JPH0629434A - Heat dissipation device - Google Patents

Heat dissipation device

Info

Publication number
JPH0629434A
JPH0629434A JP4226355A JP22635592A JPH0629434A JP H0629434 A JPH0629434 A JP H0629434A JP 4226355 A JP4226355 A JP 4226355A JP 22635592 A JP22635592 A JP 22635592A JP H0629434 A JPH0629434 A JP H0629434A
Authority
JP
Japan
Prior art keywords
heat
heat dissipation
dissipation device
absorbing member
thermoelectric semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4226355A
Other languages
Japanese (ja)
Inventor
Toshio Matsumoto
壽夫 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUMOTO KOKAN KK
Original Assignee
MATSUMOTO KOKAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSUMOTO KOKAN KK filed Critical MATSUMOTO KOKAN KK
Priority to JP4226355A priority Critical patent/JPH0629434A/en
Publication of JPH0629434A publication Critical patent/JPH0629434A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Abstract

PURPOSE:To provide a thermoelectric cooling device which can compete various compression-type cooling devices by increasing remarkably the efficiency of a heat dissipation device. CONSTITUTION:A heat dissipation device is divided into a heat absorption member 7 and a heat dissipation member 10, and heat medium liquid is circulated in the heat dissipation device. By contacting directly a substrate 18 of a thermoelectric semiconductor with the heat medium liquid, heat dissipation without heat conductive loss is made. As a result, heat dissipation effects increase due to synergetic effects of the heat absorption member 7 and the heat dissipation member 10, and cooling efficiency increases remarkably.

Description

【発明の詳細な説明】 [0001] 【産業上の利用分野】この発明はペルチェ効果を利用し
た熱電半導体に組み合わせて使用する放熱装置に関し、
更に詳しくは吸熱金属ブロックと、金属板にパイプを通
した公知の熱交換器とを組み合わせ、これに熱媒液を循
環させるようにした放熱装置に関する。また熱電半導体
の基板を直接冷却水に接触させるようにした放熱装置に
関する。 [0002]即ち本発明は、二つの異なる金属、導体ま
たは半導体を直列に接続してなる閉回路に直流電流を流
すと、一方の接合部は発熱し、他方の接合部は吸熱(冷
却)する、所謂ペルチェ効果を利用した熱電半導体を用
いることを基本としている。熱電半導体は直流電流を流
すだけで動作し、その極性(+,−)を切り換えるだけ
で、加熱も冷却もできるので高精度の温度制御が可能で
ある。 [0003] [従来の技術]従来、熱電半導体の実用に於いて、その
能力を充分に発揮できるかどうかはこれに組み合わせら
れる放熱器(ヒートシンク)の性能の如何に掛かってい
る。 [0004]従来の空冷式の放熱器は、放熱効果を良く
するため表面積を多くしょうと金属ブロックの表面に多
数のフインを設けた構造、例えば図1のようなアルミニ
ュウムの押し出し成型品が使用されている。 [0005]この空冷式の放熱器は、一体に押し出し成
型された金属ブロックのフインに、伝熱によって拡散し
てくる熱がその表面から通風によって運び去られる。 [0006]従来の水冷式の放熱器(水冷式ジャケッ
ト)は、図2(イ)に示すように金属ブロックの中を貫
通した孔、又は図2(ロ、ハ)に示すようにフイン側に
固定されたパイプによって、外部からの通水で冷却する
ようになしたものである。 [0007]前記多数のフインを設けた通風冷却による
金属ブロックは、その製造方法から該フインの形状、、
高さ、数、など、どのように工夫してもその表面積の拡
大に限度があった。 然してこの表面積を無理に大きく
すれば設計上重量が嵩むばかりでなく装置全体が徒に大
型になる大きな欠点があった。 [0008]水冷式の強制冷却放熱器は、実開平2−1
36334号公報に開示されたように金属ブロックから
の吸熱には工夫がなされているが、冷却水の排出につい
ては捨てられるか、又はこれを別途冷却して再使用して
いる。 [0009]水冷式では、冷却水の給排水又は、冷却と
循環に費用がかかるばかりでなく、その設置場所に大き
な制約があり、従って可搬、移動機器、装置には使用す
ることができなかった。 [0010]更に従来の水冷式放熱器は中を流れる水に
よって、その伝熱面即ち管壁に水アカや錆び、その他不
都合なものが付着し冷却効果を著しく低下させるばかり
でなく装置を腐食する欠点がある。 [0011] 【発明が解決しようとする課題】この発明が解決しよう
とする課題は、従来のこの種放熱器の上記欠点を解消す
ることである。更に詳しくは放熱器を構成する部材の表
面積を容易に拡大すると共に、通風冷却式の放熱装置で
ありながら水冷式放熱器に匹敵する効率のよい放熱装置
を得ることを目的としている。 [0012]本発明の他の目的は、熱電半導体の基板と
の接触熱抵抗の無い、放熱装置を得ることである。 [0013] 【課題を解決するための手段】この課題は、放熱器を2
つのブロックに分け、その1つを吸熱部材とし他の1つ
を放熱部材(熱交換器)とし、両者の間を熱媒液が循環
せしめることによって解決される。 [0014]また、熱電半導体の基板を直接冷却水に接
触せしめることによって解決される。 [0015]この発明の態様としては以下のものが包含
される。 (イ)従来から知られているこの種熱電半導体の放熱面
側に吸熱部材が設けられた態様。 (ロ)(イ)とは逆に、熱電半導休の吸熱面側に吸熱部
材が設けられた態様。 (ハ)吸熱部材と放熱部材とがパイプなどによって結合
され熱媒液が循環するようになした閉鎖回路であるこ
と。 (ニ)上記吸熱部材と放熱部材とを環流する熱媒液が自
然対流によって移動し熱を運ぶもの。 (ホ)上記吸熱部材と放熱部材とお環流する熱媒液がポ
ンプなどによって強制的に移動せしめられるもの。 (ヘ)各部材の間更にはポンプとの接続が、必要に応じ
てゴムなどフレキシブルな部材でなされているもの。 (ト)上記吸熱部材に取り付けられる熱電半導体の基板
を、熱媒液に直接接触せしめるようになした熱電半導体
の応用製品。 (チ)上記吸熱部材と放熱部材とが伝熱可能な状態で分
離している熱電半導体の応用製品。 [0016]上記吸熱部材と放熱部材、必要に応じてポ
ンプなどを介在させた閉鎖回路を構成する放熱装置に於
いて、該吸熱部材には金属ブロックの要所に少なくとも
1個以上の孔を貫通させ、放熱部材には多数の金属板1
にパイプ2を貫通させた、例えば図3に示すような公知
の熱交換器を適用することが好ましい。 [0017][作用]熱電半導体に通電すると、ベルチ
ェ効果で、熱電半導体の一方は吸熱によって冷却され、
他の一方は前記吸熱によって発熱する。 この発熱側の
熱を吸熱部材で吸収し、この吸収した熱は、吸熱部材の
中を環流する熱媒液によって放熱部材を構成する熱交換
器に送られて大気中に放熱される。 [0018]上記吸熱側に、容器、機器、プレート、電
子基板、槽、室、装置、その他自由に接合、或は組み合
わせられ、その温度をコントロールすることができる。 [0019] 【実施例1】実施例について図面を参照して説明する
と、図4に於いて、縦30mm、横30mm、厚さ3m
m、の熱電半導体3の一方のセラミックス基板4に、被
冷却体として従来の放熱器5をシリコングリースを介し
て接合する。他方放熱側のセラミックス基板6にはこの
発明の吸熱部材7を同じくシリコングリースを介して接
合する。該吸熱部材7には熱媒液が流れる孔8が該吸熱
部材7を貫通している。 孔8の端部にはそれぞれU字
形の180°エルボ9が、放熱部材10のパイプ11と
結合している。 [0020]放熱部材10は公知の熱交換器でよい、こ
の場合図3のように肉厚1mm、幅30mm長さ150
mmのアルミニュウム板1を2mm間隔で50枚並べ
る、このアルミニュウム板1には吸熱部材7の孔8と対
応する位置に直径6mm肉厚1mmのアルミニュウムの
パイプ11が半田づけされている。 [0021]この実施例での放熱部材10の表面積は約
2.3mに達し、同じ大きさの従来の放熱器と比較し
て2〜4倍である。 [0022]吸熱部材7と放熱部材10は一端は前記U
字形の180°エルボ9で結ばれているが、他の一端は
それぞれマイクロポンプが付いている。このマイクロポ
ンプ(図上反対側にあるため図示できない)としては圧
電素子を利用した、株式会社三鈴エリーの「バイモルフ
ポンプ」が例示できる。このポンプは振動が殆ど無く長
寿命であるがその接続には少なくとも一部にフレキシブ
ルなチューブを用いることが望ましい。 [0023]前記吸熱部材7と放熱部材10、エルボ
9、パイプ11、ポンプ、などを流れる熱媒は水であっ
て完全に封止され、これらを強制的に循環せしめられ熱
を 運ぶようになっている。水中の空気は除去されてい
ることが好ましい。これによって、従来の同重量の放熱
器と比較して30%〜70%放熱効果があがった。 [0024] 【実施例2】本例は図5に示し、吸熱部材12も放熱部
材13も一本のパイプ14接続されたもので熱媒の水は
1個のポンプ15で送られる。16は熱電半導体で、図
上吸熱側の放熱器、容器、その他は省略する。 [0025] 【実施例3】本例は図6に示し、吸熱部材17に、熱電
半導体基板18取り付けの穴19を開ける。 該熱電半
導体基板18はこの穴19に気密に接合される。上記穴
19及び該熱電半導体基板18は取り付けの工作上、円
形であることが好ましい。 該熱電半導体基板18は歪
みを生じてはならない、対策として吸熱部材の一部に仕
切り20を作ってこれを利用してよい。或は熱電半導体
基板18の水側に凹凸を付けてこれを強化してもよい。
また該熱電半導体基板18は従来のセラミックスに限定
しない。例えば、厚さ3mm直径50mmの銅の円板の
片面に、厚さ0.3mmの耐熱絶縁体を被覆したもので
もよい。 この被膜としてアルミナAの溶射が例
示できる、溶射された被膜は所定の研磨加工をして熱電
半導体基板となる。熱電半導体の基板としては伝熱性に
優れ、且つ電気的絶縁性に優れたもの又は組合せであれ
ば何でも良い。 必要に応じて該円板の上に合成ダイヤ
モンド膜をコーティングしても良い、一例としてCVD
法(特開昭58−156594)が提示できる。
図上21はポンプである。然して該基板18と吸熱部材
17との接合には電触を考慮する必要が有る、 [0026]熱電半導体のセラミック基板と加熱器、又
は吸熱器との接合面は放熱器の性能、即ち放熱効果、即
ち熱電半導体の性能にまで評価が及ぶ極めて大切なもの
であるため、その接合面の接触熱抵抗を小さくする為の
改善に従来から多くの努力がなされている。 本発明の
適用目的の一つである大型の放熱器ではこの接合面の精
度即ち両者の平面度、平滑度、表面粗さ、シリコングリ
ースなどの塗布厚さのバラツキ、空気層の挟み込み、最
後に両者の締め付け圧力、などに不都合が生じ易く、且
つそれらが致命的な接触熱抵抗となって品質が一定しな
いばかりでなく、接合面が緩んで動くことがあり、これ
が熱電半導体の破損の原因になったり、品質を劣化させ
たりしていた。 実施例3はこの接触熱抵抗を生じるこ
れらの接合面を無くし、しかも伝熱性能の極めて優れた
熱電半導体基板を直接熱媒液(水)に接触せしめるよう
にしたものである。 [0027] 【実施例4】本例は実施例3の吸熱部材を水冷式の部材
として使用するものである。 [0028]接触熱抵抗がゼロの放熱器、或は吸熱器は
今までに無い。 [0029]熱電半導体の基板を直接、水などの熱媒液
に接触させた例は今までに無い。 [0030]これによって熱電半導体基板は直接熱媒の
水と接触し、直接水に熱を伝えることができる。 この
実施例では放熱効果が更に30%〜60%上がった。 [0031] 【実施例5】本例は図2に示し吸熱部材の表面に吸熱用
のパイプを接合したものである。 [0032] 【実施例6】本例は放熱装置のポンプを省略している。
これは熱媒液が放熱装置内を自然対流する。 このとき
の貫通孔は縦方向上下に置かれることが好ましい。また
パイプを横位置とし、フインも縦方向上下に向けられる
ことが望ましい。 [0033] 【発明の効果】以上詳述したように、本発明によれば、
以下に列挙するような種々の効果が得られる。 [0034](1)ベルチェ効果を利用した熱電半導体
の放熱器として、吸熱部材と放熱部材とに分離して配置
しているので吸熱部材は水冷式冷却器として機能し、放
熱部材は公知の熱交換器として働き甚だ放熱効果が良
い。 [0035](2)放熱部材は押し出し成型品でなく、
数十枚の金属板又は押し出し部材からできているから放
熱部材の設計が自由にでき、所定の容量の中に効率の良
い大きな表面積の放熱部材を設けることができ、装置が
小型軽量化する。 [0036](3)熱電半導体基板を直接熱媒液に接触
させることができるので、高効率な熱の伝導、吸熱、放
熱、ができる。 [0037](4)空冷でありながら、水冷に匹敵する
放熱性能をもつので装置全体が小型化し殆どの用途に適
合する。 [0038](5)従来の水冷式放熱器のように設置場
所に制限がない。 [0039]本発明は上に述べたように放熱器を、吸熱
部材と放熱部材とに分割することと、従来間接的であっ
た熱電半導体基板からの熱の吸収、或は放熱が、水など
の熱媒液に熱電半導体基板を直接接触させることで、相
乗効果によってその効率が大幅に向上する。 [0040]従来の熱電半導体の各種用途、更に新しい
用途に適用できることは勿論のこと。従来冷却能力が低
い、コストが高い、などの理由で実用化が遅れている、
フロン冷媒による圧縮式の各種装置、特に、冷暖房、家
電製品、自動販売機などにも、この熱電半導体装置が対
等かそれ以上の性能で適用できる。 [0041]更に、前記相乗効果によって従来の空冷式
放熱器の50%〜100%と大幅に上がった効率のおか
げで。ベルチェ効果では効率がよいが、資源の少ないビ
スマス・テルル・を使用しない、他の素材の組み合わ
せ、即ち性能は少し落ちるが資源の豊富な素材、例え
ば、シリコン・ゲルマニウム系、セレン化合物、鉄けい
化物、その他が使用できる。 [0042]尚上記では吸熱部材−放熱部材、として説
明したが、当然この逆の使用方法でもよい。 また、熱
電半導体基板の両側に本発明の装置を付けることは勿
論、片面に従来の放熱器(ヒートシンク)を付けてもよ
い。 熱媒液も水に限定しない。公知の熱交換器も実施
例に限定せず何でも良い。 [0043]
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat dissipation device used in combination with a thermoelectric semiconductor utilizing the Peltier effect.
More specifically, it relates to a heat dissipation device in which a heat absorbing metal block and a known heat exchanger in which a pipe is passed through a metal plate are combined, and a heat transfer liquid is circulated in the heat dissipation device. Further, the present invention relates to a heat dissipation device in which a substrate of thermoelectric semiconductor is brought into direct contact with cooling water. [0002] That is, according to the present invention, when a direct current is applied to a closed circuit formed by connecting two different metals, conductors or semiconductors in series, one joint generates heat and the other joint absorbs (cools). Basically, a thermoelectric semiconductor utilizing the so-called Peltier effect is used. The thermoelectric semiconductor operates only by passing a direct current, and by simply switching its polarity (+,-), heating and cooling can be performed, so that highly accurate temperature control is possible. [0003] [Prior Art] Conventionally, in practical use of a thermoelectric semiconductor, whether or not the ability can be sufficiently exerted depends on the performance of a radiator (heat sink) combined with the thermoelectric semiconductor. [0004] A conventional air-cooled radiator uses a structure in which a large number of fins are provided on the surface of a metal block in order to improve the heat dissipation effect, for example, an extruded aluminum product as shown in FIG. 1 is used. ing. [0005] In this air-cooled radiator, heat diffused by heat transfer is carried away from the surface of the fin of the metal block integrally extruded by the ventilation. [0006] A conventional water-cooled radiator (water-cooled jacket) has a hole penetrating through a metal block as shown in FIG. 2A or a fin side as shown in FIGS. 2B and 2C. A fixed pipe is used for cooling by external water flow. [0007] The metal block by ventilation cooling provided with a large number of fins has a shape of the fins according to its manufacturing method,
There was a limit to how large the surface area could be, no matter how the height, the number, etc. were devised. However, if the surface area is forcibly increased, not only the weight is increased due to the design, but also the entire apparatus becomes undesirably large. [0008] A water-cooled forced cooling radiator is disclosed in
As disclosed in Japanese Patent No. 36334, the heat absorption from the metal block has been devised, but the drainage of the cooling water is either discarded or is cooled separately and reused. [0009] In the water-cooled type, not only is it costly to supply and drain cooling water, or to cool and circulate, but there is a large restriction on the installation site, and therefore it cannot be used for portable, mobile equipment and devices. . [0010] Furthermore, in the conventional water-cooled radiator, water flowing therein causes water stains, rust, and other inconvenient substances to adhere to the heat transfer surface, that is, the tube wall, which not only significantly reduces the cooling effect but also corrodes the device. There are drawbacks. [0011] The problem to be solved by the present invention is to eliminate the above-mentioned drawbacks of the conventional radiator of this kind. More specifically, it is an object of the present invention to easily expand the surface area of the members constituting the radiator and to obtain an efficient radiator that is comparable to a water-cooled radiator even though it is a ventilation cooling radiator. [0012] Another object of the present invention is to obtain a heat dissipation device having no contact thermal resistance with the substrate of the thermoelectric semiconductor. [0013] This problem is a heat sink
The problem is solved by dividing into two blocks, one of which is a heat absorbing member and the other of which is a heat radiating member (heat exchanger), and a heat transfer liquid is circulated between the two. [0014] It is also solved by directly contacting the substrate of the thermoelectric semiconductor with cooling water. [0015] Embodiments of the present invention include the following. (A) A mode in which a heat-absorbing member is provided on the heat-dissipating surface side of a thermoelectric semiconductor of this type that has been conventionally known. (B) Contrary to (a), an aspect in which a heat absorbing member is provided on the heat absorbing surface side of the thermoelectric semi-conductor. (C) A closed circuit in which the heat absorbing member and the heat radiating member are connected by a pipe or the like to circulate the heat medium liquid. (D) A heat transfer medium that circulates between the heat absorbing member and the heat radiating member moves by natural convection to carry heat. (E) A heat medium liquid that circulates between the heat absorbing member and the heat radiating member is forcibly moved by a pump or the like. (F) A flexible member such as rubber is used to connect between each member and to the pump, if necessary. (G) A thermoelectric semiconductor application product in which the thermoelectric semiconductor substrate attached to the heat absorbing member is brought into direct contact with a heat transfer liquid. (H) A thermoelectric semiconductor application product in which the heat absorbing member and the heat radiating member are separated in a heat transferable state. [0016] In the heat dissipation device that constitutes a closed circuit in which the heat absorption member and the heat dissipation member, and a pump and the like are interposed, the heat absorption member penetrates at least one or more holes at important points of the metal block. The heat dissipation member has a large number of metal plates 1
It is preferable to apply a known heat exchanger, for example, as shown in FIG. [0017] [Operation] When electricity is applied to the thermoelectric semiconductor, one of the thermoelectric semiconductors is cooled by heat absorption due to the Peltier effect,
The other one generates heat due to the heat absorption. The heat on the heat generation side is absorbed by the heat absorbing member, and the absorbed heat is sent to the heat exchanger constituting the heat radiating member by the heat medium liquid circulating in the heat absorbing member and radiated to the atmosphere. [0018] A container, a device, a plate, an electronic substrate, a tank, a chamber, an apparatus, etc. can be freely joined or combined with the heat absorbing side, and the temperature thereof can be controlled. [First Embodiment] The first embodiment will be described with reference to the drawings. In FIG. 4, the length is 30 mm, the width is 30 mm, and the thickness is 3 m.
A conventional radiator 5 as a body to be cooled is bonded to one ceramic substrate 4 of the thermoelectric semiconductor 3 of m through silicon grease. On the other hand, the heat absorbing member 7 of the present invention is bonded to the ceramic substrate 6 on the heat radiation side through the same silicone grease. The heat absorbing member 7 is provided with a hole 8 through which a heat transfer liquid flows, which penetrates the heat absorbing member 7. U-shaped 180 ° elbows 9 are respectively connected to the pipes 11 of the heat dissipation member 10 at the ends of the holes 8. [0020] The heat dissipation member 10 may be a known heat exchanger, in which case, as shown in FIG. 3, the wall thickness is 1 mm, the width is 30 mm, and the length is 150 mm.
Fifty mm aluminum plates 1 are arranged at 2 mm intervals, and aluminum pipes 11 having a diameter of 6 mm and a thickness of 1 mm are soldered to the aluminum plates 1 at positions corresponding to the holes 8 of the heat absorbing member 7. [0021] The surface area of the heat dissipation member 10 in this embodiment reaches about 2.3 m 2 , which is 2 to 4 times as large as that of the conventional heat radiator of the same size. [0022] The heat absorbing member 7 and the heat radiating member 10 have U at one end.
They are connected by a letter-shaped 180 ° elbow 9, but the other ends are each equipped with a micropump. An example of this micropump (which cannot be shown because it is on the opposite side in the figure) is a "bimorph pump" of Misuzu Erie Co., Ltd., which utilizes a piezoelectric element. Although this pump has almost no vibration and has a long life, it is desirable to use a flexible tube for at least a part of the connection. [0023] The heat medium flowing through the heat absorbing member 7, the heat radiating member 10, the elbow 9, the pipe 11, the pump, etc. is water and completely sealed, and these are forcedly circulated to carry heat. ing. The air in the water is preferably removed. As a result, the heat radiation effect was improved by 30% to 70% as compared with the conventional radiator having the same weight. [Embodiment 2] This embodiment is shown in FIG. 5, in which both the heat absorbing member 12 and the heat radiating member 13 are connected to a single pipe 14, and the heat medium water is sent by a single pump 15. Reference numeral 16 is a thermoelectric semiconductor, and a radiator on the heat absorption side, a container, and others are omitted in the figure. [Third Embodiment] This embodiment is shown in FIG. 6, and a hole 19 for mounting a thermoelectric semiconductor substrate 18 is made in the heat absorbing member 17. The thermoelectric semiconductor substrate 18 is hermetically bonded to the hole 19. The hole 19 and the thermoelectric semiconductor substrate 18 are preferably circular in terms of mounting work. The thermoelectric semiconductor substrate 18 should not be distorted. As a countermeasure, a partition 20 may be formed in a part of the heat absorbing member and used. Alternatively, the thermoelectric semiconductor substrate 18 may be reinforced by providing irregularities on the water side.
Further, the thermoelectric semiconductor substrate 18 is not limited to the conventional ceramics. For example, a copper disc having a thickness of 3 mm and a diameter of 50 mm may be coated on one side with a heat-resistant insulating material having a thickness of 0.3 mm. As the coating, thermal spraying of alumina A 2 O 3 can be exemplified. The sprayed coating is subjected to a predetermined polishing process to form a thermoelectric semiconductor substrate. As the substrate of the thermoelectric semiconductor, any material or combination of materials having excellent heat conductivity and excellent electrical insulation properties may be used. If necessary, a synthetic diamond film may be coated on the disk, for example CVD.
The method (JP-A-58-156594) can be presented.
21 is a pump. However, it is necessary to consider electric contact in joining the substrate 18 and the heat absorbing member 17. [0026] The joint surface between the ceramic substrate of the thermoelectric semiconductor and the heater or the heat absorber is the performance of the radiator, that is, the heat radiation effect. That is, since it is extremely important to evaluate the performance of thermoelectric semiconductors, many efforts have been made in the past to improve the contact thermal resistance of the joint surface. In a large radiator that is one of the application purposes of the present invention, the accuracy of this joint surface, that is, the flatness of both, smoothness, surface roughness, variation in the coating thickness of silicon grease, sandwiching an air layer, and finally Inconvenience is likely to occur in the tightening pressure of both, and they become fatal contact heat resistance and the quality is not constant, and the joint surface may move loosely, which causes damage to the thermoelectric semiconductor. It has become worse and the quality has deteriorated. In the third embodiment, these joint surfaces that generate the contact thermal resistance are eliminated, and the thermoelectric semiconductor substrate having extremely excellent heat transfer performance is brought into direct contact with the heat transfer medium (water). [Example 4] In this example, the heat absorbing member of Example 3 is used as a water-cooled member. [0028] There is no heat radiator or heat absorber having a contact thermal resistance of zero. [0029] There has been no example in which a substrate of a thermoelectric semiconductor is directly contacted with a heat medium liquid such as water. [0030] This allows the thermoelectric semiconductor substrate to directly contact the water of the heat transfer medium and directly transfer heat to the water. In this example, the heat dissipation effect was further improved by 30% to 60%. [Embodiment 5] In this embodiment, a heat absorbing pipe is joined to the surface of the heat absorbing member shown in FIG. [0032] [Embodiment 6] In this embodiment, the pump of the heat dissipation device is omitted.
This is because the heat transfer liquid naturally convects inside the heat dissipation device. At this time, the through holes are preferably placed vertically in the vertical direction. Further, it is desirable that the pipe is in the horizontal position and the fins are oriented vertically in the vertical direction. As described in detail above, according to the present invention,
Various effects as listed below can be obtained. [0034] (1) As a radiator of a thermoelectric semiconductor utilizing the Peltier effect, the heat absorbing member and the heat radiating member are separately arranged, so that the heat absorbing member functions as a water-cooled cooler, and the heat radiating member is a known heat radiating member. It works as a exchanger and has a great heat dissipation effect. [0035] (2) The heat dissipation member is not an extruded product,
The radiating member can be freely designed because it is made of several tens of metal plates or extruding members, and an radiating member having a large surface area that is efficient and has a large surface area can be provided in a predetermined capacity, and the device can be made smaller and lighter. [0036] (3) Since the thermoelectric semiconductor substrate can be brought into direct contact with the heat medium liquid, highly efficient heat conduction, heat absorption, and heat dissipation can be performed. [0037] (4) Even though it is air-cooled, it has a heat dissipation performance comparable to that of water-cooling, so that the entire device is miniaturized and is suitable for most applications. [0038] (5) There is no limit to the installation place unlike the conventional water-cooled radiator. [0039] According to the present invention, as described above, the radiator is divided into the heat absorbing member and the heat radiating member, and the indirect absorption of heat from the thermoelectric semiconductor substrate or the heat radiation is performed by water or the like. By bringing the thermoelectric semiconductor substrate into direct contact with the heat transfer liquid, the efficiency is significantly improved due to the synergistic effect. [0040] Needless to say, the present invention can be applied to various applications of conventional thermoelectric semiconductors and new applications. Practical application has been delayed due to low cooling capacity, high cost, etc.
This thermoelectric semiconductor device can be applied with equal or higher performance to various types of compression type devices using a chlorofluorocarbon refrigerant, particularly for air conditioning and heating, home appliances, vending machines and the like. [0041] Further, thanks to the synergistic effect, the efficiency is significantly increased to 50% to 100% of the conventional air-cooled radiator. It is efficient in the Peltier effect, but does not use bismuth tellurium, which has less resources, a combination of other materials, that is, materials with slightly lower performance but rich resources, such as silicon-germanium series, selenium compounds, and iron silicides. , Others can be used. [0042] In the above description, the heat-absorbing member-the heat-dissipating member has been described, but naturally the reverse usage method may also be used. Further, the device of the present invention may be attached to both sides of the thermoelectric semiconductor substrate, or a conventional radiator (heat sink) may be attached to one side. The heat transfer liquid is not limited to water. The known heat exchanger is not limited to the embodiment and may be any heat exchanger. [0043]

【図面の簡単な説明】 [0044][図1]図1は従来の放熱器(ヒートシン
ク)の一例を示す断面図である。 [0045][図2]図2は従来の吸熱器を示し、イ、
ロ、は断面図、ハ、はロの平面図である。 [0046][図3]図3は従来の熱交換器の一部を裁
除した平面図である。 [0046][図4]図4は本発明の吸熱部材と放熱部
材との一具体例を示す側面図である。 [0047][図5]図5は本発明の吸熱部材と放熱部
材との一具体例を示す斜視図である。 [0048][図6]図4は本発明に於いて熱電半導体
基板を吸熱部材に装着する際の装着態様を説明するため
の説明図である。 [0049] 【符号の説明】 1. アルミニュウム板 2. パイプ [0050] 3. 熱電半導体 4. セラミックス基板 5. 放熱器 6. 放熱側セラミックス基板 7. 吸熱部材 8. 孔 9. エルボ 10. 放熱部材 11. パイプ [0051] 12. 吸熱部材 13. 放熱部材 14. パイプ 15. ポンプ 16. 熱電半導体 [0052] 17. 吸熱部材 18. 熱電半導体基板 19. 穴 20. 仕切り 21. ポンプ
BRIEF DESCRIPTION OF THE DRAWINGS [0044] [FIG. 1] FIG. 1 is a sectional view showing an example of a conventional radiator (heat sink). [0045] [FIG. 2] FIG. 2 shows a conventional heat absorber.
(B) is a cross-sectional view and (c) is a plan view of (b). [0046] [FIG. 3] FIG. 3 is a plan view in which a part of a conventional heat exchanger is cut away. [0046] [FIG. 4] FIG. 4 is a side view showing a specific example of the heat absorbing member and the heat radiating member of the present invention. [0047] [FIG. 5] FIG. 5 is a perspective view showing a specific example of the heat absorbing member and the heat radiating member of the present invention. [0048] [FIG. 6] FIG. 4 is an explanatory view for explaining a mounting mode when the thermoelectric semiconductor substrate is mounted on the heat absorbing member in the present invention. [0049] [Explanation of symbols] 1. Aluminum plate 2. Pipe [0050] 3. Thermoelectric semiconductor 4. Ceramic substrate 5. Radiator 6. Heat dissipation side ceramics substrate 7. Heat absorbing member 8. Hole 9. Elbow 10. Heat dissipation member 11. Pipe [0051] 12. Heat absorbing member 13. Heat dissipation member 14. Pipe 15. Pump 16. Thermoelectric semiconductor [0052] 17. Heat absorbing member 18. Thermoelectric semiconductor substrate 19. Hole 20. Partition 21. pump

Claims (1)

【特許請求の範囲】 [請求項1] ペルチエ効果を利用した熱電半導体に組
み合わせて使用する放熱器に於いて、吸熱部材と放熱部
材とが伝熱可能な状態で分離した構造で配置されている
ことを特徴とする放熱装置。 [請求項2] 前記吸熱部材と放熱部材との間がパイプ
で接続され該パイプの中を熱媒液が移動するようになっ
ている請求項1に記載の放熱装置。 [請求項3] 前記移動する熱媒液が吸熱部材と放熱部
材、の間を閉鎖回路で循環するようになした請求項1及
び請求項2に記載の放熱装置。 [請求項4] 前記熱媒液がポンプなどによって強制的
に循環せしめるようになした請求項1〜請求項3に記載
の放熱装置。 [請求項5] 上記吸熱部材と放熱部材とが少なくとも
一部結合していることを特徴とする放熱装置。 [請求項6] 上記吸熱部材と放熱部材との上を更に強
制通風冷却するようになしたことを特徴とする請求項1
〜請求項4に記載の放熱装置。 [請求項7] 上記吸熱部材に取り付けられる熱電半導
体の基板が、直接熱媒液に接触するようになしたことを
特徴とする請求項1〜請求項6に記載の放熱装置。 [請求項8] 上記熱電半導体の基板を直接水に接触さ
せた、吸熱部材を水冷式の放熱器として使用することを
特徴とする放熱装置。 [請求項9] 上記吸熱部材に取り付けられる熱電半導
体の基板が円形である請求項1〜請求項8に記載の放熱
装置。
Claims: [Claim 1] In a radiator used in combination with a thermoelectric semiconductor utilizing the Peltier effect, the heat absorbing member and the heat radiating member are arranged in a structure in which they can be transferred in a heat-transferable manner. A heat dissipation device characterized by the above. [Claim 2] The heat dissipation device according to claim 1, wherein the heat absorbing member and the heat radiating member are connected by a pipe, and the heat transfer liquid moves in the pipe. [Claim 3] The heat dissipation device according to claim 1 or 2, wherein the moving heat medium liquid circulates between the heat absorbing member and the heat radiating member in a closed circuit. [Claim 4] The heat dissipation device according to any one of claims 1 to 3, wherein the heat medium liquid is forcibly circulated by a pump or the like. [Claim 5] A heat dissipation device characterized in that the heat absorbing member and the heat radiating member are at least partially connected to each other. [Claim 6] The above-mentioned heat absorbing member and heat radiating member are further forcedly cooled by forced draft.
~ The heat dissipation device according to claim 4. [Claim 7] The heat dissipation device according to any one of claims 1 to 6, wherein the substrate of the thermoelectric semiconductor attached to the heat absorbing member is in direct contact with the heat medium liquid. [Claim 8] A heat dissipation device, characterized in that the heat absorbing member in which the substrate of the thermoelectric semiconductor is brought into direct contact with water is used as a water cooling type radiator. [Claim 9] The heat dissipation device according to any one of claims 1 to 8, wherein the substrate of the thermoelectric semiconductor attached to the heat absorbing member is circular.
JP4226355A 1992-07-09 1992-07-09 Heat dissipation device Pending JPH0629434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4226355A JPH0629434A (en) 1992-07-09 1992-07-09 Heat dissipation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4226355A JPH0629434A (en) 1992-07-09 1992-07-09 Heat dissipation device

Publications (1)

Publication Number Publication Date
JPH0629434A true JPH0629434A (en) 1994-02-04

Family

ID=16843858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4226355A Pending JPH0629434A (en) 1992-07-09 1992-07-09 Heat dissipation device

Country Status (1)

Country Link
JP (1) JPH0629434A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0820107A2 (en) * 1996-06-25 1998-01-21 Technova Inc. Thermoelectric apparatus
EP0878852A1 (en) * 1996-09-09 1998-11-18 Technova Inc. Thermoelectric converter
JP2005100091A (en) * 2003-09-25 2005-04-14 Hitachi Ltd Cooling module
JP2008218617A (en) * 2007-03-02 2008-09-18 Matsushita Electric Ind Co Ltd Heat radiation substrate and circuit module using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0820107A2 (en) * 1996-06-25 1998-01-21 Technova Inc. Thermoelectric apparatus
EP0820107A3 (en) * 1996-06-25 1999-04-21 Technova Inc. Thermoelectric apparatus
AU717063B2 (en) * 1996-06-25 2000-03-16 Engineering Advancement Association Of Japan Thermoelectric apparatus
CN1128478C (en) * 1996-06-25 2003-11-19 株式会社泰库诺瓦 Thermoelectric apparatus
EP0878852A1 (en) * 1996-09-09 1998-11-18 Technova Inc. Thermoelectric converter
EP0878852A4 (en) * 1996-09-09 1999-03-31 Technova Inc Thermoelectric converter
JP2005100091A (en) * 2003-09-25 2005-04-14 Hitachi Ltd Cooling module
JP2008218617A (en) * 2007-03-02 2008-09-18 Matsushita Electric Ind Co Ltd Heat radiation substrate and circuit module using the same

Similar Documents

Publication Publication Date Title
US5715684A (en) Thermoelectric converter
US6658861B1 (en) Cooling of high power density devices by electrically conducting fluids
US20100269517A1 (en) Module for cooling semiconductor device
US6371200B1 (en) Perforated heat sink
JP2011086951A (en) Thermal diffusion apparatus
CA2620479A1 (en) Heat exchanger for thermoelectric applications
Atta Solar thermoelectric cooling using closed loop heat exchangers with macro channels
CN113793837A (en) Self-sensing temperature control system of chip
US6201221B1 (en) Method and apparatus for heat regulating electronics products
KR101753322B1 (en) Thermoelectic moudule and Apparatus for cooling and heating a vehicle seat having the same
JPH06151979A (en) Thermoelectric device
JPH0629434A (en) Heat dissipation device
WO2005060370A2 (en) Cooling of high power density devices by electrically conducting fluids
JP4391351B2 (en) Cooling system
JP2001082828A (en) Heat exchanger and heat carrier supply system
Kraus et al. Cooling electronic equipment
JP2000286483A (en) Laser light generator
KR20040061286A (en) Hybrid heat exchanger having tec and heat pipe
JPH1187586A (en) Cooling structure for multi-chip module
JP4325026B2 (en) Cooling device and electronic equipment
CN219454122U (en) Thermoelectric semiconductor air conditioner
JPH0159748B2 (en)
KR19990024929A (en) Cooling device using thermoelectric cooling module
JPH048947B2 (en)
CN220173661U (en) Separated radiator