the mirror-polished surface b to the sample table with the adhesive. 4) Polish from the exposed surface a side so that the center of the sample is 1
It is thinned to less than 00 μm. 5) Polish the surface a. 6) Melt the adhesive and remove the sample from the sample table. The polishing is performed by friction caused by relative movement (translation, rotation) between a sample and a polishing table coated with an abrasive (alumina abrasive grains, diamond abrasive grains, etc.).

【0005】(第二の発明)透過電子顕微鏡を用いて固
体試料を観察する場合には、試料ホルダーに試料を装着
することが出来る様に、先ず、直径3mmあるいは2.
3mmのディスク状に試料を切り出すことが必要であ
り、それと同時に、入射電子が試料中を透過出来る様に
試料を極めて薄くする必要がある。一方、ディスク全体
の機械的強度はある程度以上に保持されねばならないの
で、ディンプルを形成させることにより、ディスクの外
周部が厚いままで、内周部のみを薄くするという方法が
採られている。従来、この様なディンプルを有するディ
スクを固体試料から作製する場合には、先ずディスクを
固体試料から切り出し、次に機械的に研削してディンプ
ルを形成するという方法が採られていた。
(Second Invention) When observing a solid sample using a transmission electron microscope, first, the diameter is 3 mm or 2. so that the sample can be mounted on the sample holder.
It is necessary to cut the sample into a disk shape of 3 mm, and at the same time, it is necessary to make the sample extremely thin so that incident electrons can pass through the sample. On the other hand, the mechanical strength of the entire disk must be maintained to a certain extent or more. Therefore, by forming dimples, the outer peripheral portion of the disk remains thick and only the inner peripheral portion is thinned. Conventionally, when a disk having such dimples is manufactured from a solid sample, a method has been adopted in which the disk is first cut out from the solid sample and then mechanically ground to form dimples.

【0006】(第三の発明)薄膜の構造を評価する上
で、透過型電子顕微鏡観察による断面方向からの観察
(断面TEM)は有力な手段である。断面TEM観察を
行う為には、入射電子が透過することが出来る様に薄膜
試料を断面方向に薄くする必要がある。従来の標準的な
断面の薄片化工程を示すと、以下の様である。 1)切断工程:基板上に薄膜が形成されている試料から
〜1×2mmの短冊形状を2個切り出す。 2)接着工程:切断した2つの試料片の表面を向かい合
わせて接着剤で接合する。 3)機械研磨工程:接着した試料を断面方向に100μ
mの厚さまで研磨し、更に両側を鏡面状態に仕上げる。 4)イオン照射により観察領域を1μm以下にする。 上記の従来方法の切断工程における切断方法としては、
ダイヤモンド砥粒が含まれる円盤上の刃(ダイヤモンド
スライサー)を回転することにより行なわれている。
(Third invention) In evaluating the structure of a thin film, observation from a cross-sectional direction by a transmission electron microscope (cross-sectional TEM) is an effective means. In order to perform cross-sectional TEM observation, it is necessary to thin the thin-film sample in the cross-sectional direction so that incident electrons can be transmitted. The conventional standard cross-section thinning process is as follows. 1) Cutting process: Two strips of ˜1 × 2 mm are cut out from a sample in which a thin film is formed on a substrate. 2) Adhesion step: The surfaces of the two cut sample pieces are faced to each other and bonded with an adhesive. 3) Mechanical polishing step: 100 μm of the bonded sample in the cross-sectional direction
It is polished to a thickness of m, and both sides are mirror finished. 4) The observation area is reduced to 1 μm or less by ion irradiation. The cutting method in the cutting step of the above conventional method,
It is performed by rotating a blade (diamond slicer) on a disk containing diamond abrasive grains.

【0007】[0007]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

(第一の発明)透過型電子顕微鏡観察用の試料作製方法
として上記の従来方法にはいくつかの問題点がある。先
ず第一に、一連の工程が複雑で時間と労力とがかかる。
更に、その分だけ試料の破損等の失敗を犯す危険性が高
くなる。第二の問題は、試料と試料台との間に接着層が
入る為、試料台からの高さが試料の厚さを正確に反映し
ていないことがある為、研磨途中で試料の厚さを正確に
測定することが困難であり、再現性よく十分な薄さには
研磨することが出来ない。従って本発明の目的は、上記
した従来技術の問題点を解決し、工程を単純化し、迅速
にしかも試料破損の恐れのない研磨が行え、且つ試料の
厚さを精度よく制御することが出来る研磨装置を提供す
ることにある。
(First Invention) The above-mentioned conventional method has some problems as a method for preparing a sample for observation with a transmission electron microscope. First of all, the series of steps is complicated and takes time and labor.
Furthermore, the risk of failure such as breakage of the sample increases accordingly. The second problem is that there is an adhesive layer between the sample and the sample stand, so the height from the sample stand may not accurately reflect the thickness of the sample. Is difficult to measure accurately, and it cannot be polished to a sufficient thickness with good reproducibility. Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, to simplify the process, to perform polishing quickly and without fear of sample damage, and to control the thickness of the sample with high precision. To provide a device.

【0008】(第二の発明)しかしながら、上記した従
来の作製方法においては、ディスクの切り出しとディン
プリングとを別々の装置を用いて行わなければならず、
作業効率がよくないという問題があった。又、ディスク
の切り出し作業とディンプリングとでは、別々の試料台
を用いて行わなければならず、その移し換えに少なから
ぬ時間と労力を要し、煩雑であるという問題がある。従
って、本発明の目的は、上記した従来技術の問題点を解
決し、ディンプルを有するディスク状の試料を一度の作
業工程で作製することが可能な新規な切断研削装置を提
供することにある。
(Second Invention) However, in the above-mentioned conventional manufacturing method, the cutting of the disk and the dimpling must be performed by using different devices,
There was a problem that work efficiency was not good. Further, the cutting out of the disc and the dimpling have to be performed by using different sample stands, and there is a problem that the transfer takes a considerable amount of time and labor and is complicated. Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a novel cutting and grinding apparatus capable of producing a disk-shaped sample having dimples in one working step.

【0009】(第三の発明)又、透過型電子顕微鏡観察
の際に使用される試料形成の為の、上記した試料薄片化
の工程において、1)の観察用試料の切断を行なう際、
特に重要な点は再現性よく正確な寸法で試料を切り出す
ことにある。なぜなら、上記した2)の接着工程におい
て、寸法精度の悪い、長さや高さの異なる試料片を貼り
合わせた場合には、その後の研磨工程3)で均一な研磨
を行なうことが困難であり、厚さむらを生じたり、又、
試料を破損する確率も高くなってしまうからである。こ
の点においてダイヤモンドスライサーを用いる従来法
は、試料の振動機構やディスクの回転運動に伴う誤差の
為、十分な寸法精度と再現性が得られないという問題が
ある。従って、本発明の目的は、上記した従来技術の問
題点を解決し、正確に寸法が揃った試料片を複数個、迅
速且つ簡単に切断することが出来、研磨工程で生じる試
料の破損の問題を生じることのない優れた固体材料の切
断装置を提供することにある。
(3rd invention) Further, in the above-mentioned step of thinning a sample for forming a sample used for observation with a transmission electron microscope, when the observation sample is cut in 1),
A particularly important point is to cut out a sample with reproducible and accurate dimensions. This is because, in the above-mentioned bonding step 2), when sample pieces having poor dimensional accuracy and different lengths and heights are bonded, it is difficult to perform uniform polishing in the subsequent polishing step 3). Uneven thickness, or
This is because the probability of damaging the sample also increases. In this respect, the conventional method using the diamond slicer has a problem that sufficient dimensional accuracy and reproducibility cannot be obtained due to an error associated with the vibration mechanism of the sample and the rotational movement of the disk. Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, and to quickly and easily cut a plurality of accurately sized sample pieces, resulting in the problem of sample damage in the polishing process. An object of the present invention is to provide an excellent solid material cutting device which does not cause

【0010】[0010]

【課題を解決するための手段】[Means for Solving the Problems]

(第一の発明)上記の目的は、下記の本発明によって達
成される。即ち、本発明の第一の発明は、固体表面を研
磨する為の駆動力として向かい合う二つの超音波振動体
が設けられており、該超音波振動体により固体の上面と
下面とが同時に又は個別に研磨されることを特徴とする
研磨装置である。
(First Invention) The above object is achieved by the present invention described below. That is, the first invention of the present invention is provided with two ultrasonic vibrating bodies facing each other as a driving force for polishing the solid surface, and the upper surface and the lower surface of the solid are simultaneously or individually provided by the ultrasonic vibrating body. The polishing apparatus is characterized in that it is polished to.

【0011】(第二の発明)上記の目的は、下記の本発
明によって達成される。即ち、本発明の第二の発明は、
上下方向に超音波振動する工具面で溶液と混合させた砥
粒を被加工物に摩擦させて加工する切断研削装置におい
て、工具面の形状が円筒形状で且つ曲率半径が3〜50
mmの曲面からなる上面を有することを特徴とする切断
研削装置である。
(Second Invention) The above object is achieved by the present invention described below. That is, the second invention of the present invention is
In a cutting / grinding device that grinds and grinds abrasive grains mixed with a solution on a tool surface that vibrates ultrasonically in the vertical direction, the tool surface has a cylindrical shape and a radius of curvature of 3 to 50.
A cutting and grinding apparatus having an upper surface formed of a curved surface of mm.

【0012】(第三の発明)上記の目的は、下記の本発
明によって達成される。即ち、本発明の第三の発明は、
超音波振動を切断の駆動力とし、且つ被切断表面に接す
る超音波振動体の表面に幅0.1mm〜1mm、深さ1
mm〜5mmの複数の突起が設けられていることを特徴
とする固体材料の切断装置である。
(Third Invention) The above object can be achieved by the present invention described below. That is, the third invention of the present invention is
A width of 0.1 mm to 1 mm and a depth of 1 on the surface of the ultrasonic vibrating body in contact with the surface to be cut with ultrasonic vibration as the driving force for cutting
A cutting device for a solid material, characterized in that a plurality of protrusions having a size of 5 mm to 5 mm are provided.

【0013】[0013]

【作用】[Action]

(第一の発明)本発明の研磨装置の作動原理は、向かい
合う2つの超音波振動体の間に試料を置き、超音波振動
を駆動力として、試料の上面と下面を同時に又は個別に
研磨するものである。本発明の切断装置において、従来
法において用いられている並進・回転運動ではなく超音
波振動を駆動力として利用する利点としては、下記の点
が挙げられる。 1)接着剤等により試料を試料台に固定しなくても研磨
することが出来る。 2)超音波振動体の表面形状に従って、平面以外の自由
な曲面に研磨することが出来る。 3)超音波振動体の圧力・振動数・振幅及び研磨剤を任
意に選ぶことにより、研磨速度及び仕上げ表面の状態を
簡単且つ自由に調整することが可能である。 本発明の切断装置では、1)に挙げた様に接着剤等によ
り試料を試料台に固定しなくても研磨することが出来る
為、向かい合う2つの超音波振動体を用いて試料の上面
と下面とを同時に又は個別に研磨することが出来ること
を特徴としている。又、接着剤層がない為、試料台と試
料表面との間の距離を測定することによって、試料の厚
さが正確に求められる為、10μm以下の厚さでも再現
性よく研磨することが出来る。更に、2)に挙げた超音
波振動体の表面形状に従って、平面以外の自由な曲面に
研磨することが出来るという性質を利用し、少なくとも
一方の超音波振動体の表面形状に凸曲面を用いれば、観
察に必要な試料の中心付近だけを選択的に薄くすること
も容易であり、試料の破損を防ぐことが出来る。以上の
結果、電子顕微鏡観察用の試料作製の前処理において、
破損がなく且つ迅速で高精度な試料の研磨が可能とな
る。
(First invention) The operating principle of the polishing apparatus of the present invention is to place a sample between two ultrasonic vibrating bodies facing each other and polish the upper surface and the lower surface of the sample simultaneously or individually using ultrasonic vibration as a driving force. It is a thing. In the cutting device of the present invention, the following points can be mentioned as advantages of using ultrasonic vibration as a driving force instead of the translational / rotary motion used in the conventional method. 1) The sample can be polished without being fixed to the sample table with an adhesive or the like. 2) According to the surface shape of the ultrasonic vibrating body, it can be ground into a free curved surface other than a flat surface. 3) It is possible to easily and freely adjust the polishing rate and the state of the finished surface by arbitrarily selecting the pressure, frequency, amplitude and abrasive of the ultrasonic vibrator. In the cutting device of the present invention, as described in 1), the sample can be polished without being fixed to the sample table with an adhesive or the like. It is characterized in that and can be polished simultaneously or individually. Further, since there is no adhesive layer, the thickness of the sample can be accurately obtained by measuring the distance between the sample table and the surface of the sample. Therefore, polishing can be performed with good reproducibility even at a thickness of 10 μm or less. . Further, according to the surface shape of the ultrasonic vibrator mentioned in 2), by utilizing the property that it can be ground to a free curved surface other than a flat surface, if a convex curved surface is used for at least one surface shape of the ultrasonic vibrator. , It is also easy to selectively thin only the vicinity of the center of the sample necessary for observation, and it is possible to prevent the sample from being damaged. As a result, in the pretreatment of sample preparation for electron microscope observation,
It is possible to polish a sample with high accuracy and without damage.

【0014】(第二の発明)本発明の切断研削装置は、
工具面の円筒形状部においてディスクの切り出しを行
い、同時に、工具面の3〜50mmの曲率半径を有する
曲面部においてディンプリングを行うことが出来るの
で、工具面と同様な曲率を持つディンプルを有するディ
スクを一度の作業で簡易にの作製することが出来、作業
効率をよくすることが可能となる。
(Second invention) The cutting and grinding apparatus of the present invention comprises:
A disk having a dimple having the same curvature as the tool surface can be cut out at the cylindrical portion of the tool surface and at the same time dimpled at the curved surface portion having a radius of curvature of 3 to 50 mm of the tool surface. Can be easily manufactured in a single operation, and work efficiency can be improved.

【0015】(第三の発明)超音波振動を切断の駆動力
に用いる利点の1つは、超音波振動体と被切断体との間
で超音波以外の相対的運動を伴わない為、超音波振動体
の形状を正確に追従して切断することが出来ることにあ
る。本発明の固体材料の切断装置はこの性質を利用し、
超音波振動体の表面に2〜20の突起を形成することに
より、寸法の揃った複数の試料片を同時に切り出すこと
を特徴としており、この結果、透過型電子顕微鏡用の試
料作成の際の研磨工程で生じる試料の破損が少なくな
り、且つ切断時間も短縮される。
(Third invention) One of the advantages of using ultrasonic vibration as a driving force for cutting is that it does not involve any relative motion other than ultrasonic waves between the ultrasonic vibrator and the object to be cut. The object is to be able to accurately follow the shape of the sonic vibrator and cut it. The solid material cutting device of the present invention utilizes this property,
By forming 2 to 20 protrusions on the surface of the ultrasonic vibrator, a plurality of sample pieces with uniform dimensions are cut out at the same time. As a result, polishing when preparing a sample for a transmission electron microscope. The sample is less damaged in the process and the cutting time is shortened.

【0016】[0016]

【実施例】次に実施例を挙げて本発明を更に詳細に説明
する。 (第一の発明) 実施例1 図1は、本発明の研磨装置についての第1の実施例を示
す。図中、21及び22はニッケル振動子を用いた超音
波発振体であり、夫々上部及び下部の超音波振動体23
及び24と接続されている。上部の超音波振動体23の
表面は、曲率半径5mmの曲面形状を有し、下部の超音
波振動体24は平面形を有する。25は膜厚ゲージ、2
6は油圧を利用した圧力調整機構である。本実施例の研
磨装置をあらかじめ3mmφに切り出した試料27に適
用した。先ず、研磨剤としてカーボランダムの水溶液を
用い、超音波振動体23のみを作動させ、試料27を中
心膜厚15μmまで研磨した。次に上面及び下面を鏡面
研磨する為に、上下の超音波振動体23及び24を夫
々、同一形状を有し、且つ表面をバフ布で覆った超音波
振動体に変え、又、研磨剤をアルミナの水溶液に変え
た。この状態で上下の超音波振動体23及び24を作動
させ、試料27の上面及び下面を同時に研磨した。その
結果、上面及び下面共に良好な鏡面状態が速やかに得ら
れた。
The present invention will be described in more detail with reference to the following examples. (First Invention) First Embodiment FIG. 1 shows a first embodiment of a polishing apparatus of the present invention. In the figure, reference numerals 21 and 22 denote ultrasonic oscillators using a nickel oscillator, and ultrasonic oscillators 23 at the upper and lower portions, respectively.
And 24. The surface of the upper ultrasonic vibrator 23 has a curved surface shape with a radius of curvature of 5 mm, and the lower ultrasonic vibrator 24 has a planar shape. 25 is a film thickness gauge, 2
Reference numeral 6 is a pressure adjusting mechanism utilizing hydraulic pressure. The polishing apparatus of this example was applied to the sample 27 that had been cut into 3 mmφ in advance. First, an aqueous solution of carborundum was used as an abrasive, and only the ultrasonic vibrator 23 was operated to polish the sample 27 to a center film thickness of 15 μm. Next, in order to mirror-polish the upper and lower surfaces, the upper and lower ultrasonic vibrators 23 and 24 are changed to ultrasonic vibrators having the same shape and the surfaces thereof are covered with a buff cloth. It was changed to an aqueous solution of alumina. In this state, the upper and lower ultrasonic vibrators 23 and 24 were operated, and the upper surface and the lower surface of the sample 27 were simultaneously polished. As a result, a good mirror surface condition was promptly obtained on both the upper surface and the lower surface.

【0017】実施例2 図1に示した実施例1の研磨装置の上部側の超音波振動
体23を、曲率半径5mmの曲面形状であり、且つ中心
部が平坦になった表面形状を有する超音波振動体28に
代えた。本実施例の切断装置をあらかじめ3mmφに切
り出した試料27に適用した。先ず、研磨剤としてカー
ボランダムの水溶液を用い、超音波振動体28のみを作
動させて、中心膜厚15μmまで研磨した。次に、上面
および下面を鏡面研磨する為に、上下の超音波振動体2
8及び24を夫々、同一の形状を有し、且つ表面をバフ
布で覆った超音波振動体に変え、又、研磨剤をアルミナ
の水溶液に変えた。この状態で上下の超音波振動体28
及び24を作動させた結果、試料27の上面及び下面共
に良好な鏡面状態となった。上記の様にして得られた試
料27にアルゴンイオンを照射したところ、中心付近が
平坦になっている為、広範囲にわたって透過型電子顕微
鏡観察が可能な薄い領域が形成された。
Example 2 The ultrasonic vibrator 23 on the upper side of the polishing apparatus of Example 1 shown in FIG. 1 has a curved surface shape with a radius of curvature of 5 mm and a surface shape with a flat center portion. Instead of the sonic vibrating body 28. The cutting device of this example was applied to a sample 27 that had been cut into 3 mmφ in advance. First, an aqueous solution of carborundum was used as an abrasive, and only the ultrasonic vibration body 28 was operated to polish to a center film thickness of 15 μm. Next, in order to polish the upper surface and the lower surface to the mirror surface, the upper and lower ultrasonic vibrators 2
Each of 8 and 24 was changed to an ultrasonic vibrating body having the same shape and the surface of which was covered with a buff cloth, and the abrasive was changed to an aqueous solution of alumina. In this state, the upper and lower ultrasonic vibrators 28
As a result of operating Nos. 24 and 24, both the upper surface and the lower surface of the sample 27 were in a good mirror surface state. When the sample 27 obtained as described above was irradiated with argon ions, a thin region where a transmission electron microscope observation was possible was formed over a wide area because the center was flat.

【0018】(第二の発明) 実施例3 図2に従って、本発明の切断研削装置を説明する。図
中、1はNi振動子を用いた超音波発振体であり、下部
の超音波振動体2と接続されている。超音波振動体2の
先端には、工具面3が取り付けられており、上下方向に
超音波振動をする。この工具面3は、内径3mmの円筒
形状で、且つ曲率半径20mmの曲面のからなる上面と
で形成されている。4は試料台、5は膜厚ゲージ、6は
油圧を利用した圧力調整機構である。本実施例の切断研
削装置を、1.5mmの厚さを有するSiウェハー試料
7に適用し、カーボランダム水溶液8を用いて超音波振
動体2を作動したところ、直径3mmで曲率半径20m
mのディンプルを有するディスクが形成された。又、超
音波振動体2の振動数、振幅、圧力、又は研磨砥粒等を
適切に選択することによって、ディンプルを持ったディ
スクが容易に得られることが確認された。
(Second Invention) Third Embodiment A cutting and grinding apparatus of the present invention will be described with reference to FIG. In the figure, reference numeral 1 denotes an ultrasonic oscillator using a Ni oscillator, which is connected to an ultrasonic oscillator 2 below. A tool surface 3 is attached to the tip of the ultrasonic vibrating body 2 and vibrates ultrasonically in the vertical direction. The tool surface 3 is formed of a cylindrical shape having an inner diameter of 3 mm and a curved upper surface having a radius of curvature of 20 mm. Reference numeral 4 is a sample table, 5 is a film thickness gauge, and 6 is a pressure adjusting mechanism utilizing hydraulic pressure. The cutting and grinding apparatus of this example was applied to a Si wafer sample 7 having a thickness of 1.5 mm, and the ultrasonic vibrator 2 was operated using the carborundum aqueous solution 8. The diameter was 3 mm and the radius of curvature was 20 m.
A disk having m dimples was formed. It was also confirmed that a disc having dimples can be easily obtained by appropriately selecting the frequency, amplitude, pressure, polishing abrasive grains, etc. of the ultrasonic vibrator 2.

【0019】実施例4 本発明の2番目の実施例の場合は、実施例3と同様に、
1はNi振動子を用いた超音波発振体であり、下部の超
音波振動体2と接続している。又、超音波振動体2の先
端には工具面3が取り付けられているが、この工具面3
は内径2.3mmの円筒形状で、且つ曲率半径10mm
の曲面からなる上面とで形成されている。4は試料台、
5は膜厚ゲージ、6は油圧を利用した圧力調整機構であ
る。本実施例の切断研削装置を、1mmの厚さを有する
Siウェハー試料7に適用した。カーボランダム水溶液
8を用いて超音波振動体2を作動したところ、直径2.
3mmで曲率半径10mmのディンプルを持つディスク
が形成された。又、超音波振動体2の振動数、振幅、圧
力、又は研磨砥粒等を適切に選択することによって、デ
ィンプルを持ったディスクが容易に得られることが確認
された。
Embodiment 4 In the case of the second embodiment of the present invention, as in Embodiment 3,
Reference numeral 1 denotes an ultrasonic oscillator using a Ni oscillator, which is connected to the ultrasonic vibrator 2 below. Further, the tool surface 3 is attached to the tip of the ultrasonic vibrating body 2.
Is a cylindrical shape with an inner diameter of 2.3 mm and a radius of curvature of 10 mm
And an upper surface formed of a curved surface. 4 is the sample table,
Reference numeral 5 is a film thickness gauge, and 6 is a pressure adjusting mechanism utilizing hydraulic pressure. The cutting and grinding machine of this example was applied to a Si wafer sample 7 having a thickness of 1 mm. When the ultrasonic vibrator 2 was operated using the carborundum aqueous solution 8, the diameter was 2.
A disk having dimples with a radius of curvature of 3 mm and a radius of 10 mm was formed. It was also confirmed that a disc having dimples can be easily obtained by appropriately selecting the frequency, amplitude, pressure, polishing abrasive grains, etc. of the ultrasonic vibrator 2.

【0020】(第三の発明) 実施例5 図3は本発明の実施例の固体材料の切断装置の概略図で
ある。11はニッケル振動子を用いた超音波発振体であ
り、超音波振動体12と接続している。13は膜厚ゲー
ジ、14は油圧を利用した圧力調整機構である。図4は
図3の切断装置の超音波振動体12の部分拡大図である
が、超音波振動体12は、幅0.2mm、長さ2mm、
深さ1mmのステンレス製の刃5が1mm間隔で5個並
び、周囲が1.2mmの高さの差をもつ刃16で囲まれ
た形状を有する。上記の様な本発明の実施例の切断装置
を、図3の17に示す0.4mmの厚さを有するSiウ
エハー試料適用した。研磨剤にカーボランダムの水溶液
を用い、超音波振幅導体12を作動させたところ、同一
形状を有する4個の試料片に速やかに切断された。又、
超音波振幅導体12の圧力や、振幅又は研磨剤を適切に
選択することによって、ダメージの少ない切断面が容易
に得られることが確認された。
(Third Invention) Fifth Embodiment FIG. 3 is a schematic view of a solid material cutting device according to an embodiment of the present invention. Reference numeral 11 denotes an ultrasonic oscillator using a nickel oscillator, which is connected to the ultrasonic oscillator 12. Reference numeral 13 is a film thickness gauge, and 14 is a pressure adjusting mechanism using hydraulic pressure. 4 is a partially enlarged view of the ultrasonic vibrating body 12 of the cutting apparatus of FIG. 3, the ultrasonic vibrating body 12 has a width of 0.2 mm and a length of 2 mm.
Five stainless steel blades 5 having a depth of 1 mm are arranged at intervals of 1 mm, and the periphery is surrounded by blades 16 having a height difference of 1.2 mm. The cutting apparatus of the embodiment of the present invention as described above was applied to a Si wafer sample having a thickness of 0.4 mm shown in 17 of FIG. When an ultrasonic wave amplitude conductor 12 was operated using an aqueous solution of carborundum as an abrasive, it was quickly cut into four sample pieces having the same shape. or,
It was confirmed that a cut surface with less damage can be easily obtained by appropriately selecting the pressure of the ultrasonic amplitude conductor 12, the amplitude, or the abrasive.

【0021】[0021]

【発明の効果】【The invention's effect】

(第一の発明)以上説明した様に、本発明の研磨装置に
よれば、透過型電子顕微鏡観察用の試料に用いられる、
広範囲な観察領域を有する試料を迅速かつ再現性よく作
製することが可能となる。
(First invention) As described above, according to the polishing apparatus of the present invention, it is used as a sample for transmission electron microscope observation.
It is possible to rapidly and reproducibly prepare a sample having a wide observation region.

【0022】(第二の発明)以上説明した様に、本発明
の切断研削装置によれば、ディスクの切り出しとディン
プリングを同時に行うことが出来るので、工具面と同様
な曲率のディンプルを有するディスクを一度の作業での
作製することが出来、作業効率をよくすることが可能に
なる。
(Second Invention) As described above, according to the cutting and grinding apparatus of the present invention, cutting and dimpling of a disk can be performed at the same time, so a disk having a dimple having a curvature similar to that of the tool surface. Can be manufactured in a single operation, and work efficiency can be improved.

【0023】(第三の発明)以上説明した様に、本発明
の切断装置によれば、寸法の揃った複数の試料片を簡単
且つ迅速に切り出すことが可能であり、透過型電子顕微
鏡観察用の試料作製の効率が大幅に向上する。
(Third Invention) As described above, according to the cutting apparatus of the present invention, it is possible to easily and quickly cut out a plurality of sample pieces having uniform dimensions, and to observe them with a transmission electron microscope. The efficiency of sample preparation is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の発明の研磨装置の実施例を示す
一例の概略図である。
FIG. 1 is a schematic view of an example showing an embodiment of a polishing apparatus of the first invention of the present invention.

【図2】本発明の第二の発明の切断研削装置の一例の概
略図である。
FIG. 2 is a schematic view of an example of a cutting and grinding apparatus of a second invention of the present invention.

【図3】本発明の第三の発明の固体材料の切断装置の一
例の概略図である。
FIG. 3 is a schematic view of an example of a solid material cutting device of a third invention of the present invention.

【図4】図3における超音波振動体12の部分拡大図で
ある。
4 is a partially enlarged view of the ultrasonic vibration body 12 in FIG.

【符号の説明】[Explanation of symbols]

1:超音波発振体 2:超音波振動体 3:工具面 4:試料台 5:圧力調整機構 6:膜厚ゲージ 7:試料 8:溶液と混合した砥粒 11:ニッケル振動子 12:超音波振動体 13:膜厚ゲージ 14:油圧式圧力調整機構 17:試料 15:刃 16:刃 21:上部ニッケル振動子 22:下部ニッケル振動子 23:上部超音波振動体 24:下部超音波振動体 25:膜厚ゲージ 26:油圧式圧力調整機構 27:試料 28:上部超音波振動体 1: Ultrasonic oscillator 2: Ultrasonic oscillator 3: Tool surface 4: Sample stage 5: Pressure adjusting mechanism 6: Thickness gauge 7: Sample 8: Abrasive grains mixed with solution 11: Nickel vibrator 12: Ultrasonic wave Vibrator 13: Film thickness gauge 14: Hydraulic pressure adjusting mechanism 17: Sample 15: Blade 16: Blade 21: Upper nickel vibrator 22: Lower nickel vibrator 23: Upper ultrasonic vibrator 24: Lower ultrasonic vibrator 25 : Thickness gauge 26: Hydraulic pressure adjusting mechanism 27: Sample 28: Upper ultrasonic vibrator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01J 37/20 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display H01J 37/20 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体表面を研磨する為の駆動力として向
かい合う二つの超音波振動体が設けられており、該超音
波振動体により固体の上面と下面とが同時に又は個別に
研磨されることを特徴とする研磨装置。
1. Two ultrasonic vibrating bodies facing each other as a driving force for polishing a solid surface are provided, and the upper surface and the lower surface of the solid are simultaneously or individually polished by the ultrasonic vibrating body. Characteristic polishing device.
【請求項2】 上下方向に超音波振動する工具面で溶液
と混合させた砥粒を被加工物に摩擦させて加工する切断
研削装置において、工具面の形状が円筒形状で且つ曲率
半径が3〜50mmの曲面からなる上面を有することを
特徴とする切断研削装置。
2. In a cutting and grinding apparatus for grinding abrasives mixed with a solution on a tool surface which is ultrasonically vibrated in the vertical direction by rubbing it against a workpiece, the tool surface has a cylindrical shape and a radius of curvature of 3 A cutting and grinding machine having an upper surface having a curved surface of ˜50 mm.
【請求項3】 超音波振動を切断の駆動力とし、且つ被
切断表面に接する超音波振動体の表面に幅0.1mm〜
1mm、深さ1mm〜5mmの複数の突起が設けられて
いることを特徴とする固体材料の切断装置。
3. An ultrasonic vibration is used as a driving force for cutting, and a width of 0.1 mm to the surface of the ultrasonic vibrator which is in contact with the surface to be cut.
A cutting device for a solid material, which is provided with a plurality of protrusions having a depth of 1 mm and a depth of 1 mm to 5 mm.
JP10594693A 1993-04-09 1993-04-09 Cutting and grinding equipment Expired - Fee Related JP3412859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10594693A JP3412859B2 (en) 1993-04-09 1993-04-09 Cutting and grinding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10594693A JP3412859B2 (en) 1993-04-09 1993-04-09 Cutting and grinding equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002083951A Division JP2002331445A (en) 2002-03-25 2002-03-25 Polishing device

Publications (2)

Publication Number Publication Date
JPH06297304A true JPH06297304A (en) 1994-10-25
JP3412859B2 JP3412859B2 (en) 2003-06-03

Family

ID=14421018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10594693A Expired - Fee Related JP3412859B2 (en) 1993-04-09 1993-04-09 Cutting and grinding equipment

Country Status (1)

Country Link
JP (1) JP3412859B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349470A (en) * 2004-04-26 2005-12-22 Hewlett-Packard Development Co Lp Micro-machining method and system
WO2013001700A1 (en) * 2011-06-30 2013-01-03 株式会社 日立ハイテクノロジーズ Sample creation device, creation method, and charged particle beam device using same
CN111531450A (en) * 2020-06-19 2020-08-14 湘潭大学 Take chip-breaker carbide blade chemical mechanical polishing equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349470A (en) * 2004-04-26 2005-12-22 Hewlett-Packard Development Co Lp Micro-machining method and system
WO2013001700A1 (en) * 2011-06-30 2013-01-03 株式会社 日立ハイテクノロジーズ Sample creation device, creation method, and charged particle beam device using same
CN111531450A (en) * 2020-06-19 2020-08-14 湘潭大学 Take chip-breaker carbide blade chemical mechanical polishing equipment

Also Published As

Publication number Publication date
JP3412859B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JP5707889B2 (en) Semiconductor substrate cutting method and semiconductor substrate cutting apparatus
TWI424484B (en) Wafer grinding method and wafer
JP3328193B2 (en) Method for manufacturing semiconductor wafer
CN109391241A (en) The manufacturing method of elastic wave device substrate
JPH11111653A (en) Manufacture of semiconductor wafer
JPH06297304A (en) Polishing device, cutting/grinding device, and cutting device for solid material
JP2009178785A (en) Method and apparatus of polishing crystal wafer
JP2002331445A (en) Polishing device
JP2504859B2 (en) Transmission electron microscope sample preparation method
US20020049029A1 (en) System and method for chemical mechanical polishing
KR20030043233A (en) Apparatus for grinding specimen
JPH03209744A (en) Breaking method and its equipment
KR20080102877A (en) Method for manufacturing a test sample for transmission electron microscope
JP2509265B2 (en) Wafer manufacturing method and apparatus
JPH11179638A (en) Manufacture of semiconductor wafer and device therefor
JPH0661203A (en) Method of grinding semiconductor wafer
CN113452337B (en) Bonded wafer, method for manufacturing elastic wave device, piezoelectric material wafer, and non-piezoelectric material wafer
US20230071868A1 (en) Diamond wafer dividing method and chip manufacturing method
JPS59118369A (en) Manufacture of diaphragm
JP2000317781A (en) Piezo electric element and its machining method
JP3265963B2 (en) Wafer mirror chamfering device
JP2767052B2 (en) Automatic polishing device for piezoelectric pieces
JPH0616442A (en) Method for cutting brittle plate and device therefor
JP2000015625A (en) Cutting method for hard and fragile material and inner peripheral blade cutting device
CN85100706B (en) Cutting machine for piezo-electric ceramic crystal slices

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees