JPH0629465B2 - Method for producing steel plate for DI can having good bakeability and bake hardenability - Google Patents

Method for producing steel plate for DI can having good bakeability and bake hardenability

Info

Publication number
JPH0629465B2
JPH0629465B2 JP60207130A JP20713085A JPH0629465B2 JP H0629465 B2 JPH0629465 B2 JP H0629465B2 JP 60207130 A JP60207130 A JP 60207130A JP 20713085 A JP20713085 A JP 20713085A JP H0629465 B2 JPH0629465 B2 JP H0629465B2
Authority
JP
Japan
Prior art keywords
temperature
steel
continuous annealing
hot
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60207130A
Other languages
Japanese (ja)
Other versions
JPS6267119A (en
Inventor
一典 大澤
隆史 小原
浩三 角山
貴史 関田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60207130A priority Critical patent/JPH0629465B2/en
Publication of JPS6267119A publication Critical patent/JPS6267119A/en
Publication of JPH0629465B2 publication Critical patent/JPH0629465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は各種缶に使用される2ピース缶としてのDI
缶に使用されるスズメッキ鋼板(ぶりき)の製造方法に
関し、特に焼付硬化性を有しかつフランジ加工性に優れ
たDI缶用鋼板を連続焼鈍法を適用して製造する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION INDUSTRIAL APPLICABILITY The present invention relates to DI as a two-piece can used for various cans.
The present invention relates to a method for producing a tin-plated steel sheet (tin plate) used for cans, and more particularly to a method for producing a steel sheet for DI cans having bake hardenability and excellent flange formability by applying a continuous annealing method.

従来の技術 従来から、ビーム缶や清涼飲料缶等の食缶にはDI缶が
使用されている。このDI缶は、円形に内抜いた金属素
板を絞り加工によってカップ状に成形し、次いでそのカ
ップ状成形品のカップ外径よりも小さい内径のダイスを
数段通過させて缶胴壁厚を減少させるとともに缶高を増
大させるアイオニング加工(しごき加工)を行なうこと
によって製缶されるものであり、継ぎ目のない胴壁と底
とが一体に製造されるところから、2ピース缶として使
用されいる。
2. Description of the Related Art Conventionally, DI cans have been used for food cans such as beam cans and soft drink cans. This DI can is formed into a cup shape by drawing a circularly drawn metal base plate into a cup shape, and then passes through several dies having an inner diameter smaller than the outer diameter of the cup-shaped molded product to reduce the thickness of the can body wall. The can is made by performing an ionicing process (ironing process) that reduces and increases the can height, and is used as a two-piece can because the seamless body wall and bottom are integrally manufactured. .

このようなDI缶用の素材としては一般にアルミニウム
とSnメッキ鋼板すなわちぶりきとが使用されており、
従来はこれらのうち展伸加工性の良好なアルミニウムを
主な素材とすることが多かったが、最近ではぶりきの高
品質化に伴なってスチール化が進んでいる。しかしなが
らスチール化に再しては、缶ぶたを取付ける過程での缶
胴フランジ加工時におけるフランジ割れ発生率がアルミ
ニウムの場合よりも高くなるという材質面での問題があ
った。したがってぶりきを用いてDI缶をスチール化す
るに際しては、フランジ加工性に優れたSnメッキ鋼板
の開発が強く望まれている。
Aluminum and Sn-plated steel plate, that is, tin plate are generally used as materials for such DI cans.
Conventionally, aluminum, which has good wrought workability, has often been used as the main material, but in recent years, the use of steel has progressed along with the improvement in the quality of tinplate. However, when steel is used again, there has been a problem in terms of material that the rate of flange cracking during can body flange processing in the process of attaching a can lid is higher than that of aluminum. Therefore, when steel-making a DI can using a tin plate, development of the Sn plating steel plate excellent in flange workability is strongly desired.

ところで既にDI製缶用のフランジ加工性の良好な鋼板
としては、特公昭55-2461 号公報に開示されているも
の、および特開昭58-141364 号公報に開示されているも
のがある。すなわち前者の公報においては、結晶粒軸比
を1.8以下に小さくしたものはしごき成形不良率とフ
ランジ成形不良率を大幅に減少することができると説明
され、また後者の公報においては、結晶粒度がG.S.
No.で9.2以上でしかも板面の中心線あらさRa(μ
m)との差を9.0以下として硬さH30Tで46〜60の範
囲内にすることにより製缶性に優れる極薄冷延鋼板が製
造できる旨記載されている。そしてこれらの方法では、
いずれも焼鈍法としては実施例中に記載されているよう
に焼鈍温度580 〜765 ℃、昇温速度20〜2000℃/hr程度
の箔焼鈍法が適用されている。
By the way, as steel sheets having good flange formability for DI cans, there are those disclosed in JP-B-55-2461 and those disclosed in JP-A-58-141364. That is, in the former publication, it is explained that the one in which the crystal grain axial ratio is reduced to 1.8 or less can significantly reduce the ironing molding defective rate and the flange molding defective rate. The grain size is G. S.
No. Is 9.2 or more and the center line roughness of the plate surface Ra (μ
It is described that an ultrathin cold-rolled steel sheet having excellent can-forming properties can be produced by setting the difference from m) to 9.0 or less and setting the hardness H R 30T to be in the range of 46 to 60. And with these methods,
In each case, as described in the examples, a foil annealing method with an annealing temperature of 580 to 765 ° C. and a temperature rising rate of 20 to 2000 ° C./hr is applied.

しかしながら箔焼鈍法は長い処理時間を要するため作業
能率が低いばかりでなく、コイル状態で熱処理されるた
めコイル半径方向で加熱および冷却速度に差異を生じ、
その結果コイル全体にわたって均一な材質を得ることが
できず、歩留りが低下する等の欠点があり、そこで連続
焼鈍法を適用してしかもフランジ加工性の優れたDI缶
要鋼板を製造する方法の確立が望まれている。
However, since the foil annealing method requires a long processing time, not only the work efficiency is low, but also the heat treatment in the coil state causes a difference in heating and cooling speeds in the coil radial direction.
As a result, it is not possible to obtain a uniform material over the entire coil and there are drawbacks such as a decrease in yield. Therefore, there is established a method of applying the continuous annealing method and producing a steel plate for DI can with excellent flange formability. Is desired.

連続焼鈍材をDI缶に適用しようとする試みも従来から
なされているが、従来の通常の連続焼鈍法と通常のSn
メッキ法との組合せでは、連続焼鈍における均熱後の冷
却が急速冷却であるため鋼中の固溶Cがほとんど炭化物
として析出せずに固溶状態で残存し、しかもSnメッキ
後のリフロー処理時に固溶Cによって硬化が生じ、その
結果DI製缶時の缶胴壁部に破断を生じる危険性が高い
という問題があり、またDI加工に先立つ絞り加工時に
おけるイヤリングの問題、すなわち耳発生が大きいとい
う問題がある。
Attempts have been made to apply the continuous annealing material to DI cans, but the conventional ordinary continuous annealing method and the ordinary Sn method have been used.
In combination with the plating method, since the cooling after soaking in continuous annealing is rapid cooling, the solid solution C in the steel hardly remains as a carbide and remains in the solid solution state, and at the time of reflow treatment after Sn plating. There is a problem that hardening occurs due to solid solution C, and as a result, there is a high risk of breaking the can body wall during DI can manufacturing, and there is a large problem of earrings during drawing prior to DI processing, that is, ears are large. There is a problem.

このように耳発生が大きい場合、DI製缶時に耳部に伸
びが助長され、円周方向に板厚の変動が大きくなってト
リミング後のフランジ加工時に板厚の薄い部分に割れを
生じる危険性がある。
When the ears are large like this, there is a risk that the ears are stretched at the time of making the DI can and the thickness of the ears is greatly changed in the circumferential direction, so that the thin parts may be cracked during the flange processing after trimming. There is.

そこで特開昭58-151426 号公報では、熱延仕上温度をA
点以上とし、巻取温度を580 〜740 ℃とする組合せ
で面内異方性の小さい極薄鋼板を製造する方法を開示し
ている。しかしながらこの提案の方法では、巻取温度を
580 ℃以上の中温〜高温とするため、必然的に結晶粒径
が大きくなり、例えば特開昭58-141364 号公報中で説明
されているようにフランジ加工性は劣化する傾向を示
す。さらに、上記提案のように巻取温度を高目とした場
合、粗大な凝集セメンタイトが鋼板内に析出して耐食性
を劣化させるばかりでなく、フランジ割れの原因にもな
りかねない。また巻取温度を高目とすれば、巻取中に鋼
板表面の酸化層が厚くなって酸洗工程でのライン速度の
低下を招き、生産性が悪くなる問題がある。
Therefore, in JP-A-58-151426, the hot rolling finishing temperature is set to A
It discloses a method of producing an ultra-thin steel sheet having a small in-plane anisotropy by a combination of r 3 points or more and a winding temperature of 580 to 740 ° C. However, in this proposed method, the winding temperature is
Since the medium temperature to high temperature of 580 ° C. or higher is inevitably large, the crystal grain size is inevitably large, and the flange formability tends to be deteriorated as described in, for example, JP-A-58-141364. Further, when the coiling temperature is increased as in the above proposal, coarse agglomerated cementite precipitates in the steel sheet to deteriorate the corrosion resistance and may cause a flange crack. Further, if the winding temperature is set high, there is a problem that the oxide layer on the surface of the steel sheet becomes thick during winding and the line speed is lowered in the pickling step, resulting in poor productivity.

発明が解決すべき問題点 前述のように箱焼鈍法を適用した場合、作業能率の問題
および材質の均一性、歩留りの問題があり、そのため連
続焼鈍法を適用してDI缶用Snメッキ鋼板を製造する
ことが望まれるが、従来の通常の連続焼鈍法と通常のS
nメッキ法との組合せでは、DI製缶時において胴缶壁
部に破断のおそれがあるとともに、DI加工に先立つ絞
り加工時において耳発生が大きくなるという問題があっ
た。そして耳発生を小さくしようとする前記特開昭58-1
51426 号公報の方法では、熱間圧延後の巻取温度が高目
であるため結晶粒径が大きくなり、フランジ加工性が劣
化し、また耐食性の低下や酸洗工程のライン速度低下な
どの問題も生じている。
Problems to be Solved by the Invention When the box annealing method is applied as described above, there are problems of work efficiency, material uniformity, and yield. Therefore, the continuous annealing method is applied to the Sn-plated steel sheet for DI cans. Although it is desired to manufacture it, the conventional continuous annealing method and the conventional S
In combination with the n-plating method, there was a problem that the wall of the barrel can was broken at the time of DI can making, and the ears became large at the time of drawing before DI processing. The above-mentioned Japanese Patent Laid-Open No. 58-1 is intended to reduce the occurrence of ears.
In the method of Japanese Patent No. 51426, since the coiling temperature after hot rolling is high, the crystal grain size becomes large, the flange formability deteriorates, the corrosion resistance decreases, and the line speed in the pickling process decreases. Is also occurring.

そこでこの発明では、連続焼鈍法を適用ししかも熱間圧
延後の巻取温度を従来よりも低目として、フランジ割れ
および耳発生が小さく、かつ焼付硬化性を有するDI缶
用スズメッキ鋼板を製造する方法を提供することを目的
とするものである。
Therefore, in the present invention, the continuous annealing method is applied, the coiling temperature after hot rolling is set lower than in the conventional case, and a tin-plated steel sheet for a DI can that has little flange cracking and edge generation and is bake hardenable is manufactured. It is intended to provide a method.

なお既に特開昭59-38336号公報および特開昭59-38338号
公報には、連続焼鈍法を適用して耳発生の小さい表面処
理用原板を製造する方法が開示されているが、これらの
方法は連続焼鈍工程でいわゆる過時効処理を施して鋼中
の固溶Cを充分に析出させ、これにより時効硬化の極め
て少ない軟質(すなわちJIS G 3303で規定する調
質度でT1〜T3級)な表面処理用原板を得ようとする
ものであり、これに対しこの発明では固溶Cを相光量残
存させることによって、DI缶製造後の塗装、印刷後の
乾燥・焼付中に時効硬化させ得るようなSnメッキ鋼
板、すなわち焼付硬化性を有するT4級程度以上のSn
メーキ鋼板を得ようとするものであり、その意味で前記
提案の目的とは基本的に異なるものである。
It should be noted that JP-A-59-38336 and JP-A-59-38338 have already disclosed a method for producing a surface-treating original sheet with a small ear occurrence by applying a continuous annealing method. The method is so-called overaging treatment in the continuous annealing step to sufficiently precipitate the solid solution C in the steel, thereby softening with extremely little age hardening (that is, T1 to T3 grade with a tempering degree specified by JIS G 3303). In contrast to this, in the present invention, by allowing the solid solution C to remain in the amount of light, it is possible to age-harden during the coating after the production of DI can and the drying / baking after printing. Such Sn-plated steel sheet, that is, Sn of T4 grade or higher having bake hardenability
It is intended to obtain a make-up steel plate, and in that sense, it is basically different from the purpose of the above proposal.

問題点を解決するための手段 前述の目的を達成するべく本発明者等が鋭意実験・検討
を重ねた結果、特定成分の鋼素材を用いてその熱間圧延
前の加熱温度を1200℃以上の高温とし、かつ熱間圧延後
の巻取温度を580 ℃未満の低温とし、さらに連続焼鈍後
の冷却速度を適切に制御し、さらにその他の条件を適切
に制御することによって、結晶粒が微細でフランジ加工
性が優れかつ耳率の小さい、焼付硬化性を有するSnメ
ッキ鋼板が得られることを見出し、この発明をなすに至
ったのである。
Means for Solving the Problems As a result of the inventors' earnest experiments and examinations in order to achieve the above-mentioned object, as a result of using a steel material of a specific component, the heating temperature before hot rolling is 1200 ° C. or more. By setting the coil temperature to a high temperature, the coiling temperature after hot rolling to a low temperature of less than 580 ° C, and controlling the cooling rate after continuous annealing appropriately and further controlling other conditions, it is possible to obtain fine crystal grains. The inventors have found that an Sn-plated steel sheet having excellent bakeability, a small earring rate, and a bake hardenability can be obtained, and the present invention has been accomplished.

具体的には、この発明のDI缶用鋼板の製造方法は、重
量%にしてC0.01〜0.10%、Mn0.50%以下、sol.Al
0.003 〜0.050 %、N0.0040%以下を含有し、残部がF
eおよび不可避的不純物よりなる鋼を素材とし、その鋼
素材を1200℃以上の温度に加熱して熱間圧延し、かつそ
の熱間圧延を終了した熱延板を580 ℃未満の温度域で巻
取り、さらに冷間圧延を行なった後に連続焼鈍を施すに
際して、再結晶温度Ac点以下の温度に均熱し、その
後の冷却過程において500 〜400 ℃の温度域を10秒以上
で冷却し、連続焼鈍終了後、調質圧延を行ない、引続い
て電気スズメッキを施すことを特徴とするものである。
Specifically, the method for producing a steel sheet for a DI can of the present invention uses C0.01 to 0.10% by weight, Mn 0.50% or less, sol.Al.
Contains 0.003 to 0.050%, N 0.0040% or less, the balance is F
Steel made of e and inevitable impurities is used as a material, the steel material is heated to a temperature of 1200 ° C or higher and hot-rolled, and the hot-rolled sheet after the hot-rolling is wound in a temperature range of 580 ° C or less. When performing continuous annealing after further cold rolling, the temperature is soaked to a recrystallization temperature Ac of 1 point or less, and in the subsequent cooling process, the temperature range of 500 to 400 ° C. is cooled for 10 seconds or more and continuously. After the annealing is finished, temper rolling is performed, and subsequently, electrotin plating is performed.

作 用 先ずこの発明をなすに至る基礎となった実験について説
明する。
Operation First, the experiments that became the basis for making this invention will be explained.

C0.05%、Mn0.21%、Si0.009 %、P0.012 %、S
i0.007 %、sol.Al0.035 %、N0.0020%を含有し、
残部がFeおよび不可避的不純物よりなる鋼のスラブを
1270℃もしくは1100℃に加熱した後、仕上温度850 ℃で
熱間圧延を終了し、500 〜650 ℃の種々の温度で巻取っ
た。その後、加熱昇温速度20℃/sec 、均熱温度670
℃、均熱時間20sec 、冷却速度 8℃/sec もしくは15℃
/sec の条件で連続焼鈍を施し、さらに圧下率1.5%
の調質圧延を施した後、#20の電気Snメッキを施して
からDI加工を行ない、耳発生状況を調べた。その結果
を巻取温度に対応して第1図に示す。なおここで耳の高
さ△Hは、 △H=[山部の高さ]−[谷部の高さ] で評価し、また同時に結晶粒径も調べて、その値も第1
図に併せて示した。
C0.05%, Mn0.21%, Si0.009%, P0.012%, S
i 0.007%, sol.Al 0.035%, N 0.0020%,
A steel slab whose balance consists of Fe and unavoidable impurities
After heating to 1270 ° C. or 1100 ° C., hot rolling was completed at a finishing temperature of 850 ° C., and wound at various temperatures of 500 to 650 ° C. After that, heating rate of temperature rise 20 ℃ / sec, soaking temperature 670
℃, soaking time 20sec, cooling rate 8 ℃ / sec or 15 ℃
/ Sec for continuous annealing, and a rolling reduction of 1.5%
After the temper rolling was performed, the # 20 electric Sn plating was performed and then the DI processing was performed to examine the occurrence of ears. The results are shown in FIG. 1 corresponding to the winding temperature. Here, the ear height ΔH is evaluated by ΔH = [height of peak] − [height of valley], and at the same time, the grain size is also checked, and the value is the first value.
It is also shown in the figure.

第1図から明らかなように、スラブ加熱温度が低温(11
00℃)の場合には巻取温度が低温となされば耳の高さ△
Hが著しく大きくなるのに対し、スラブ加熱温度が高温
(1270℃)の場合には巻取温度が低温となっても耳の高
さ△Hはさほど大きくならず、△Hが小さい鋼板を製造
し得ることが判明した。またスラブ加熱温度が高くかつ
巻取温度が低い条件下では結晶粒径も小さくなることが
判明した。
As is clear from Fig. 1, the slab heating temperature is low (11
In the case of (00 ℃), if the coiling temperature is low, the ear height is △
On the other hand, when the slab heating temperature is high (1270 ° C), the ear height ΔH does not increase so much even if the slab heating temperature is high (1270 ° C), and steel plates with a small ΔH are manufactured. It turned out to be possible. It was also found that the crystal grain size was small under the conditions of high slab heating temperature and low coiling temperature.

次にC0.041 %、Si0.011 %、Mn0.22%、Si0.00
8 %、sol.Al0.025 %、N0.0025%を含有し、残部が
Feおよび不可避的不純物よりなる鋼のスラブを、1100
℃もしくは1250℃で30分間加熱して熱間圧延を施し、86
0 ℃で熱間圧延を終了させて板厚を2.5mm とした後、53
0 〜700 ℃の種々の温度で巻取った。酸洗後、板厚0.30
mmまで冷間圧延した後、加熱昇温速度20℃/sec、均熱
温度660 〜720 ℃、均熱時間20sec 、冷却速度10℃/se
cもしくは25℃/secの条件下の連続焼鈍、または加熱昇
温速度30℃/hr、均熱温度630 ℃、均熱時間3hr、冷却
速度30℃/hrの条件下での箱焼鈍を施し、さらに圧下率
1.5 %の調質圧延を施した後、#15の電気Snメッキを
施してDI加工を行なった。その後フランジ加工を施し
て、フランジ割れ発生に至るまでの拡缶率を調べ、結晶
粒径と拡缶率との関係を第2図に示した。なおここでフ
ランジ加工における拡缶率は、加工前の初期缶外径をd
、フランジ割れ発生時の缶外径をdとし、 拡缶率={(d−d)/d}×100 とした。
Next, C0.041%, Si0.011%, Mn0.22%, Si0.00
A steel slab containing 8%, sol.Al0.025%, N0.0025%, the balance Fe and unavoidable impurities
℃ or 1250 ℃ for 30 minutes and hot rolling, 86
After the hot rolling was completed at 0 ° C and the plate thickness was 2.5 mm,
Winding was carried out at various temperatures from 0 to 700 ° C. After pickling, plate thickness 0.30
After cold rolling to mm, heating rate 20 ° C / sec, soaking temperature 660-720 ° C, soaking time 20sec, cooling rate 10 ° C / se
Continuous annealing under conditions of c or 25 ° C / sec, or box annealing under conditions of heating rate 30 ° C / hr, soaking temperature 630 ° C, soaking time 3hr, cooling rate 30 ° C / hr, Further reduction rate
After 1.5% temper rolling, # 15 electric Sn plating was applied and DI processing was performed. After that, flange processing was performed, and the can expanding ratio up to the occurrence of flange cracking was investigated, and the relationship between the crystal grain size and the can expanding ratio is shown in FIG. Here, the can expansion ratio in flange processing is the initial can outer diameter before processing d
o , the outer diameter of the can at the time of flange cracking was d, and the can expansion ratio = {(d-d o ) / d o } × 100.

第2図から、結晶粒径が小さいほど拡缶率が高く、フラ
ンジ加工性が優れていること、また高温スラブ加熱−低
温巻取−連続焼鈍低速冷却材(本発明鋼)は、箱焼鈍材
および低温スラブ加熱−高温巻取−連続焼鈍高速冷却材
(比較鋼)と比較して拡缶率が高く、特に同じ結晶粒径
で比較しても比較鋼より拡缶率が高く、フランジ加工性
が優れていることが明らかである。
From FIG. 2, it can be seen that the smaller the grain size, the higher the can expanding rate and the better the flange workability, and that the high temperature slab heating-low temperature winding-continuous annealing low-speed cooling material (steel of the present invention) is a box annealing material. And low temperature slab heating-high temperature coiling-continuous annealing High can expanding ratio compared to high speed cooling material (comparative steel), especially even if comparing with the same grain size, can expanding ratio is higher than comparative steel, and flange formability. Is clearly superior.

上記各実験から明らかなように、この発明の方法により
得られた鋼板は耳発生が小さくかつフランジ加工時の拡
缶率が良好(すなわちフランジ加工性が良好)となる。
その理由は未だ明らかではないが概ね次のように考えら
れる。
As is clear from the above-mentioned experiments, the steel sheet obtained by the method of the present invention has small ears and has a good can expanding ratio during flanging (that is, good flanging property).
The reason for this is not clear yet, but it can be considered as follows.

すなわちほとんど耳の発生がない理由としては、鋼中に
含まれるN量を0.004 %以下に規制し、さらに巻取温度
を580 ℃未満の低温としたことから、熱延コイル内での
AlNの析出が抑制され、その結果冷延鈍後に(111 )
集合組織が余り発達せず、その他の方位が発達して内面
異方性が小さくなったためと考えられる。
In other words, the reason why almost no ears are generated is that the amount of N contained in the steel is regulated to 0.004% or less and the coiling temperature is set to a low temperature of less than 580 ° C. Is suppressed and consequently after cold rolling (111)
It is considered that the texture did not develop much and other orientations developed and the inner surface anisotropy became smaller.

またフランジ加工時における拡缶率が高くフランジ加工
性が良好となった理由としては、高温スラブ加熱−低温
巻取により熱延母板の結晶粒が微細となったことと、N
量を減少させかつ連続焼鈍の冷却速度を10℃/sec 以下
とすることにより固溶C、Nが比較的少なくなってフラ
ンジ加工時における転位の自由度が高くなったことに起
因しているものと考えられる。
Further, the reason why the can expansion ratio during flanging is high and the flanging property is good is that the crystal grains of the hot rolled mother plate become fine due to high temperature slab heating-low temperature winding.
It is caused by the fact that the amount of solid solution C and N is relatively small and the degree of freedom of dislocation during flange processing is increased by decreasing the amount and setting the cooling rate of continuous annealing to 10 ° C / sec or less. it is conceivable that.

次にこの発明の方法における鋼素材の成分限定理由につ
いて説明する。
Next, the reasons for limiting the components of the steel material in the method of the present invention will be described.

C0.01〜0.10%: Cはその含有量が多いほど、素材の結晶粒を微細化し
て、フランジ加工における拡缶性が良好となる。0.01%
未満では結晶粒が大きく、拡缶性が劣化するから、下限
を0.01%とした。一方Cが0.10%を越えれば、粗大なセ
メンタイトが析出して拡缶性を低下させることから、上
限を0.10%とした。
C 0.01 to 0.10%: The higher the content of C, the finer the crystal grains of the material, and the better the can expanding property in flange processing. 0.01%
If it is less than 100%, the crystal grains are large and the can-spreading property deteriorates, so the lower limit was made 0.01%. On the other hand, if C exceeds 0.10%, coarse cementite precipitates and the can-spreading property deteriorates, so the upper limit was made 0.10%.

Mn 0.50%以下: Mnは熱間割れの原因となるSを固定するに有効な元素
であるが、0.5 %を越えて含有することは素材を硬化さ
せ、DI加工を困難にすることから、Mnの上限は0.50
%とした。
Mn 0.50% or less: Mn is an element effective in fixing S that causes hot cracking, but if it exceeds 0.5%, it hardens the material and makes DI processing difficult. The upper limit of is 0.50
%.

sol.Al 0.003〜0.050 %: Alは通常の製鋼過程において脱酸剤として有効な元素
であり、そのためにはsol.Alとして少なくとも0.003
%の含有が必要である。しかしながらsol.Alが0.05%
を越えるように多量にAlを添加することはコスト上昇
を招くことから、上限を0.05%とした。
sol.Al 0.003 to 0.050%: Al is an element effective as a deoxidizer in the ordinary steelmaking process, and for that purpose, at least 0.003 as sol.Al.
% Content is required. However, sol.Al is 0.05%
If a large amount of Al is added so as to exceed the range, the cost will increase, so the upper limit was made 0.05%.

N 0.0040%以下: NはCと同様に結晶粒を微細化させることからフランジ
加工時の拡缶率を高めるに有効ではあるが、この発明の
方法の場合、巻取温度を低目とするため熱延コイル状態
でのAlNとしての析出が少ないから、N量は可及的に
少なくすることが加工性を良好にするために重要であ
る。充分な加工性を得るめにはNを0.0040%以下に規制
する必要があり、より好ましくは0.0030%以下とする。
N 0.0040% or less: N is effective for increasing the can expanding rate during flange processing because it refines the crystal grains similarly to C, but in the case of the method of the present invention, the winding temperature is low. Since there is little precipitation as AlN in the hot rolled coil state, it is important to reduce the amount of N as much as possible in order to improve workability. In order to obtain sufficient workability, it is necessary to regulate N to 0.0040% or less, and more preferably 0.0030% or less.

その他鋼中には不可避的不純物としてSi、S、P等が
含有され、これらは極力低減することが望ましいが、こ
の発明では特に規定しない。
Other steel contains Si, S, P, etc. as unavoidable impurities, and it is desirable to reduce these as much as possible, but this is not particularly specified in the present invention.

次いでこの発明の方法における製造条件について説明す
る。
Next, manufacturing conditions in the method of the present invention will be described.

先ず前述のような成分の鋼のスラブを加熱して熱間圧延
を行なうが、この熱間圧延前のスラブ加熱温度は1200℃
以上の高温とする必要がある。その理由は、前述の実験
結果からも明らかなように、結晶粒を小さくしてフラン
ジ加工時の拡缶性を良好にするためには低温巻取とあわ
せて高温でのスラブ加熱が有利であり、特に1200℃以上
のスラブ加熱温度が結晶粒微細化に有効であるからであ
る。
First, the steel slab having the above-mentioned composition is heated and hot-rolled. The slab heating temperature before this hot-rolling is 1200 ° C.
It is necessary to raise the temperature above. The reason for this is that, as is clear from the above experimental results, it is advantageous to heat the slab at a high temperature together with the low-temperature winding in order to reduce the crystal grains and improve the can expanding property during flange processing. This is because a slab heating temperature of 1200 ° C. or higher is effective for grain refinement.

スラブ加熱後の熱間圧延は常法にしたがって行えば良い
が、熱間圧延後の巻取は580 未満の低温で行なう必要が
ある。このように巻取温度を580 ℃未満とした理由は、
前述の実験結果からも明らかなように、高温スラブ加熱
と相俟って結晶粒を微細化するに有効であってかつ粗大
なセメンタイトの析出を防止するに有効であり、したが
ってフランジ加工性の向上に有効であるからである。
Hot rolling after heating the slab may be performed according to a conventional method, but winding after hot rolling needs to be performed at a low temperature of less than 580. The reason for setting the coiling temperature below 580 ° C is
As is clear from the above experimental results, in combination with high temperature slab heating, it is effective in refining the crystal grains and is effective in preventing the precipitation of coarse cementite, thus improving the flange formability. It is effective for.

巻取後には通常は酸洗した後、冷間圧延を施すが、これ
らは常法に従って行なえば良い。冷間圧延後には連続焼
鈍を行なう。連続焼鈍は、その均熱温度を再結晶温度以
上Ac点以下とする。再結晶温度より低い温度で焼鈍
した場合、加工組織が残って延性や絞り性が劣り、その
ためDI製缶における絞り過程で鋼板が破断するおそれ
があることから、焼鈍均熱温度の下限を再結晶温度とし
た。またAc点を越える温度での加熱は固溶C量の増
加、結晶粒径の増大を招くことから、焼鈍均熱温度の上
限はAc点とした。さらに連続焼鈍における冷却に際
しては、500 〜400 ℃の間を10秒以上の時間をかけて冷
却する必要がある。その理由は、500 〜400 ℃の温度域
が炭化物を析出させ易い温度域であってその温度域を10
℃/sec以上で緩やかに冷却することが固溶C量の減少
に有効であるからである。
After winding, it is usually pickled and then cold-rolled, but these may be carried out by a conventional method. Continuous annealing is performed after cold rolling. In the continuous annealing, the soaking temperature is set to the recrystallization temperature or higher and the Ac 1 point or lower. When annealed at a temperature lower than the recrystallization temperature, the work structure remains and ductility and drawability are inferior, and therefore the steel sheet may be broken during the drawing process in the DI can, so the lower limit of the annealing soaking temperature is set to the lower limit. Temperature. Further, since heating at a temperature exceeding the Ac 1 point causes an increase in the amount of solid solution C and an increase in the crystal grain size, the upper limit of the annealing soaking temperature is set to the Ac 1 point. Furthermore, when cooling in continuous annealing, it is necessary to cool between 500 ° C and 400 ° C over 10 seconds. The reason is that the temperature range of 500 to 400 ° C is the temperature range in which carbides easily precipitate, and the temperature range is 10
This is because slow cooling at a temperature of not less than ° C / sec is effective in reducing the amount of dissolved C.

連続焼鈍後には調質圧延を行なってメッキ性の向上を図
るとともに硬さ調整を行なう。この調質圧延の圧下率は
特に限定しないが、通常は0.5 〜3.0 %とする。
After continuous annealing, temper rolling is performed to improve plating properties and adjust hardness. Although the rolling reduction of the temper rolling is not particularly limited, it is usually 0.5 to 3.0%.

調質圧延後、電気Snメッキを施す。従来一般の電気S
nメッキ工程ではSnメッキ後に表面光沢を得るための
リフロー処理を行なうことが多いが、この発明の方法の
場合は、リフロー処理は行なわないことが望ましい。す
なわち、リフロー処理を行なった場合、硬質なSn−F
e合金層が生成されて、しごき加工性が劣化し、また鋼
板表面の凹凸が減少して缶の内・外面の摩擦が大きくな
ることもしごき加工が困難となる一因となり、その結果
しごき加工時に鋼板が破断してしまう危険がある。また
リフロー処理を行なった場合その時点で母材鋼板の時効
硬化が生じて加工性が低下し、また焼付時における硬化
能が少なくなってしまう。これらの観点から、この発明
の目的とす焼付硬化能を有するDI缶用鋼板としてはリ
フロー処理を行なわないことが望ましい。なおリフロー
処理を行なわないことは、フランジ加工時において拡缶
率を高めるためにも有効である。
After temper rolling, electric Sn plating is applied. Conventional electric S
In the n-plating step, reflow treatment is often performed after Sn plating to obtain surface gloss, but in the case of the method of the present invention, it is desirable not to perform reflow treatment. That is, when the reflow process is performed, a hard Sn-F
An e-alloy layer is generated, ironing workability deteriorates, and the unevenness of the steel plate surface decreases, which increases friction between the inner and outer surfaces of the can, which is one of the factors that make ironing difficult, resulting in ironing. Sometimes there is a risk of the steel plate breaking. Further, when the reflow treatment is performed, age hardening of the base steel sheet occurs at that time, the workability deteriorates, and the hardening ability during baking decreases. From these viewpoints, it is desirable that the steel sheet for a DI can having the bake hardenability, which is the object of the present invention, is not subjected to reflow treatment. Not performing the reflow treatment is also effective in increasing the can expansion rate during flange processing.

以上のようにして得られたDI缶用のSnメッキ鋼板
は、既に述べたところから明らかなように、DI製缶時
における耳発生が少なく、かつフランジ加工時において
フランジ割れ発生に至るまでの拡缶率が大きいためフラ
ンジ割れ発生の危険が少ない。
As described above, the Sn-plated steel sheet for DI cans obtained as described above has less ears during DI can manufacturing and spreads until flange cracking during flanging. Since the can rate is large, the risk of flange cracking is low.

なおDI缶製造後には塗装・印刷後に焼付・乾燥を行な
うのが通常であるが、この発明の鋼板の場合は焼付硬化
性を有する。すなわち、この発明の鋼板は連続焼鈍法に
よって製造されるため、連続焼鈍後の500 〜400 ℃の温
度域を徐冷はしているものの、鋼中に固溶状態で残留す
るC、Nの量は箱焼鈍の場合と比較すれば格段に多く、
そのため焼付・乾燥中にC、Nが析出して時効硬化し、
缶の耐圧性が増加するのである。
After the DI can is manufactured, it is usually baked and dried after painting and printing, but the steel sheet of the present invention has bake hardenability. That is, since the steel sheet of the present invention is manufactured by the continuous annealing method, it is gradually cooled in the temperature range of 500 to 400 ° C. after continuous annealing, but the amount of C and N remaining in the steel in a solid solution state. Is much larger than the case of box annealing,
Therefore, during baking and drying, C and N precipitate and age-harden,
The pressure resistance of the can increases.

実施例 第1表に示す成分組成の鋼A、B、Cについて、その溶
鋼を連続鋳造により厚さ200mm のスラブとした後、第2
表中に示すように、1100〜1280℃の種々の温度でスラブ
を30分間加熱した後、熱間圧延を施し、780 〜850 ℃の
温度域で熱間圧延を終了して板厚2.5mm とした後、500
〜660 ℃の種々の温度で巻取った。酸洗後冷間圧延を施
して板厚0.32mmの冷延板とした。その後連続焼鈍法(均
熱:650 〜740 ℃×20〜30sec、冷却:5〜22℃/sec)
もしくは箱焼鈍(均熱:630 ℃×3hr、冷却:30℃/h
r)によって再結晶焼鈍を行ない、圧下率1.5 %の調質
圧延を施した。次いで#20の電気Snメッキも行なっ
た。なおこの電気Snメッキはいずれもリフロー処理は
施さなかった。
Example For steels A, B, and C having the composition shown in Table 1, the molten steel was made into a slab having a thickness of 200 mm by continuous casting, and then the second
As shown in the table, after heating the slab for 30 minutes at various temperatures of 1100 to 1280 ℃, hot rolling was performed, and hot rolling was completed in the temperature range of 780 to 850 ℃ to obtain a plate thickness of 2.5 mm. And then 500
Winding was done at various temperatures of ~ 660 ° C. After pickling, cold rolling was performed to obtain a cold rolled sheet having a sheet thickness of 0.32 mm. After that, continuous annealing method (soaking: 650-740 ° C x 20-30sec, cooling: 5-22 ° C / sec)
Or box annealing (soaking: 630 ℃ × 3hr, cooling: 30 ℃ / h
Recrystallization annealing was performed by r) and temper rolling with a rolling reduction of 1.5% was performed. Then, # 20 electric Sn plating was also performed. No reflow treatment was applied to the electric Sn plating.

Snメッキ後の各鋼板に対しDI加工を施して耳発生状
況(△H)、硬さ(H30T)およびフランジ加工時の
拡缶率を調べた。その結果を第2表中に示す。なおここ
で耳発生状況の△H値およびフランジ加工時の拡缶率の
定義は既に述べた通りである。
Subjected to DI processing to each steel sheet after Sn plating ear occurrence (△ H), it was examined the hardness (H R 30T) and拡缶rate during flanging. The results are shown in Table 2. Here, the definition of the ΔH value of the ear occurrence state and the can expansion rate during flange processing is as described above.

第2表から明らかなようにこの発明の成分範囲内の鋼
A、Bについて、この発明の製造条件に従って処理した
場合(No.1、2、5)には、いずれも耳発生が少なく
しかもフランジ加工時の拡缶率が高いことが判明した。
これに対しこの発明の成分範囲内の鋼A、Bであって
も、熱延板巻取温度が高い場合(No.3)には耳発生が
大きく、またスラブ加熱温度が低い場合や連続焼鈍の冷
却速度が大きい場合(No.4、No.6、No.7)にはいず
れもフランジ加工時の拡缶率が小さかった。また製造条
件はこの発明の範囲内であってもN含有量が高い鋼Cの
場合(No.8)には耳発生は少ないが拡缶率が低かっ
た。
As is clear from Table 2, when steels A and B within the composition range of the present invention were treated according to the manufacturing conditions of the present invention (Nos. 1, 2, and 5), there was little earing and the flange It was found that the can expansion rate during processing was high.
On the other hand, even with steels A and B within the composition range of the present invention, when the hot-rolled sheet winding temperature is high (No. 3), the selvages are large, and when the slab heating temperature is low or continuous annealing is performed. When the cooling rate was high (No.4, No.6, No.7), the can expanding ratio during flange processing was small in all cases. Further, even if the manufacturing conditions were within the range of the present invention, in the case of steel C having a high N content (No. 8), the ear occurrence was small but the can expanding rate was low.

発明の効果 以上の説明で明らかなように、この発明の方法によれ
ば、連続焼鈍によって耳発生が少なくかつフランジ加工
性に優れ、しかも焼付硬化性を有するDI缶用鋼板を得
ることができる。そしてまたこの発明の方法では連続焼
鈍法を適用するため、生産性が高いとともに均質な材料
の鋼板を得ることができる。さらにこの発明では熱延板
巻取温度が低いため、前述のようにフランジ加工性に優
れるばかりでなく、粗大なセメンタイトの凝集がないた
め耐食性が優れるとともに巻取中における酸化層の生成
が少なくなって酸洗能率が向上する効果も得られる。な
おまた、この発明の方法により得られる鋼板の焼付硬化
性を有するため、DI缶製造後の塗装・印刷の乾燥・焼
付けにおいて時効硬化して耐圧を高めることができる。
EFFECTS OF THE INVENTION As is clear from the above description, according to the method of the present invention, it is possible to obtain a steel sheet for DI can which has little seizure due to continuous annealing, is excellent in flange formability, and has bake hardenability. Further, since the continuous annealing method is applied in the method of the present invention, it is possible to obtain a steel sheet having a high productivity and a homogeneous material. Further, in the present invention, since the hot-rolled sheet winding temperature is low, not only is it excellent in flange formability as described above, but also because there is no agglomeration of coarse cementite, corrosion resistance is excellent and the formation of an oxide layer during winding is reduced. The effect of improving pickling efficiency is also obtained. Further, since the steel sheet obtained by the method of the present invention has the bake hardenability, it can be age hardened in the drying / baking of the coating / printing after the production of the DI can to increase the pressure resistance.

【図面の簡単な説明】[Brief description of drawings]

第1図は熱延板巻取温度とDI製缶時の耳高さ(△
H)、鋼板の結晶粒径の関係を示すグラフ、第2図は鋼
板の結晶粒径とフランジ加工時の拡缶率との関係を示す
グラフである。
Fig. 1 shows the winding temperature of hot-rolled sheet and the ear height during DI can making (△
H), a graph showing the relationship between the crystal grain size of the steel sheet, and FIG. 2 is a graph showing the relationship between the crystal grain size of the steel sheet and the can expansion ratio during flanging.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関田 貴史 千葉県千葉市川崎町1番地 川崎製鉄株式 会社千葉製鉄所内 (56)参考文献 特開 昭58−27930(JP,A) 東洋 鋼板著「ぶりきとティンフリー・ スチール」(1970.9.30 アグネ発行) 25頁、63頁 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Sekita 1 Kawasaki-cho, Chiba City, Chiba Prefecture Chiba Works, Kawasaki Steel Co., Ltd. (56) Reference JP 58-27930 (JP, A) Toyo Steel sheet "Kito and Tin Free Steel" (published by Agnes, September 30, 1970), pages 25 and 63

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%にしてC0.01〜0.10%、Mn0.50%
以下、sol.Al0.003 〜0.050 %、N0.0040%以下を含
有し、残部がFeおよび不可避的不純物よりなる鋼を素
材とし、その鋼素材を1200℃以上の温度に加熱して熱間
圧延し、かつその熱間圧延を終了した熱延板を580 ℃未
満の温度域で巻取り、さらに冷間圧延を行なった後に連
続焼鈍を施すに際して、再結晶温度以上Ac点以下の
温度に均熱し、その後の冷却過程において500 〜400 ℃
の温度域を10秒以上で冷却し、連続焼鈍終了後、調質圧
延を行ない、引続いて電気スズメッキを施すことを特徴
とするフランジ加工性の良好な焼付硬化性を有するDI
缶用鋼板の製造方法。
1. C0.01-0.10% and Mn0.50% in weight%
Below, sol.Al 0.003-0.050%, N 0.0040% or less is contained, and the balance is made of steel consisting of Fe and unavoidable impurities. The steel material is heated to a temperature of 1200 ° C or higher and hot rolled. In addition, when the hot-rolled sheet that has undergone the hot rolling is wound in a temperature range of less than 580 ° C. and further cold-rolled and then subjected to continuous annealing, the temperature is recrystallized to a temperature of Ac 1 point or less. Heated to 500-400 ° C in the subsequent cooling process
DI having good bake hardenability with good flange formability, characterized by cooling in the temperature range of 10 seconds or more, performing temper rolling after completion of continuous annealing, and subsequently performing electrotin plating.
Manufacturing method of steel plate for can.
JP60207130A 1985-09-19 1985-09-19 Method for producing steel plate for DI can having good bakeability and bake hardenability Expired - Fee Related JPH0629465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60207130A JPH0629465B2 (en) 1985-09-19 1985-09-19 Method for producing steel plate for DI can having good bakeability and bake hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60207130A JPH0629465B2 (en) 1985-09-19 1985-09-19 Method for producing steel plate for DI can having good bakeability and bake hardenability

Publications (2)

Publication Number Publication Date
JPS6267119A JPS6267119A (en) 1987-03-26
JPH0629465B2 true JPH0629465B2 (en) 1994-04-20

Family

ID=16534688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60207130A Expired - Fee Related JPH0629465B2 (en) 1985-09-19 1985-09-19 Method for producing steel plate for DI can having good bakeability and bake hardenability

Country Status (1)

Country Link
JP (1) JPH0629465B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134645A (en) * 1986-11-26 1988-06-07 Nippon Steel Corp Steel sheet for di can excellent in stretch-flange formability
JPH02263949A (en) * 1989-04-03 1990-10-26 Toyo Kohan Co Ltd Steel sheet for di can
JPH05171349A (en) * 1991-12-20 1993-07-09 Nippon Steel Corp Cold rolled steel sheet excellent in press formability, baking hardenability, and surface characteristic
JP2570943B2 (en) * 1992-02-27 1997-01-16 東洋製罐株式会社 Shallow drawn and deep drawn compacts

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827930A (en) * 1981-08-13 1983-02-18 Kawasaki Steel Corp Production of black plate for tin plate and tin-free steel plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
東洋鋼板著「ぶりきとティンフリー・スチール」(1970.9.30アグネ発行)25頁、63頁

Also Published As

Publication number Publication date
JPS6267119A (en) 1987-03-26

Similar Documents

Publication Publication Date Title
JP5162924B2 (en) Steel plate for can and manufacturing method thereof
JPS6330368B2 (en)
JP3852210B2 (en) Steel plate for modified 3-piece can and manufacturing method thereof
JPH0629465B2 (en) Method for producing steel plate for DI can having good bakeability and bake hardenability
JP2001089829A (en) Steel sheet for can and method for manufacting the same
JP4045602B2 (en) Manufacturing method of steel sheet for cans with excellent drawability
JP3707260B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JP3682683B2 (en) Method for producing steel plate for two-piece can with excellent in-plane anisotropic uniformity in coil
JP3471483B2 (en) Steel plate for DI can excellent in pressure resistance and neck workability and method for producing the same
US4397699A (en) Process for producing deep-drawing cold rolled steel strip by continuous annealing
JPH0152452B2 (en)
JP3257390B2 (en) Method for producing two-piece steel sheet with small in-plane anisotropy
JPH0360910B2 (en)
JPS62161919A (en) Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy
JPS6114216B2 (en)
JP2816358B2 (en) Manufacturing method of steel sheet for DI can
JP2733423B2 (en) Plated sheet excellent in secondary workability and weldability and method for producing the same
JP3164853B2 (en) Manufacturing method of thin steel plate for food cans
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same
JPS638165B2 (en)
JP3675190B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JPS6263619A (en) Manufacture of soft nonaging steel sheet
JP3028969B2 (en) Manufacturing method of raw sheet for surface treated steel sheet
JPS6354048B2 (en)
JPH03150317A (en) Manufacture of hot dip galvanized cold rolled steel sheet for deep drawing having excellent brittlement resistance in secondary working

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees