JPH0629444A - Method of brazing - Google Patents

Method of brazing

Info

Publication number
JPH0629444A
JPH0629444A JP18221792A JP18221792A JPH0629444A JP H0629444 A JPH0629444 A JP H0629444A JP 18221792 A JP18221792 A JP 18221792A JP 18221792 A JP18221792 A JP 18221792A JP H0629444 A JPH0629444 A JP H0629444A
Authority
JP
Japan
Prior art keywords
brazing
silver
alloy
base
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18221792A
Other languages
Japanese (ja)
Inventor
Kenji Matsuura
健志 松浦
Yasushi Iyogi
靖 五代儀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18221792A priority Critical patent/JPH0629444A/en
Publication of JPH0629444A publication Critical patent/JPH0629444A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a reliable method of brazing between Al-N alloy and Ni capable of preventing cracks. CONSTITUTION:Lead pins 6 of Ni alloy are bonded with brazing silver 5a to the underside of an Al-N alloy plate 3 of a semiconductor device. The wetting angle theta of brazing silver is set at 11 deg.-38 deg., while the amount of brazing silver is controlled so that it may flow beyond the normals extending from the ends of lead pin 6 to the base plate 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒化アルミニウム(以
下AlNという)とニッケル合金(以下Ni合金とい
う)とのろう接方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a brazing method of aluminum nitride (hereinafter referred to as AlN) and a nickel alloy (hereinafter referred to as Ni alloy).

【0002】[0002]

【従来の技術】半導体素子をパッケージした半導体装置
等に用いられる基台(基板)としては、例えば、Al
N、Al2 3 、ガラスエポキシ樹脂等があり、用途に
応じて使い分けられている。このうち特にAlNは、電
気特性、熱伝導性、耐環境性が優れており、高性能、高
機能が求められる半導体装置等の基台に多く用いられて
いる。
2. Description of the Related Art A base (substrate) used for a semiconductor device or the like in which a semiconductor element is packaged is, for example, Al.
There are N, Al 2 O 3 , glass epoxy resin and the like, which are used properly according to the application. Of these, particularly AlN has excellent electrical characteristics, thermal conductivity, and environmental resistance, and is often used as a base for semiconductor devices and the like that are required to have high performance and high functionality.

【0003】そして、半導体装置に用いられているAl
Nから成る基台の表面配線または内部配線と外部素子と
の間に電気的な接続を行う場合、この基台にスパッタリ
ング等による金属膜を形成し、銀ろうを介してNi合金
のリードピンをろう接する方法が一般に行われている。
Al used in semiconductor devices
When electrical connection is made between the surface wiring or internal wiring of the base made of N and an external element, a metal film is formed on this base by sputtering or the like, and a Ni alloy lead pin is soldered through silver solder. The contact method is generally used.

【0004】しかしながら、AlNとNi合金とは、本
質的に両者の化学結合様式が異なり、化学的、物理的な
特性が著しく異なっているために、両者を不都合無く良
好に接合することは容易ではない。特に、AlNとNi
合金は、熱膨脹率が大きく異なるために、ろう接時の温
度変化にともなって熱膨脹差に依存した残留熱応力がA
lNとNi合金のろう接部に加わり、AlNにクラック
が生じる恐れがある。
However, AlN and Ni alloys are essentially different in their chemical bonding modes and significantly different in chemical and physical properties, so that it is not easy to satisfactorily bond them to each other. Absent. In particular, AlN and Ni
Since the thermal expansion coefficients of the alloys differ greatly, the residual thermal stress depending on the thermal expansion difference due to the temperature change during brazing is A
There is a possibility that cracks may occur in AlN by being added to the brazing portion of 1N and Ni alloy.

【0005】このため、AlNから成る基台に銀ろうを
介してNi合金から成るリードピンがろう接されている
半導体装置においては、AlNの基台とNi合金のリー
ドピン間のろう接部近傍にクラックが発生して、Ni合
金のリードピンが脱落するという問題があった。
Therefore, in a semiconductor device in which a lead pin made of a Ni alloy is brazed to a base made of AlN via a silver solder, cracks occur near the brazed portion between the base of AlN and the lead pin made of Ni alloy. Occurs, and the Ni alloy lead pin comes off.

【0006】尚、従来のAlNから成る基台に銀ろうを
介してNi合金から成るリードピンがろう接されている
半導体装置においては、基台と銀ろうとのろう接部端の
角度は55度程度である。
In a conventional semiconductor device in which a lead pin made of a Ni alloy is brazed to a base made of AlN via silver brazing, the angle between the brazing end of the base and the silver brazing is about 55 degrees. Is.

【0007】[0007]

【発明が解決しようとする課題】前記したように、Al
NとNi合金とを銀ろうを介してろう接する場合、両者
の熱膨張率が大きく異なるので、ろう接時の温度変化に
ともなってろう接部近傍に残留熱応力が生じてAlNに
クラックが発生するために、ろう接の信頼性に問題があ
った。
As mentioned above, Al
When N and Ni alloys are brazed via silver brazing, the coefficients of thermal expansion of the two are very different, so residual thermal stress is generated near the brazing part due to temperature change during brazing, and cracks occur in AlN. Therefore, there was a problem with the reliability of brazing.

【0008】本発明は上記した課題を解決する目的でな
され、AlNとNi合金とを銀ろうを介してろう接する
時に、AlNにクラックが発生するのを防止して信頼性
の高いろう接を行うことができるろう接方法を提供しよ
うとするものである。
The present invention has been made for the purpose of solving the above problems, and when AlN and a Ni alloy are brazed together through a silver braze, the AlN is prevented from cracking and a highly reliable brazing is performed. It is intended to provide a brazing method that can be used.

【0009】[0009]

【課題を解決するための手段】前記した課題を解決する
ために本発明は、AlNとNi合金とを銀ろうを介して
ろう接する時に、前記AlNと銀ろうとのろう接部端の
角度が、ほぼ11度乃至38度の範囲になるようにする
と共に、前記銀ろうが前記ニッケル合金の端面から前記
窒化アルミニウム側に引いた垂線上からほぼ完全にはみ
出すように前記銀ろうの量を調整してろう接を行うこと
を特徴としている。
In order to solve the above-mentioned problems, the present invention is such that, when brazing AlN and Ni alloy through silver brazing, the angle of the brazing end of AlN and silver brazing is The silver brazing amount is adjusted to be in the range of about 11 degrees to 38 degrees, and the amount of the silver brazing material is adjusted so that the silver brazing is almost completely protruded from the vertical line drawn from the end surface of the nickel alloy to the aluminum nitride side. It is characterized by brazing.

【0010】[0010]

【作用】AlNとNi合金とを銀ろうを介してろう接す
る場合、ろう接時の温度変化によってAlNとNi合金
の熱膨張率の違いより残留熱応力が生じるが、本発明者
等は、AlNとNi合金のろう接における残留熱応力
と、AlNと銀ろうとのろう接部端の角度(以下、銀ろ
う濡れ角という)θとの関係や銀ろう量と銀ろう濡れ角
θとの関係等に付いて鋭意研究を重ねた結果、図4乃至
図12に示すような関係があることを見いだした。
When AlN and the Ni alloy are brazed with each other through silver brazing, residual thermal stress is generated due to the difference in the thermal expansion coefficient between the AlN and the Ni alloy due to the temperature change at the time of brazing. Between the residual thermal stress in the brazing of Al and Ni alloy and the angle of the brazing end of AlN and silver brazing (hereinafter referred to as the silver brazing angle) θ, the relationship between the amount of silver brazing and the silver brazing angle θ, etc. As a result of repeated diligent research on the above, it was found that there is a relationship as shown in FIGS.

【0011】図4は、例えばAlN製の基台10とNi
合金製のピン11を銀ろう12でろう接した場合の残留
熱応力の分布を示した図であり、銀ろう12のすそ部近
傍のAlN製の基台10表面に最大応力Fが発生し、A
lN製の基台10表面の最大応力Fと銀ろう濡れ角θと
の間には、図5の実線Aに示すような関係がある。ま
た、ろう接したNi合金製のピン11に引張荷重を加え
た場合の銀ろう漏れ角θとピン11の最大応力Gとの間
には、図5の破線Bに示すような関係がある。
FIG. 4 shows a base 10 made of AlN and Ni, for example.
FIG. 3 is a diagram showing a distribution of residual thermal stress in the case where an alloy pin 11 is brazed with a silver solder 12, and a maximum stress F is generated on the surface of the AlN base 10 near the skirt of the silver solder 12. A
There is a relationship between the maximum stress F on the surface of the base 10 made of 1N and the wetting angle θ of silver brazing as shown by the solid line A in FIG. Further, there is a relationship as shown by a broken line B in FIG. 5 between the silver brazing leak angle θ and the maximum stress G of the pin 11 when a tensile load is applied to the brazed Ni alloy pin 11.

【0012】この図から明らかなように、銀ろう漏れ角
θが小さくなるにつれてAIN製の基台10表面の最大
応力Fが小さくなり、また、Ni合金製のピン11に引
張荷重を加えた場合のピン11の最大応力Gは、銀ろう
漏れ角θが小さくなるにつれて前記AIN製の基台10
表面の最大応力Fと同じように小さくなるが、銀ろう漏
れ角θが11度程度になると逆に大きくなる。
As is clear from this figure, the maximum stress F on the surface of the base 10 made of AIN becomes smaller as the leakage angle θ of the silver brazing becomes smaller, and when the tensile load is applied to the pin 11 made of Ni alloy. The maximum stress G of the pin 11 is as the silver brazing angle θ becomes smaller.
Although it becomes small like the maximum stress F on the surface, it becomes larger when the silver brazing leak angle θ becomes about 11 degrees.

【0013】また、図6乃至図9に示すように、AIN
製の基台10にNi合金製のピン11を銀ろう12を介
してろう接する時に、銀ろう漏れ角θは銀ろう12の量
によって変化し、銀ろう12の量が少なくなるに従って
銀ろう漏れ角θが小さくなり、ある量より少なくなると
逆に大きくなる。即ち、銀ろう量と銀ろう漏れ角θとの
関係は図10に示すようになる。この図から明らかなよ
うに、銀ろう漏れ角θの最小値はほぼ11度であった。
Further, as shown in FIG. 6 to FIG.
When the Ni alloy pin 11 is brazed to the base 10 made of silver through the silver solder 12, the leak angle θ of the silver solder changes depending on the amount of the silver solder 12, and as the amount of the silver solder 12 decreases, the silver solder leaks. If the angle θ becomes smaller and becomes smaller than a certain amount, it becomes large conversely. That is, the relationship between the silver brazing amount and the silver brazing leak angle θ is as shown in FIG. As is clear from this figure, the minimum value of the silver braze leak angle θ was about 11 degrees.

【0014】図11の実線Cは、上記したAIN製の基
台10にNi合金製のピン11を銀ろう12を介してろ
う接する時の銀ろう量とAIN製の基台10の表面の最
大応力Fとの関係、破線Dは、ろう接したNi合金製の
ピン11に引張荷重を加えた時の銀ろう量とピン11の
最大応力Gとの関係を示している。
The solid line C in FIG. 11 indicates the amount of silver braze when the Ni alloy pin 11 is brazed to the above-mentioned AIN base 10 via the silver brazing filler 12 and the maximum of the surface of the AIN base 10. The relationship with the stress F, the broken line D shows the relationship between the amount of silver brazing and the maximum stress G of the pin 11 when a tensile load is applied to the brazed Ni alloy pin 11.

【0015】図10,図11から明らかなように、銀ろ
う量を少なくする時に、銀ろう漏れ角θが小さくなる範
囲ではろう接時のAIN製の基台10表面の最大応力F
とNi合金製のピン11の引張時の最大応力Gとの差は
ほとんどない。しかしながら、銀ろう量を少なくする時
に、銀ろう漏れ角θが大きくなる範囲では、Ni合金製
のピン11の引張時の最大応力Gの方がAIN製の基台
10表面の最大応力Fよりかなり大きくなる。
As is apparent from FIGS. 10 and 11, when the amount of silver brazing is reduced, the maximum stress F on the surface of the base 10 made of AIN at the time of brazing when the brazing angle θ is small.
And the maximum stress G at the time of pulling the pin 11 made of Ni alloy is almost the same. However, when the amount of silver brazing is reduced when the silver brazing leak angle θ is large, the maximum stress G when pulling the pin 11 made of Ni alloy is much larger than the maximum stress F on the surface of the base 10 made of AIN. growing.

【0016】即ち、図8,図9に示したように、Ni合
金製のピン11の引張時の最大応力Gは、銀ろう12が
Ni合金製のピン11の端面からAIN製の基台10側
に引いた垂線L上からほぼ完全にはみ出している場合
(図8)には小さく、銀ろう12が前記垂線Lより内側
に食い込んでいる場合(図9)には大きくなる。
That is, as shown in FIGS. 8 and 9, the maximum stress G at the time of pulling the pin 11 made of Ni alloy is such that the silver solder 12 is from the end face of the pin 11 made of Ni alloy to the base 10 made of AIN. It is small when it sticks out almost completely from the perpendicular L drawn to the side (FIG. 8), and it becomes large when the silver solder 12 bites inside the perpendicular L (FIG. 9).

【0017】また、図12は、AIN製の基台10に銀
ろう12でろう接したNi合金製のピン11の引張破断
試験を行った場合の破断発生率と銀ろう漏れ角θとの関
係を示している。
FIG. 12 shows the relationship between the occurrence rate of fracture and the leakage angle θ of the silver solder when a tensile fracture test is performed on the Ni alloy pin 11 brazed to the AIN base 10 with the silver solder 12. Is shown.

【0018】図5,図12から明らかなように、銀ろう
漏れ角θがほぼ38度以下で、かつ前記したように、銀
ろう12がNi合金製のピン11の端面からAIN製の
基台10に引いた垂線上から完全にはみ出すようにする
と、AIN製の基台10の残留熱応力がこの基台10の
最大応力F(50MPa)以下になり、ろう接部での破
断発生率がほぼ零になる。
As is apparent from FIGS. 5 and 12, the silver braze leak angle θ is approximately 38 degrees or less, and as described above, the silver braze 12 is from the end surface of the pin 11 made of Ni alloy to the base made of AIN. If it is made to protrude completely from the perpendicular line drawn to 10, the residual thermal stress of the AIN base 10 becomes less than the maximum stress F (50 MPa) of this base 10, and the fracture occurrence rate at the brazing portion is almost the same. It becomes zero.

【0019】本発明は、上記した実験結果によって見い
だされた銀ろう量と銀ろう濡れ角の関係に基づいて銀ろ
う濡れ角を設定すると共に、銀ろうがNi合金の端面か
ら窒化アルミニウム側に引いた垂線上からほぼ完全には
み出すように銀ろうの量を調整してろう接を行なうこと
により、AlNのクラックを防止して信頼性の高いろう
接を行うことができる。
The present invention sets the silver brazing angle based on the relationship between the amount of silver brazing and the silver brazing angle found by the above experimental results, and the silver brazing is drawn from the end surface of the Ni alloy to the aluminum nitride side. By adjusting the amount of silver brazing so that the brazing can be almost completely protruded from the vertical line, it is possible to prevent cracking of AlN and perform highly reliable brazing.

【0020】[0020]

【実施例】以下、本発明を図示の一実施例に基づいて詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to an embodiment shown in the drawings.

【0021】図1,図2は、それぞれ図3に示した半導
体装置のろう接部分を示す拡大断面図である。図3に示
す半導体装置1は、半導体チップ2を実装したAlNか
ら成る基台(基板)3の上部には、半導体チップ2を被
覆するようにしてNi合金から成るキャップ4が接合さ
れ、基台3の下部には、Ni合金から成るリードピン6
が銀ろう5aを介してろう接されている。キャップ4の
下面には、図2に示すように、レーザ接合やAu−Sn
接合等によってNi合金製のシールリング7が接合さ
れ、シールリング7の下面は銀ろう5bを介して基台3
にろう接されている。
1 and 2 are enlarged cross-sectional views showing a brazing portion of the semiconductor device shown in FIG. 3, respectively. In a semiconductor device 1 shown in FIG. 3, a cap 4 made of a Ni alloy is bonded to an upper portion of a base (substrate) 3 made of AlN on which a semiconductor chip 2 is mounted so as to cover the semiconductor chip 2, and a base 4 is formed. At the bottom of 3, the lead pin 6 made of Ni alloy
Are brazed via the silver brazing 5a. As shown in FIG. 2, the lower surface of the cap 4 is formed by laser bonding or Au-Sn.
The Ni alloy seal ring 7 is joined by joining or the like, and the lower surface of the seal ring 7 is connected to the base 3 via the silver solder 5b.
It is touched by a sword.

【0022】AlNから成る基台3とリードピン6との
ろう接は、リードピン6の基台3側のろう接面にボール
状に形成した銀ろう5を乗せ、このリードピン6を、金
属膜をコーティングした基台3の所定位置にセットし、
銀ろう5を所定温度に加熱することにより行われる。ま
た、基台3とキャップ4に接合したシールリング7のろ
う接も同様にして行われる。
To braze the base 3 made of AlN and the lead pin 6, a ball-shaped silver solder 5 is placed on the brazing surface of the lead pin 6 on the base 3 side, and the lead pin 6 is coated with a metal film. Set it to the specified position on the base 3
It is performed by heating the silver solder 5 to a predetermined temperature. In addition, brazing of the seal ring 7 joined to the base 3 and the cap 4 is performed in the same manner.

【0023】この場合、基台3とキャップ4のシールリ
ング7、および基台3とリードピン6のろう接部分の銀
ろう濡れ角θは、前記したようにほぼ11〜38度程度
の範囲になるように銀ろう5の量(この場合、銀ろう量
は図10に示すように、約0.07〜0.16mgであ
る。)を調整してろう接される。
In this case, the silver brazing angle θ of the base 3 and the seal ring 7 of the cap 4 and the brazing portion of the base 3 and the lead pin 6 is in the range of about 11 to 38 degrees as described above. Thus, the amount of silver solder 5 (in this case, the amount of silver solder is about 0.07 to 0.16 mg, as shown in FIG. 10) is adjusted and brazing is performed.

【0024】尚、銀ろう濡れ角θは、図5に示したよう
に小さくなる程最大応力が小さくなるので、11〜38
度の範囲で低角度(例えば、製造上の精度誤差を考慮し
て12〜25度程度)の方がよい。また、基台3とキャ
ップ4、および基台3とリードピン6間のろう接部分の
厚さは数ミクロンである。
As the silver brazing wetting angle θ becomes smaller as shown in FIG. 5, the maximum stress becomes smaller.
It is better to have a low angle (for example, about 12 to 25 degrees in consideration of manufacturing accuracy error) in the range of degrees. Further, the thickness of the brazing portion between the base 3 and the cap 4 and between the base 3 and the lead pin 6 is several microns.

【0025】また、前記したように、AIN製の基台3
にろう接されるNi合金製のリードピン6に作用する応
力を低減することができるので、半導体装置でリードピ
ンを高密度実装する場合に、リードピンの間隔を狭くす
ることによりリードピンの接合面積が小さくなっても、
リードピンの接合強度に問題が生じることはない。
Further, as described above, the base 3 made of AIN is used.
Since it is possible to reduce the stress acting on the Ni alloy lead pins 6 to be brazed to the lead pins, when the lead pins are mounted at high density in a semiconductor device, the lead pin joining area is reduced by narrowing the lead pin intervals. Even
No problem occurs in the bonding strength of the lead pin.

【0026】また、前記実施例では、半導体装置1の基
台3とキャップ4、および基台3とリードピン5のろう
接について述べたが、これ以外にもAlNとNi合金と
がろう接される全ての装置等におけるろう接に適用可能
である。
Further, in the above embodiment, the brazing of the base 3 and the cap 4 and the base 3 and the lead pin 5 of the semiconductor device 1 was described, but other than this, AlN and the Ni alloy are brazed. It is applicable to brazing in all devices.

【0027】尚、前記実施例ではAlNとNi合金のろ
う接について述べたが、これ以外にも例えばAl
2 3 、ガラスエポキシ樹脂、銅合金、Si等の組み合
わせにおいても、前記同様最大応力とろう材濡れ角の関
係、およびろう材濡れ角とろう接部破断発生率の関係を
調べることにより、信頼性の高いろう接を行うことがで
きる。
In the above embodiment, the brazing of AlN and Ni alloy was described.
Even in the combination of 2 O 3 , glass epoxy resin, copper alloy, Si, etc. It is possible to perform brazing with high quality.

【0028】[0028]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように本発明によれば、AlNとNi合金とのろう接
部の残留熱応力を低減してAlNのクラック発生を防止
することができるので、信頼性の高いろう接を行うこと
ができる。
As described above in detail with reference to the embodiments, according to the present invention, the residual thermal stress at the brazing portion between AlN and Ni alloy is reduced to prevent the cracking of AlN. As a result, reliable brazing can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るろう接方法を、半導体装置のAl
N製の基台とNi合金製のリードピンのろう接に適用し
た実施例を示す拡大断面図である。
FIG. 1 is a schematic diagram showing a method of soldering a semiconductor device according to the present invention.
It is an expanded sectional view showing an example applied to brazing of a base made of N and a lead pin made of Ni alloy.

【図2】本発明に係るろう接方法を、半導体装置のAl
N製の基台とNi合金製のキャップのろう接に適用した
実施例を示す拡大断面図である。
FIG. 2 is a schematic view showing a method for soldering a semiconductor device according to the present invention.
It is an expanded sectional view showing an example applied to brazing of a base made of N and a cap made of Ni alloy.

【図3】半導体装置を示す断面図である。FIG. 3 is a cross-sectional view showing a semiconductor device.

【図4】AlNとNi合金のろう接部のAlN表面の残
留熱応力の分布を示す図である。
FIG. 4 is a diagram showing a distribution of residual thermal stress on an AlN surface of a brazed portion of AlN and a Ni alloy.

【図5】AlNとNi合金のろう接部の銀ろう漏れ角と
AIN表面の最大応力との関係、およびNi合金に引張
荷重を加えた場合の銀ろう漏れ角とNi合金の最大応力
との関係を示す図である。
FIG. 5 shows the relationship between the silver braze leak angle at the brazing part of AlN and the Ni alloy and the maximum stress of the AIN surface, and the silver braze leak angle and the maximum stress of the Ni alloy when a tensile load is applied to the Ni alloy. It is a figure which shows a relationship.

【図6】AlNとNi合金のろう接部の銀ろうの濡れ角
の一例を示す説明図である。
FIG. 6 is an explanatory diagram showing an example of a wetting angle of silver brazing material in a brazing portion of AlN and Ni alloy.

【図7】AlNとNi合金のろう接部の銀ろうの濡れ角
の一例を示す説明図である。
FIG. 7 is an explanatory diagram showing an example of a wetting angle of silver brazing material in a brazing portion of AlN and Ni alloy.

【図8】AlNとNi合金のろう接部の銀ろうの濡れ角
の一例を示す説明図である。
FIG. 8 is an explanatory diagram showing an example of a wetting angle of silver solder in a brazing portion of AlN and Ni alloy.

【図9】AlNとNi合金のろう接部の銀ろうの濡れ角
の一例を示す説明図である。
FIG. 9 is an explanatory diagram showing an example of a wetting angle of silver brazing material in a brazing portion of AlN and Ni alloy.

【図10】AlNとNi合金のろう接部の銀ろう量と銀
ろう濡れ角との関係を示す図である。
FIG. 10 is a diagram showing a relationship between a silver brazing amount and a brazing angle of silver brazing in a brazing portion of AlN and Ni alloy.

【図11】AlNとNi合金のろう接部の銀ろう量とA
IN表面の最大応力との関係、およびNi合金に引張荷
重を加えた場合の銀ろう量とNi合金の最大応力との関
係を示す図である。
FIG. 11: Silver brazing amount and A at brazing part of AlN and Ni alloy
It is a figure which shows the relationship with the maximum stress of the IN surface, and the relationship between the amount of silver brazing when a tensile load is applied to the Ni alloy, and the maximum stress of the Ni alloy.

【図12】AlNとNi合金のろう接部の破断発生率と
銀ろう濡れ角の関係を示す図である。
FIG. 12 is a diagram showing a relationship between a fracture occurrence rate at a brazing portion of AlN and a Ni alloy and a silver brazing angle.

【符号の説明】[Explanation of symbols]

1 半導体装置 2 半導体チップ 3 基台 4 キャップ 5 銀ろう 6 リードピン 1 semiconductor device 2 semiconductor chip 3 base 4 cap 5 silver solder 6 lead pin

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウムとニッケル合金とを銀
ろうを介してろう接する時に、前記窒化アルミニウムと
銀ろうとのろう接部端の角度が、ほぼ11度乃至38度
の範囲になるようにすると共に、前記銀ろうが前記ニッ
ケル合金の端面から前記窒化アルミニウム側に引いた垂
線上からほぼ完全にはみ出すように前記銀ろうの量を調
整してろう接を行うことを特徴とするろう接方法。
1. When brazing aluminum nitride and a nickel alloy through a silver braze, the angle of the brazing end of the aluminum nitride and the silver braze is in the range of about 11 degrees to 38 degrees. A brazing method in which the amount of the silver brazing is adjusted so that the silver brazing sticks out almost completely from a vertical line drawn from the end surface of the nickel alloy to the aluminum nitride side, and brazing is performed.
JP18221792A 1992-07-09 1992-07-09 Method of brazing Pending JPH0629444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18221792A JPH0629444A (en) 1992-07-09 1992-07-09 Method of brazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18221792A JPH0629444A (en) 1992-07-09 1992-07-09 Method of brazing

Publications (1)

Publication Number Publication Date
JPH0629444A true JPH0629444A (en) 1994-02-04

Family

ID=16114398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18221792A Pending JPH0629444A (en) 1992-07-09 1992-07-09 Method of brazing

Country Status (1)

Country Link
JP (1) JPH0629444A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195625A1 (en) * 2016-05-11 2017-11-16 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195625A1 (en) * 2016-05-11 2017-11-16 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5081067A (en) Ceramic package type semiconductor device and method of assembling the same
US5616520A (en) Semiconductor integrated circuit device and fabrication method thereof
US7518234B1 (en) MEMS direct chip attach packaging methodologies and apparatuses for harsh environments
US5481136A (en) Semiconductor element-mounting composite heat-sink base
JP3847166B2 (en) Devices for packaging electronic components using injection molding technology
JP2930186B2 (en) Semiconductor device mounting method and semiconductor device mounted body
JP3068224B2 (en) Semiconductor device
US6512674B1 (en) Package for semiconductor device having radiating substrate and radiator fin
JPH0629444A (en) Method of brazing
WO1999050901A1 (en) Soldering material for die bonding
JPH09298252A (en) Semiconductor package and semiconductor device using the semiconductor package
US4974052A (en) Plastic packaged semiconductor device
JPH06204352A (en) Semiconductor ceramic package board and lid
JPH03252155A (en) Semiconductor package
JPH0677631A (en) Mounting method of chip component onto aluminum board
JP3449268B2 (en) Semiconductor pressure sensor
US20030214033A1 (en) Semiconductor device having pad electrode connected to wire
JP2970085B2 (en) Semiconductor device
JPH05182997A (en) Formation method of block composed of glass or semiconductor and bonding method of block to metallic base
JP2705281B2 (en) Semiconductor device mounting structure
JP2002334943A (en) Electronic component
JP2619155B2 (en) Hybrid integrated circuit device
JP2000162076A (en) Semiconductor pressure sensor
JPH0745665A (en) Semiconductor device
JPH03109754A (en) Semiconductor package