JPH0629313A - Manufacture of locos offset drain - Google Patents
Manufacture of locos offset drainInfo
- Publication number
- JPH0629313A JPH0629313A JP3301764A JP30176491A JPH0629313A JP H0629313 A JPH0629313 A JP H0629313A JP 3301764 A JP3301764 A JP 3301764A JP 30176491 A JP30176491 A JP 30176491A JP H0629313 A JPH0629313 A JP H0629313A
- Authority
- JP
- Japan
- Prior art keywords
- drain
- locos
- region
- offset
- diffusion region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 26
- 239000010703 silicon Substances 0.000 claims abstract description 26
- 238000005530 etching Methods 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 238000009792 diffusion process Methods 0.000 claims description 43
- 150000004767 nitrides Chemical class 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 abstract description 52
- 230000015556 catabolic process Effects 0.000 abstract description 9
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 12
- 229920005591 polysilicon Polymers 0.000 description 12
- 229910052581 Si3N4 Inorganic materials 0.000 description 10
- 230000005684 electric field Effects 0.000 description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000000347 anisotropic wet etching Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
- H01L29/7835—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0642—Isolation within the component, i.e. internal isolation
- H01L29/0649—Dielectric regions, e.g. SiO2 regions, air gaps
- H01L29/0653—Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66659—Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Local Oxidation Of Silicon (AREA)
- Element Separation (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はLOCOSオフセットド
レインの製造方法に係り、特にプロセスバラツキがあっ
ても安定した高耐圧を保証し得るLOCOSオフセット
ドレインの製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a LOCOS offset drain, and more particularly to a method of manufacturing a LOCOS offset drain capable of guaranteeing a stable high breakdown voltage even if there are process variations.
【0002】[0002]
【従来の技術】約50Vの電圧に耐える例えば高耐圧M
OSFETにおいては、従来プレーナ型ドレイン(例え
ばP+領域)の両端部で電界集中を緩和するドレイン型
として図3及び図4でそれぞれ示す、オフセットドレイ
ン及びLOCOSオフセットドレインが知られている。
図3に示すプレーナ型のオフセットドレインは、N型の
シリコン(Si)基板1内に形成されたP+ドレイン領
域2の両側にP-拡散領域3を形成してドレインエッジ
の電界集中を防止するものであるが、P-の濃度分布や
その領域形成部位のバラツキにより、P+ドレイン領域
2の下部エッジ2aを十分にカバーできず安定した電界
集中の防止ができなかった。2. Description of the Related Art For example, a high withstand voltage M that withstands a voltage of about 50V
In the OSFET, an offset drain and a LOCOS offset drain shown in FIGS. 3 and 4 are known as a drain type that alleviates electric field concentration at both ends of a conventional planar drain (for example, P + region).
In the planar type offset drain shown in FIG. 3, P − diffusion regions 3 are formed on both sides of a P + drain region 2 formed in an N type silicon (Si) substrate 1 to prevent electric field concentration at the drain edge. However, the lower edge 2a of the P + drain region 2 cannot be sufficiently covered due to the P − concentration distribution and the variation in the region forming region, and stable electric field concentration cannot be prevented.
【0003】そこで、図3のオフセットドレイン型の改
良型として図4に示したLOCOSオフセットドレイン
が提案された。Therefore, the LOCOS offset drain shown in FIG. 4 has been proposed as a modification of the offset drain type shown in FIG.
【0004】図4のLOCOSオフセットドレインは、
N型シリコン基板1にLOCOS酸化層5によって挟ま
れてP+ドレイン領域2が形成されており、またP-拡散
領域3がLOCOS酸化層5の端部直下で、しかもP+
ドレイン領域2と接して形成され、P+ドレイン領域2
の下部エッジ2aの電界集中部をカバーして耐圧の向上
を図っていた。The LOCOS offset drain of FIG.
A P + drain region 2 is formed by being sandwiched by a LOCOS oxide layer 5 on an N-type silicon substrate 1, and a P − diffusion region 3 is located immediately below an end of the LOCOS oxide layer 5 and is P +.
P + drain region 2 formed in contact with drain region 2
The electric field concentration portion of the lower edge 2a was covered to improve the breakdown voltage.
【0005】上記図4に示したLOCOSオフセットド
レイン(LOD)の製造方法を図5に示した工程断面図
を用いて説明する。A method of manufacturing the LOCOS offset drain (LOD) shown in FIG. 4 will be described with reference to process sectional views shown in FIG.
【0006】まず、図5(a)に示すようにN型Si基
板1上にゲート酸化膜6を形成し、CVD(化学気相成
長)法によりシリコン窒化膜(Si3N4)7をパターニ
ング形成し、次に図5(b)に示す様に、所定位置にレ
ジストパターン9を配し、P型不純物イオン、例えばボ
ロン(B+)を低濃度にイオン注入しイオン注入領域を
形成し、レジストパターン9を剥離除去した後、所定温
度でアニールして該イオン注入領域を拡散させてオフセ
ット拡散領域としてP-拡散領域3を形成する。このア
ニールでSi基板上の露出部のゲート酸化膜6は更に厚
くなりLOCOS酸化層5となる(図5(c))。First, as shown in FIG. 5A, a gate oxide film 6 is formed on an N-type Si substrate 1, and a silicon nitride film (Si 3 N 4 ) 7 is patterned by a CVD (chemical vapor deposition) method. Then, as shown in FIG. 5B, a resist pattern 9 is arranged at a predetermined position, and P-type impurity ions such as boron (B + ) are ion-implanted at a low concentration to form an ion-implanted region, After removing the resist pattern 9 by peeling, the ion implantation region is diffused by annealing at a predetermined temperature to form a P − diffusion region 3 as an offset diffusion region. By this annealing, the gate oxide film 6 on the exposed portion on the Si substrate becomes thicker and becomes the LOCOS oxide layer 5 (FIG. 5C).
【0007】次にシリコン窒化膜7を除去した後、通常
通りポリシリコン(Poly−Si)ゲート電極10を
形成し、薄いゲート酸化膜6を通じて高濃度B+イオン
を注入してP+ドレイン領域2及びP+ソース領域23を
形成する(図5(d))。Next, after removing the silicon nitride film 7, a polysilicon (Poly-Si) gate electrode 10 is formed as usual, and high concentration B + ions are implanted through the thin gate oxide film 6 to form the P + drain region 2. And P + source regions 23 are formed (FIG. 5D).
【0008】[0008]
【発明が解決しようとする課題】このように図5(a)
〜図5(d)に示した工程によって得られた、P+ドレ
イン領域2とP-拡散領域3とからなるLOCOSオフ
セットドレインは、P-拡散領域3の濃度分布のバラツ
キやLOCOS酸化層5の膜厚のバラツキ等のプロセス
バラツキにより、P+ドレイン領域2の下部エッジ2a
(図中のB内)をP-拡散領域3でカバーできず、耐圧
を保証できない場合が生じる。The problem to be solved by the invention is shown in FIG.
The LOCOS offset drain formed of the P + drain region 2 and the P − diffusion region 3 obtained by the process shown in FIG. 5D has the unevenness in the concentration distribution of the P − diffusion region 3 and the LOCOS oxide layer 5. Due to process variations such as variations in film thickness, the lower edge 2a of the P + drain region 2
In some cases, the P - diffusion region 3 cannot cover (inside B in the figure) and the breakdown voltage cannot be guaranteed.
【0009】そこで本発明は半導体装置製造プロセスの
バラツキがあっても、耐圧を保証し得るLOCOSオフ
セットドレインの製造方法を提供することを目的とす
る。Therefore, an object of the present invention is to provide a method of manufacturing a LOCOS offset drain capable of guaranteeing a breakdown voltage even if there are variations in the semiconductor device manufacturing process.
【0010】[0010]
【課題を解決するための手段】上記課題は本発明によれ
ば、1導電型のシリコン基板上に酸化膜を形成した後、
該酸化膜上の所定位置に少なくとも2つの窒化膜パター
ンを形成する工程と、前記窒化膜パターンをマスクとし
て前記酸化膜をエッチングし、且つ前記シリコン基板の
(111)面に沿うエッチングを含むエッチングを行っ
て前記シリコン基板に凹部を形成する工程と、前記シリ
コン基板の凹部上方から該シリコン基板内へ反対導電型
の不純物を導入し、熱処理することによって該反対導電
型のオフセット拡散領域を形成する工程と、前記窒化膜
を除去した後、前記凹部にLOCOS酸化層を形成する
工程と、前記LOCOS配化層の一方の側面上を含む位
置にゲート電極を形成する工程、及び前記ゲート電極を
マスクとして、前記酸化膜を通して前記反対導電型の不
純物を導入し、熱処理することによって前記LOCOS
酸化層の側面側に該反対導電型のドレイン拡散領域を形
成する工程を含むことを特徴とするLOCOSオフセッ
トドレインの製造方法によって解決される。According to the present invention, the above-mentioned problem is solved by forming an oxide film on a silicon substrate of one conductivity type,
Forming at least two nitride film patterns at predetermined positions on the oxide film, and etching the oxide film using the nitride film pattern as a mask, and etching including etching along the (111) plane of the silicon substrate. And a step of forming a recess in the silicon substrate, and a step of introducing an impurity of an opposite conductivity type into the silicon substrate from above the recess of the silicon substrate and performing a heat treatment to form an offset diffusion region of the opposite conductivity type. A step of forming a LOCOS oxide layer in the recess after removing the nitride film, a step of forming a gate electrode at a position including one side surface of the LOCOS layer, and using the gate electrode as a mask The LOCOS is formed by introducing impurities of the opposite conductivity type through the oxide film and performing heat treatment.
This is solved by a method of manufacturing a LOCOS offset drain including a step of forming a drain diffusion region of the opposite conductivity type on a side surface side of an oxide layer.
【0011】[0011]
【作用】本発明によれば、ドレインとゲート電極間のシ
リコン基板1間に(111)面に沿う異方性エッチング
を利用するエッチングによって船型の凹部(溝)20を
作り、その凹部20にオフセット拡散領域13を形成
し、その後その凹部をほぼ埋め、且つその底部を下広が
りになるようなLOCOS酸化層15を形成しているた
め上記のオフセット拡散領域13がより下方及び横方向
へ拡大する。そのために後に形成するドレイン領域12
の下部エッジ12aをそのオフセット拡散領域13で覆
うことができる。According to the present invention, a boat-shaped concave portion (groove) 20 is formed between the drain and the gate electrode between the silicon substrate 1 by utilizing anisotropic etching along the (111) plane, and the concave portion 20 is offset. Since the diffusion region 13 is formed, and thereafter the recess is almost filled, and the bottom portion thereof is formed with the LOCOS oxide layer 15 which is spread downward, the offset diffusion region 13 is further expanded downward and laterally. Therefore, the drain region 12 to be formed later is formed.
The lower edge 12a of the can be covered with the offset diffusion region 13.
【0012】[0012]
【実施例】以下本発明の実施例を図面に基づいて説明す
る。Embodiments of the present invention will be described below with reference to the drawings.
【0013】図1は本発明に係るLOCOSオフセット
ドレインを製造する方法の一実施例を示す工程断面図で
ある。FIG. 1 is a process sectional view showing an embodiment of a method of manufacturing a LOCOS offset drain according to the present invention.
【0014】まず、図1(a)に示す様に、N型(10
0)シリコン(Si)基板11上に熱酸化法により50
nmの厚さのゲート酸化膜6を形成し、CVD法により
厚さ100nmのシリコン窒化膜(Si3N4)7をパタ
ーニング形成した。窒化膜7間の距離を3μmとした。First, as shown in FIG. 1A, an N type (10
0) 50 on the silicon (Si) substrate 11 by the thermal oxidation method
A gate oxide film 6 having a thickness of nm is formed, and a silicon nitride film (Si 3 N 4 ) 7 having a thickness of 100 nm is patterned by the CVD method. The distance between the nitride films 7 was 3 μm.
【0015】次に図1(b)に示す様に、シリコン窒化
膜7をマスクとしてアンモニア等のアルカリ液を用い
て、ゲート酸化膜6及びN型(100)Si基板11を
異方性エッチングし、特にN型(100)Si基板11
の側面に(111)面を露出する船型状の凹部(溝深さ
300nm)20を形成する。Next, as shown in FIG. 1B, the gate oxide film 6 and the N-type (100) Si substrate 11 are anisotropically etched using an alkaline solution such as ammonia with the silicon nitride film 7 as a mask. , Especially N-type (100) Si substrate 11
A boat-shaped concave portion (groove depth 300 nm) 20 exposing the (111) plane is formed on the side surface of the.
【0016】次に図1(c)に示す様に所定位置にレジ
ストパターン19を配し、ボロン(B+)を25KeV
で低濃度にイオン注入し、P-イオン注入領域を形成
し、レジストパターン19を剥離除去した後、約100
0℃で熱処理を行い、P-イオンを拡散して図1(d)
に示す様にP-拡散領域13を形成した。本熱処理では
P-拡散領域13上にはゲート酸化膜6と略平坦化され
たLOCOS酸化層15が船型状溝20を埋め込み、更
に船底を下広がりに拡大した状態に形成される。このL
OCOS酸化層15の膜厚は約600nmであり、また
得られたP-拡散領域13の深さは0.2μmであっ
た。Next, as shown in FIG. 1C, a resist pattern 19 is arranged at a predetermined position, and boron (B + ) is added at 25 KeV.
After ion-implanting at a low concentration with P to form a P − ion-implanted region and peeling and removing the resist pattern 19, about 100
Heat treatment is performed at 0 ° C. to diffuse P − ions, and FIG.
A P - diffusion region 13 was formed as shown in FIG. In this heat treatment, the gate oxide film 6 and the substantially flattened LOCOS oxide layer 15 are formed on the P − diffusion region 13 so as to fill the boat-shaped groove 20 and further expand the bottom of the boat downward. This L
The OCOS oxide layer 15 had a thickness of about 600 nm, and the obtained P − diffusion region 13 had a depth of 0.2 μm.
【0017】最後に図1(e)に示す様に、シリコン窒
化膜7を除去した後、CVD法によりPoly−Siを
約400nmの厚さに被着し、パターニングして幅6μ
mのPoly−Siゲート電極21を形成する。その
後、Poly−Siゲート電極21をマスクとして上方
から高濃度でB+を注入し、拡散してドレイン領域12
及びP+ソース領域23を形成する。P+ドレイン領域1
2及びP+ソース領域23の深さは共に約400nm幅
は共に約10μmであった。このようにして得られたP
-拡散領域13とP+ドレイン領域12のカバー状態を説
明するために図1(e)のA部を拡大して図2に示す。Finally, as shown in FIG. 1 (e), after removing the silicon nitride film 7, Poly-Si is deposited to a thickness of about 400 nm by the CVD method and patterned to have a width of 6 μm.
m Poly-Si gate electrode 21 is formed. Then, using the Poly-Si gate electrode 21 as a mask, B + is injected at a high concentration from above and diffused to diffuse the drain region 12
And a P + source region 23 are formed. P + drain region 1
The depths of the 2 and P + source regions 23 were both about 400 nm and the width was about 10 μm. P thus obtained
In order to explain the covering state of the diffusion region 13 and the P + drain region 12, the portion A of FIG. 1 (e) is enlarged and shown in FIG.
【0018】図2に示す様に、動作時、特に電界集中を
生ずるP+ドレイン領域12の下部エッジ12aは本実
施例で形成したP-拡散領域13によってゆとりを持っ
てカバーされている。As shown in FIG. 2, the lower edge 12a of the P + drain region 12 which causes electric field concentration during operation is covered with a space by the P − diffusion region 13 formed in this embodiment.
【0019】本実施例では(100)Si基板をエッチ
ングして(111)面を露出させる船型状の溝(凹部)
を形成する異方性のウェットエッチングエッチャントと
してアンモニアの他にKOH等のアルカリが用いられ
る。In this embodiment, a (100) Si substrate is etched to form a boat-shaped groove (recess) to expose the (111) surface.
In addition to ammonia, an alkali such as KOH is used as an anisotropic wet etching etchant for forming.
【0020】[0020]
【発明の効果】以上説明した様に、本発明によればP-
拡散領域(オフセット拡散領域)がP+ドレイン領域の
下部エッジを十分に覆うことができるために、半導体装
置製造のバラツキ依存性のない安定した耐圧のLOCO
Sオフセットドレインを得ることができ、本ドレインを
例えば高耐圧MOSFETの製造に好適に利用できる。
なお、本発明ではLOCOS酸化膜の平坦化も図られる
利点がある。As has been described above, according to the present invention, P according to the present invention -
Since the diffusion region (offset diffusion region) can sufficiently cover the lower edge of the P + drain region, the LOCO has a stable breakdown voltage that does not depend on variations in semiconductor device manufacturing.
An S offset drain can be obtained, and this drain can be suitably used for manufacturing a high breakdown voltage MOSFET, for example.
The present invention has an advantage that the LOCOS oxide film can be flattened.
【図1】本発明の一実施例(LOCOSオフセットドレ
イン)を示す工程断面図である。FIG. 1 is a process sectional view showing an embodiment (LOCOS offset drain) of the present invention.
【図2】P-拡散領域(オフセット拡散領域)とP+ドレ
イン領域のカバー状態を示す拡大図である。FIG. 2 is an enlarged view showing a cover state of a P − diffusion region (offset diffusion region) and a P + drain region.
【図3】従来技術であるオフセットドレインを示す断面
図である。FIG. 3 is a cross-sectional view showing a conventional offset drain.
【図4】従来技術であるLOCOSオフセットドレイン
を示す断面図である。FIG. 4 is a cross-sectional view showing a conventional LOCOS offset drain.
【図5】従来技術を説明するための工程断面図である。FIG. 5 is a process sectional view for explaining a conventional technique.
1 N型シリコン(Si)基板 2,12 P+ドレイン領域 2a,12a P+ドレイン領域の下部エッジ 3,13 P-拡散領域(オフセット拡散領域) 5,15 LOCOS酸化層 6 ゲート酸化膜 7 シリコン窒化膜(Si3N4) 9,19 レジストパターン 10,21 Poly−Siゲート電極 11 N型(100)シリコン(Si)基板 20 溝(凹部) 23 P+ソース領域1 N-type silicon (Si) substrate 2, 12 P + drain region 2a, 12a P + lower edge of drain region 3, 13 P − diffusion region (offset diffusion region) 5, 15 LOCOS oxide layer 6 gate oxide film 7 silicon nitride Film (Si 3 N 4 ) 9,19 Resist pattern 10,21 Poly-Si gate electrode 11 N-type (100) silicon (Si) substrate 20 Groove (recess) 23 P + source region
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年2月6日[Submission date] February 6, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【特許請求の範囲】[Claims]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0010[Correction target item name] 0010
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0010】[0010]
【課題を解決するための手段】上記課題は本発明によれ
ば、1導電型のシリコン基板上に酸化膜を形成した後、
該酸化膜上の所定位置に少なくとも2つの窒化膜パター
ンを形成する工程と、前記窒化膜パターンをマスクとし
て前記酸化膜をエッチングし、且つ前記シリコン基板の
(111)面に沿うエッチングを含むエッチングを行っ
て前記シリコン基板に凹部を形成する工程と、前記シリ
コン基板の凹部上方から該シリコン基板内へ反対導電型
の不純物を導入し、熱処理することによって該反対導電
型のオフセット拡散領域を形成する工程と、前記窒化膜
をマスクとして、前記凹部にLOCOS酸化層を形成す
る工程と、前記窒化膜を除去した後、前記LOCOS酸
化層の一方の側面上を含む位置にゲート電極を形成する
工程、及び前記ゲート電極をマスクとして、前記酸化膜
を通して前記反対導電型の不純物を導入し、熱処理する
ことによって前記LOCOS酸化層の側面側に該反対導
電型のドレイン拡散領域を形成する工程を含むことを特
徴とするLOCOSオフセットドレインの製造方法によ
って解決される。 ─────────────────────────────────────────────────────
According to the present invention, the above-mentioned problem is solved by forming an oxide film on a silicon substrate of one conductivity type,
Forming at least two nitride film patterns at predetermined positions on the oxide film, and etching the oxide film using the nitride film pattern as a mask, and etching including etching along the (111) plane of the silicon substrate. And a step of forming a recess in the silicon substrate, and a step of introducing an impurity of the opposite conductivity type into the silicon substrate from above the recess of the silicon substrate and performing a heat treatment to form an offset diffusion region of the opposite conductivity type. A step of forming a LOCOS oxide layer in the recess using the nitride film as a mask; a step of removing the nitride film and then forming a gate electrode at a position including one side surface of the LOCOS oxide layer; By using the gate electrode as a mask and introducing the impurity of the opposite conductivity type through the oxide film, and performing a heat treatment, It is solved by the manufacturing method of the LOCOS offset drain, characterized in that the side surface of the OCOS oxide layer includes a step of forming a drain diffusion region of the reflected Taishirube conductivity type. ─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年6月2日[Submission date] June 2, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0002[Name of item to be corrected] 0002
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0002】[0002]
【従来の技術】約50Vの電圧に耐える例えば高耐圧M
OSFETにおいては、従来プレーナ型ドレイン(例え
ばP+領域)の両端部で電界集中を緩和するドレイン型
として図4及び図5でそれぞれ示す、オフセットドレイ
ン及びLOCOSオフセットドレインが知られている。
図3に示すプレーナ型のオフセットドレインは、N型の
シリコン(Si)基板1内に形成されたP+ドレイン領
域2の両側にP-拡散領域3を形成してドレインエッジ
の電界集中を防止するものであるが、P-の濃度分布や
その領域形成部位のバラツキにより、P+ドレイン領域
2の下部エッジ2aを十分にカバーできず安定した電界
集中の防止ができなかった。2. Description of the Related Art For example, a high withstand voltage M that withstands a voltage of about 50V
In the OSFET, an offset drain and a LOCOS offset drain shown in FIGS. 4 and 5, respectively, are known as a drain type that alleviates electric field concentration at both ends of a conventional planar drain (for example, P + region).
In the planar type offset drain shown in FIG. 3, P − diffusion regions 3 are formed on both sides of a P + drain region 2 formed in an N type silicon (Si) substrate 1 to prevent electric field concentration at the drain edge. However, the lower edge 2a of the P + drain region 2 cannot be sufficiently covered due to the P − concentration distribution and the variation in the region forming region, and stable electric field concentration cannot be prevented.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0003[Name of item to be corrected] 0003
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0003】そこで、図4のオフセットドレイン型の改
良型として図5に示したLOCOSオフセットドレイン
が提案された。Therefore, the LOCOS offset drain shown in FIG. 5 has been proposed as a modification of the offset drain type shown in FIG.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0004[Correction target item name] 0004
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0004】図5のLOCOSオフセットドレインは、
N型シリコン基板1にLOCOS酸化層5によって挟ま
れてP+ドレイン領域2が形成されており、またP-拡散
領域3がLOCOS酸化層5の端部直下で、しかもP+
ドレイン領域2と接して形成され、P+ドレイン領域2
の下部エッジ2aの電界集中部をカバーして耐圧の向上
を図っていた。The LOCOS offset drain of FIG.
A P + drain region 2 is formed by being sandwiched by a LOCOS oxide layer 5 on an N-type silicon substrate 1, and a P − diffusion region 3 is located immediately below an end of the LOCOS oxide layer 5 and is P +.
P + drain region 2 formed in contact with drain region 2
The electric field concentration portion of the lower edge 2a was covered to improve the breakdown voltage.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0005[Name of item to be corrected] 0005
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0005】上記図5に示したLOCOSオフセットド
レイン(LOD)の製造方法を図6に示した工程断面図
を用いて説明する。A method of manufacturing the LOCOS offset drain (LOD) shown in FIG. 5 will be described with reference to process sectional views shown in FIG.
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0006[Correction target item name] 0006
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0006】まず、図6(a)に示すようにN型Si基
板1上にゲート酸化膜6を形成し、CVD(化学気相成
長)法によりシリコン窒化膜(Si3N4)7をパターニ
ング形成し、次に図6(b)に示す様に、所定位置にレ
ジストパターン9を配し、P型不純物イオン、例えばボ
ロン(B+)を低濃度にイオン注入しイオン注入領域を
形成し、レジストパターン9を剥離除去した後、所定温
度でアニールして該イオン注入領域を拡散させてオフセ
ット拡散領域としてP-拡散領域3を形成する。このア
ニールでSi基板上の露出部のゲート酸化膜6は更に厚
くなりLOCOS酸化層5となる(図6(c))。First, as shown in FIG. 6A, a gate oxide film 6 is formed on an N-type Si substrate 1, and a silicon nitride film (Si 3 N 4 ) 7 is patterned by a CVD (chemical vapor deposition) method. Then, as shown in FIG. 6B, a resist pattern 9 is arranged at a predetermined position, and P-type impurity ions such as boron (B + ) are ion-implanted at a low concentration to form an ion-implanted region, After removing the resist pattern 9 by peeling, the ion implantation region is diffused by annealing at a predetermined temperature to form a P − diffusion region 3 as an offset diffusion region. By this annealing, the gate oxide film 6 on the exposed portion on the Si substrate becomes thicker and becomes the LOCOS oxide layer 5 (FIG. 6C).
【手続補正6】[Procedure correction 6]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0007[Correction target item name] 0007
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0007】次にシリコン窒化膜7を除去した後、通常
通りポリシリコン(Poly−Si)ゲート電極10を
形成し、薄いゲート酸化膜6を通じて高濃度B+イオン
を注入してP+ドレイン領域2及びP+ソース領域23を
形成する(図6(d))。Next, after removing the silicon nitride film 7, a polysilicon (Poly-Si) gate electrode 10 is formed as usual, and high concentration B + ions are implanted through the thin gate oxide film 6 to form the P + drain region 2. And P + source region 23 are formed (FIG. 6D).
【手続補正7】[Procedure Amendment 7]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0008[Correction target item name] 0008
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0008】[0008]
【発明が解決しようとする課題】このように図6(a)
〜図6(d)に示した工程によって得られた、P+ドレ
イン領域2とP-拡散領域3とからなるLOCOSオフ
セットドレインは、P-拡散領域3の濃度分布のバラツ
キやLOCOS酸化層5の膜厚のバラツキ等のプロセス
バラツキにより、P+ドレイン領域2の下部エッジ2a
(図中のB内)をP-拡散領域3でカバーできず、耐圧
を保証できない場合が生じる。As shown in FIG. 6 (a).
The LOCOS offset drain composed of the P + drain region 2 and the P − diffusion region 3 obtained by the process shown in FIG. 6D has a variation in the concentration distribution of the P − diffusion region 3 and the LOCOS oxide layer 5. Due to process variations such as variations in film thickness, the lower edge 2a of the P + drain region 2
In some cases, the P - diffusion region 3 cannot cover (inside B in the figure) and the breakdown voltage cannot be guaranteed.
【手続補正8】[Procedure Amendment 8]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0013[Correction target item name] 0013
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0013】図1及び図2は本発明に係るLOCOSオ
フセットドレインを製造する方法の一実施例を示す工程
断面図である。FIGS. 1 and 2 are process sectional views showing an embodiment of a method of manufacturing a LOCOS offset drain according to the present invention.
【手続補正9】[Procedure Amendment 9]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0016[Correction target item name] 0016
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0016】次に図2(a)に示す様に所定位置にレジ
ストパターン19を配し、ボロン(B+)を25KeV
で低濃度にイオン注入し、P-イオン注入領域を形成
し、レジストパターン19を剥離除去した後、約100
0℃で熱処理を行い、P-イオンを拡散して図2(b)
に示す様にP-拡散領域13を形成した。本熱処理では
P-拡散領域13上にはゲート酸化膜6と略平坦化され
たLOCOS酸化層15が船型状溝20を埋め込み、更
に船底を下広がりに拡大した状態に形成される。このL
OCOS酸化層15の膜厚は約600nmであり、また
得られたP-拡散領域13の深さは0.2μmであっ
た。Next, as shown in FIG. 2A, a resist pattern 19 is arranged at a predetermined position, and boron (B + ) is added at 25 KeV.
After ion-implanting at a low concentration with P to form a P − ion-implanted region and peeling and removing the resist pattern 19, about 100
Heat treatment is performed at 0 ° C. to diffuse P − ions and then, as shown in FIG.
A P - diffusion region 13 was formed as shown in FIG. In this heat treatment, the gate oxide film 6 and the substantially flattened LOCOS oxide layer 15 are formed on the P − diffusion region 13 so as to fill the boat-shaped groove 20 and further expand the bottom of the boat downward. This L
The OCOS oxide layer 15 had a thickness of about 600 nm, and the obtained P − diffusion region 13 had a depth of 0.2 μm.
【手続補正10】[Procedure Amendment 10]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0017[Correction target item name] 0017
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0017】最後に図2(b)に示す様に、シリコン窒
化膜7を除去した後、CVD法によりPoly−Siを
約400nmの厚さに被着し、パターニングして幅6μ
mのPoly−Siゲート電極21を形成する。その
後、Poly−Siゲート電極21をマスクとして上方
から高濃度でB+を注入し、拡散してドレイン領域12
及びP+ソース領域23を形成する。P+ドレイン領域1
2及びP+ソース領域23の深さは共に約400nm幅
は共に約10μmであった。このようにして得られたP
-拡散領域13とP+ドレイン領域12のカバー状態を説
明するために図2(b)のA部を拡大して図3に示す。Finally, as shown in FIG. 2B, after removing the silicon nitride film 7, Poly-Si is deposited to a thickness of about 400 nm by the CVD method and patterned to have a width of 6 μm.
m Poly-Si gate electrode 21 is formed. Then, using the Poly-Si gate electrode 21 as a mask, B + is injected at a high concentration from above and diffused to diffuse the drain region 12
And a P + source region 23 are formed. P + drain region 1
The depths of the 2 and P + source regions 23 were both about 400 nm and the width was about 10 μm. P thus obtained
In order to explain the cover state of the diffusion region 13 and the P + drain region 12, the portion A of FIG. 2B is enlarged and shown in FIG.
【手続補正11】[Procedure Amendment 11]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0018[Correction target item name] 0018
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0018】図3に示す様に、動作時、特に電界集中を
生ずるP+ドレイン領域12の下部エッジ12aは本実
施例で形成したP-拡散領域13によってゆとりを持っ
てカバーされている。 ─────────────────────────────────────────────────────
As shown in FIG. 3, the lower edge 12a of the P + drain region 12 which causes electric field concentration particularly during operation is covered with a space by the P − diffusion region 13 formed in this embodiment. ─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年9月2日[Submission date] September 2, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の一実施例(LOCOSオフセットドレ
イン)を示す前半工程断面図である。FIG. 1 is a sectional view of a first half process showing an embodiment (LOCOS offset drain) of the present invention.
【図2】本発明の一実施例の後半工程断面図である。FIG. 2 is a cross sectional view of a second half process of an embodiment of the present invention.
【図3】P-拡散領域(オフセット拡散領域)とP+ドレ
イン領域のカバー状態を示す拡大図である。FIG. 3 is an enlarged view showing a cover state of a P − diffusion region (offset diffusion region) and a P + drain region.
【図4】従来技術であるオフセットドレインを示す断面
図である。FIG. 4 is a cross-sectional view showing a conventional offset drain.
【図5】従来技術であるLOCOSオフセットドレイン
を示す断面図である。FIG. 5 is a cross-sectional view showing a conventional LOCOS offset drain.
【図6】従来技術を説明するための工程断面図である。FIG. 6 is a process sectional view for explaining a conventional technique.
【符号の説明】 1 N型シリコン(Si)基板 2,12 P+ドレイン領域 2a,12a P+ドレイン領域の下部エッジ 3,13 P-拡散領域(オフセット拡散領域) 5,15 LOCOS酸化層 6 ゲート酸化膜 7 シリコン窒化膜(Si3N4) 9,19 レジストパターン 10,21 Poly−Siゲート電極 11 N型(100)シリコン(Si)基板 20 溝(凹部) 23 P+ソース領域[Description of Reference Signs] 1 N-type silicon (Si) substrate 2, 12 P + drain region 2a, 12a P + drain region lower edge 3, 13 P − diffusion region (offset diffusion region) 5, 15 LOCOS oxide layer 6 gate Oxide film 7 Silicon nitride film (Si 3 N 4 ) 9,19 Resist pattern 10,21 Poly-Si gate electrode 11 N-type (100) silicon (Si) substrate 20 Groove (recess) 23 P + source region
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】全図[Correction target item name] All drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図1】 [Figure 1]
【図2】 [Fig. 2]
【図3】 [Figure 3]
【図4】 [Figure 4]
【図5】 [Figure 5]
【図6】 [Figure 6]
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/316 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication H01L 21/316
Claims (1)
成した後、該酸化膜上の所定位置に少なくとも2つの窒
化膜パターンを形成する工程と、 前記窒化膜パターンをマスクとして前記酸化膜をエッチ
ングし、且つ前記シリコン基板の(111)面に沿うエ
ッチングを含むエッチングを行って前記シリコン基板に
凹部を形成する工程と、 前記シリコン基板の凹部上方から該シリコン基板内へ反
対導電型の不純物を導入し、熱処理することによって該
反対導電型のオフセット拡散領域を形成する工程と、 前記窒化膜を除去した後、前記凹部にLOCOS酸化層
を形成する工程と、 前記LOCOS配化層の一方の側面上を含む位置にゲー
ト電極を形成する工程、及び前記ゲート電極をマスクと
して、前記酸化膜を通して前記反対導電型の不純物を導
入し、熱処理することによって前記LOCOS酸化層の
側面側に該反対導電型のドレイン拡散領域を形成する工
程、 を含むことを特徴とするLOCOSオフセットドレイン
の製造方法。1. A step of forming an oxide film on a silicon substrate of one conductivity type, and then forming at least two nitride film patterns at predetermined positions on the oxide film; and using the nitride film pattern as a mask, the oxide film. To form a recess in the silicon substrate by performing etching including etching along the (111) plane of the silicon substrate, and impurities of opposite conductivity type from above the recess in the silicon substrate into the silicon substrate. And then heat treating to form an offset diffusion region of the opposite conductivity type; removing the nitride film, forming a LOCOS oxide layer in the recess; Forming a gate electrode at a position including a side surface, and using the gate electrode as a mask, impurities of the opposite conductivity type through the oxide film Introduced, heat treatment LOCOS offset drain method for producing characterized in that it comprises a step, to form a drain diffusion region of the reflected Taishirube conductivity type on the side surface side of the LOCOS oxide layer by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3301764A JPH0629313A (en) | 1991-11-18 | 1991-11-18 | Manufacture of locos offset drain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3301764A JPH0629313A (en) | 1991-11-18 | 1991-11-18 | Manufacture of locos offset drain |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0629313A true JPH0629313A (en) | 1994-02-04 |
Family
ID=17900892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3301764A Pending JPH0629313A (en) | 1991-11-18 | 1991-11-18 | Manufacture of locos offset drain |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0629313A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002170888A (en) * | 2000-11-30 | 2002-06-14 | Hitachi Ltd | Semiconductor integrated circuit device and manufacturing method thereof |
US7223648B2 (en) | 2005-06-17 | 2007-05-29 | Seiko Epson Corporation | Method for manufacturing a semiconductor element |
JP2008258640A (en) * | 2008-05-07 | 2008-10-23 | Renesas Technology Corp | Semiconductor integrated circuit device |
US7629238B2 (en) | 2005-07-26 | 2009-12-08 | Dongbu Electronics Co., Ltd. | Device isolation structure of a semiconductor device and method of forming the same |
US8404547B2 (en) | 2008-07-29 | 2013-03-26 | Seiko Instruments Inc. | Semiconductor device and manufacturing method thereof |
JP2015506578A (en) * | 2011-12-29 | 2015-03-02 | 無錫華潤上華半導体有限公司 | Manufacturing method of semiconductor device |
-
1991
- 1991-11-18 JP JP3301764A patent/JPH0629313A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002170888A (en) * | 2000-11-30 | 2002-06-14 | Hitachi Ltd | Semiconductor integrated circuit device and manufacturing method thereof |
US7224037B2 (en) | 2000-11-30 | 2007-05-29 | Renesas Technology Corp. | Semiconductor integrated circuit device with high and low breakdown-voltage MISFETs |
US7541661B2 (en) | 2000-11-30 | 2009-06-02 | Renesas Technology Corp. | Semiconductor integrated circuit device with high and low breakdown-voltage MISFETs |
US7790554B2 (en) | 2000-11-30 | 2010-09-07 | Renesas Technology Corp. | Method of manufacturing semiconductor integrated circuit device with high and low breakdown-voltage MISFETs |
US7223648B2 (en) | 2005-06-17 | 2007-05-29 | Seiko Epson Corporation | Method for manufacturing a semiconductor element |
US7629238B2 (en) | 2005-07-26 | 2009-12-08 | Dongbu Electronics Co., Ltd. | Device isolation structure of a semiconductor device and method of forming the same |
JP2008258640A (en) * | 2008-05-07 | 2008-10-23 | Renesas Technology Corp | Semiconductor integrated circuit device |
US8404547B2 (en) | 2008-07-29 | 2013-03-26 | Seiko Instruments Inc. | Semiconductor device and manufacturing method thereof |
JP2015506578A (en) * | 2011-12-29 | 2015-03-02 | 無錫華潤上華半導体有限公司 | Manufacturing method of semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4488351A (en) | Method for manufacturing semiconductor device | |
US4272881A (en) | Method for making a closed gate MOS transistor with self-aligned contacts with dual passivation layer | |
US4318216A (en) | Extended drain self-aligned silicon gate MOSFET | |
US4675981A (en) | Method of making implanted device regions in a semiconductor using a master mask member | |
JPH0629313A (en) | Manufacture of locos offset drain | |
US6800528B2 (en) | Method of fabricating LDMOS semiconductor devices | |
JP3985358B2 (en) | Semiconductor device and manufacturing method thereof | |
US4274193A (en) | Method for making a closed gate MOS transistor with self-aligned contacts | |
KR100209280B1 (en) | Method for forming a contact of semiconductor device | |
JPH1064898A (en) | Manufacturing method of semiconductor device | |
EP0193992A2 (en) | Method of manufacturing an insulated gate field effect device | |
KR0166888B1 (en) | Thin film transistor & its making method | |
JPH02133929A (en) | Semiconductor device and its manufacture | |
KR100406590B1 (en) | Gate electrode formation method of semiconductor device | |
JPH11121743A (en) | Manufacture of semiconductor device | |
JP3311082B2 (en) | Method for manufacturing semiconductor device | |
JPH1174513A (en) | Semiconductor of insulating gate type and its manufacture | |
JP2887902B2 (en) | Method for manufacturing semiconductor device | |
KR940010516B1 (en) | Bipolar transistor fabricating method using self-align technique | |
JP2624365B2 (en) | Method for manufacturing semiconductor device | |
KR0141964B1 (en) | Fabrication method of reverse t-type mosfet | |
KR940007663B1 (en) | Manufacturing method of mosfet | |
JPS63177561A (en) | Manufacture of semiconductor device | |
KR930006733B1 (en) | Manufacturing method of high-speed transistor | |
JP2630524B2 (en) | Method for manufacturing semiconductor device |