JPH06292907A - Manufacture of stainless steel sheet having minimized surface defect - Google Patents

Manufacture of stainless steel sheet having minimized surface defect

Info

Publication number
JPH06292907A
JPH06292907A JP8493293A JP8493293A JPH06292907A JP H06292907 A JPH06292907 A JP H06292907A JP 8493293 A JP8493293 A JP 8493293A JP 8493293 A JP8493293 A JP 8493293A JP H06292907 A JPH06292907 A JP H06292907A
Authority
JP
Japan
Prior art keywords
rolling
slab
stainless steel
steel sheet
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8493293A
Other languages
Japanese (ja)
Other versions
JP2863407B2 (en
Inventor
Tetsuo Takeshita
哲郎 竹下
Kenji Yamada
健二 山田
Masayuki Abe
阿部  雅之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8493293A priority Critical patent/JP2863407B2/en
Publication of JPH06292907A publication Critical patent/JPH06292907A/en
Application granted granted Critical
Publication of JP2863407B2 publication Critical patent/JP2863407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To provide a method for reducing surface defect in a manufacturing method of a stainless steel sheet. CONSTITUTION:At the time of manufacturing the stainless steel sheet by hot rolling, the surface defect of the stainless steel sheet is reduced by executing the initial rolling with horizontal rolls at >=1000 deg.C: and taking the draft of the rolling as at least deg.15%. And, by applying at least one pass or more of the rolling with vertical rolls and taking the total draft with the vertical rolls as at least >=5% before executing the initial rolling with the horizontal rolls in the temp. range of of >=1000 deg.C, the surface defect of the stainless steel sheet is reduced. Where, the total draft (r) with the vertical rolls is computed according to r=1-w'/w from the slab width (w) before rolling and the slab width (w') after rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面欠陥が少ないステ
ンレス鋼板の製造方法、取り分けオーステナイト系ステ
ンレス鋼板の熱間圧延に際して発生する表面疵を、その
熱間圧延条件を規定することで、減少させる方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention reduces a surface flaw that occurs during hot rolling of a stainless steel sheet having a small number of surface defects, and particularly hot rolling of an austenitic stainless steel sheet, by defining the hot rolling conditions. It is about the method.

【0002】[0002]

【従来の技術】一般に熱間圧延されたステンレス鋼板の
エッジ部には表面疵が発生し易く、特に鋼板の割れや表
面凹凸に起因する表面疵内部にはスケールが生成して後
工程の酸洗時に十分除去されず、冷間圧延後に重大な表
面欠陥となり、製品歩留まりの低下を来す。取り分け、
熱間圧延時の微小割れに起因するヘゲ疵と称される表面
欠陥は、割れ発生後に生成するスケールが圧延により内
部に食い込み、酸洗工程で除去されずに冷間圧延工程に
供せられると、圧延方向に長い線状の欠陥となり歩留ま
り低下度が特に大きい。またこの微小割れ起因の表面欠
陥による歩留まり低下が特に問題とされる鋼種は、製品
表面美麗性が問題になり易くかつ熱延での微小割れが発
生し易いオーステナイト系ステンレス鋼である。
2. Description of the Related Art Generally, surface defects are likely to occur on the edges of hot-rolled stainless steel sheets, and especially scales are generated inside the surface defects caused by cracks and surface irregularities on the steel sheet, and pickling in the subsequent process. At times, it is not sufficiently removed and becomes a serious surface defect after cold rolling, resulting in a decrease in product yield. In particular,
Surface defects called bald spots caused by microcracks during hot rolling are used in the cold rolling process without being removed in the pickling process because the scale generated after cracking penetrates into the inside by rolling. Then, it becomes a linear defect that is long in the rolling direction, and the yield reduction rate is particularly large. Further, a steel type in which the yield reduction due to the surface defects caused by the microcracks is a particular problem is an austenitic stainless steel in which the beauty of the product surface is likely to become a problem and microcracks are likely to occur in hot rolling.

【0003】従って従来より熱間圧延時の表面疵を少な
くするための様々な技術が、主にステンレス鋼に関して
多く考案されてきている。例えば特開昭57−1615
3号ではオーステナイト系ステンレス鋼の成分を規定し
て熱間加工性を確保し、当該鋼の耳われやヘゲ疵を少な
くする技術が開示されている。特開平2−15806号
ではステンレス鋼スラブの表面欠陥(ピンホール)を手
入れ除去してヘゲ疵発生を無くする技術が開示されてい
る。しかしこの技術では熱間圧延時に発生する微小な割
れを防止することはできない。また熱間圧延疵発生をス
ラブ形状で少なくする技術として、特開昭58−138
502号及び特開平3−207551号が挙げられる。
両者ともスラブ短辺中央部を窪ませてフェライト系ステ
ンレス鋼のエッジシーム疵を低減させる技術を開示して
いる。しかしながらこの技術では上述の熱間圧延時の微
小割れを防ぐことはできない。
Therefore, various techniques for reducing surface defects during hot rolling have hitherto been devised mainly for stainless steel. For example, JP-A-57-1615
No. 3 discloses a technique in which the components of an austenitic stainless steel are specified to secure hot workability and reduce the earing and bald spots of the steel. Japanese Unexamined Patent Publication No. 2-15806 discloses a technique of removing surface defects (pinholes) of a stainless steel slab by caring for it to eliminate the occurrence of bald spots. However, this technique cannot prevent minute cracks generated during hot rolling. Further, as a technique for reducing the occurrence of hot rolling flaws in a slab shape, Japanese Patent Laid-Open No. 58-138.
502 and JP-A-3-207551.
Both of them disclose a technique in which the central portion of the short side of the slab is recessed to reduce edge seam flaws in ferritic stainless steel. However, this technique cannot prevent the above-mentioned microcracking during hot rolling.

【0004】[0004]

【発明が解決しようとする課題】本発明はステンレス鋼
の熱間圧延時に発生する表面欠陥を改善するに当たり、
特段の工程負荷増なく表面疵を改善したステンレス鋼板
の製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention aims to improve surface defects generated during hot rolling of stainless steel.
It is an object of the present invention to provide a method for manufacturing a stainless steel sheet with improved surface defects without increasing the process load.

【0005】[0005]

【課題を解決するための手段】本発明は上記問題点を解
決するため熱間圧延の圧延条件を特定したもので、その
骨子は、第一に、熱間圧延によりステンレス鋼板を製造
するに際し、水平ロールによる1パス目の圧延を100
0℃以上の温度域で与え、1パス目の圧下率を少なくと
も15%以上とすることである。第二に、1000℃以
上の温度域で水平ロールによる1パス目の圧延を実施す
る前に、垂直ロールによる圧延を少なくとも1パス以上
与え、かつ当該垂直ロールによる全圧下率を少なくとも
5%以上とすることである。ここで当該垂直ロール圧延
による全圧下率rは、当該圧延前のスラブ幅wと圧延後
の幅w′よりr=1−w′/wとして求められる。
Means for Solving the Problems The present invention specifies rolling conditions for hot rolling in order to solve the above problems, and the essence thereof is, firstly, in producing a stainless steel sheet by hot rolling, 100 rolls of the first pass with horizontal rolls
It is applied in a temperature range of 0 ° C. or higher, and the reduction rate of the first pass is at least 15% or higher. Secondly, before carrying out the first pass rolling with the horizontal rolls in the temperature range of 1000 ° C. or more, at least one pass rolling with the vertical rolls and the total rolling reduction with the vertical rolls should be at least 5% or more. It is to be. Here, the total rolling reduction r by the vertical roll rolling is obtained as r = 1-w '/ w from the slab width w before the rolling and the width w'after the rolling.

【0006】[0006]

【作用】以下に本発明を詳細に説明する。本発明者らは
熱間圧延時に発生する疵と熱間圧延に関連する種々の条
件との関係を綿密に調査して、本発明を完成したもので
ある。
The present invention will be described in detail below. The present inventors have completed the present invention by scrutinizing the relationship between defects generated during hot rolling and various conditions related to hot rolling.

【0007】まず本発明者らは熱間圧延疵発生とスラブ
形状との関係を綿密に調査したところ、図1の矩形スラ
ブよりも図2の凹部発生スラブで熱延疵発生が多いこと
を見い出した。矩形スラブとは図1にその横断面を示し
た様に、鋳造時にバルジングが生じなかった時に得られ
るスラブであり、図中のhとwは各々スラブ厚みとスラ
ブ幅を意味する。凹部発生スラブとは図2にその横断面
を示した様に、鋳造時にバルジング等によりスラブ長辺
面に凹部が形成されたスラブである。凹部の発生位置は
通常スラブエッジから10mm〜300mmの範囲に形成さ
れ、図中のΔhは最大凹部深さ(スラブ中央部の水平面
からの深さ)を、Δwはスラブエッジから最大凹部深さ
発生位置までの距離を、hc はスラブ中央部の平均厚み
を、各々示す。通常の連続鋳造機では、上記凹部を完全
に無くしてスラブ横断面を完全な矩形にするのは一般的
に困難である。取り分け最近では、生産性向上のために
連続鋳造時の鋳造速度を高くする傾向があり、その結果
バルジングが生じ易くなる等、完全矩形スラブを得るこ
とは極めて困難である。
First, the inventors of the present invention have conducted a close examination of the relationship between the occurrence of hot rolling flaws and the slab shape, and found that the recessed slab of FIG. 2 produces more hot defects than the rectangular slab of FIG. It was The rectangular slab is a slab obtained when bulging does not occur during casting, as shown in the cross section of FIG. 1, and h and w in the figure mean the slab thickness and the slab width, respectively. The recessed slab is a slab in which recesses are formed on the long side surface of the slab by bulging or the like during casting, as shown in the cross section of FIG. The position where the recess is generated is usually formed within the range of 10 mm to 300 mm from the slab edge. Δh in the figure is the maximum recess depth (depth from the horizontal plane of the slab center), and Δw is the maximum recess depth from the slab edge. The distance to the position and h c indicate the average thickness of the central portion of the slab. In a normal continuous casting machine, it is generally difficult to completely eliminate the above-mentioned recess and form a rectangular slab cross section. In particular, recently, there has been a tendency to increase the casting speed during continuous casting in order to improve productivity, and as a result, bulging is likely to occur, so that it is extremely difficult to obtain a perfect rectangular slab.

【0008】また熱延疵の発生位置は、矩形スラブでは
スラブエッジに近くなるほど発生頻度が高くなり、凹部
発生スラブでは矩形スラブを上回る発生頻度で凹部に熱
延疵が発生することが判明した。また凹部発生スラブで
の熱延疵発生頻度は最大凹部深さΔhに左右される傾向
が認められ、Δhが大きいほど疵発生頻度が高くなる。
即ち凹部発生スラブを使用すると、熱延疵がエッジより
内側に発生し易くなり、最終製品の歩留まりが著しく低
下する。
Further, it has been found that the position of occurrence of the hot-rolling defect is higher in the rectangular slab as it is closer to the slab edge, and in the concave-portion slab the hot-rolling defect is generated in the concave portion at a frequency higher than that of the rectangular slab. Further, it is recognized that the frequency of hot-rolling defects in the recessed slab depends on the maximum recess depth Δh. The larger Δh, the higher the frequency of defects.
That is, when the recessed slab is used, thermal defects are likely to occur inside the edge, and the yield of the final product is significantly reduced.

【0009】更に本発明者らは、疵の発生形態を明確に
するために粗熱延1パス(水平ロール圧延)終了後の熱
延疵を調査した。その結果、スラブエッジやスラブ凹部
に発生する疵はすべてC方向割れ(圧延方向に直角方向
の割れ)であることが判った。そのサイズはC方向に
0.1〜0.2mm程度で深さ0.1mm程度の微小な割れ
で、その後の熱延や冷延等の圧延工程によりL方向(圧
延方向)に伸張され、最終製品板で表面品位を致命的に
劣化させるヘゲ疵等になることを確認した。
Further, the present inventors investigated the hot rolling defects after the completion of the 1-pass rough hot rolling (horizontal roll rolling) in order to clarify the pattern of the defects. As a result, it was found that all the flaws generated in the slab edge and the slab recess were C-direction cracks (cracks in the direction perpendicular to the rolling direction). The size is a minute crack of 0.1 to 0.2 mm in the C direction and a depth of about 0.1 mm, and it is stretched in the L direction (rolling direction) by the subsequent rolling process such as hot rolling or cold rolling. It was confirmed that the product plate will cause bald defects and the like that will seriously deteriorate the surface quality.

【0010】上記事実に鑑みて本発明者らは、取り分け
凹部発生スラブを用いた時の熱延疵を低減させる熱間圧
延条件を開発考案したものである。即ち、第一に、熱間
圧延によりステンレス鋼板を製造するに際し、水平ロー
ルによる1パス目の圧延を1000℃以上の温度域で与
え、1パス目の圧下率を少なくとも15%以上とするこ
とである。第二に、1000℃以上の温度域で水平ロー
ルによる1パス目の圧延を実施する前に、垂直ロールに
よる圧延を少なくとも1パス以上与え、かつ当該垂直ロ
ールによる全圧下率を少なくとも5%以上とすることで
ある。ここでrは当該垂直ロール圧延による全圧下率を
意味し、当該圧延前のスラブ幅wと圧延後の幅w′より
r=1−w′/wとして求められる。
In view of the above facts, the inventors of the present invention have developed and devised a hot rolling condition for reducing the hot rolling defect when a slab for forming recesses is used. That is, firstly, when a stainless steel sheet is manufactured by hot rolling, the rolling of the first pass by a horizontal roll is applied in a temperature range of 1000 ° C. or higher so that the rolling reduction of the first pass is at least 15% or higher. is there. Secondly, before carrying out the first pass rolling with the horizontal rolls in the temperature range of 1000 ° C. or more, at least one pass rolling with the vertical rolls and the total rolling reduction with the vertical rolls should be at least 5% or more. It is to be. Here, r means the total reduction ratio by the vertical roll rolling, and is obtained as r = 1−w ′ / w from the slab width w before the rolling and the width w ′ after the rolling.

【0011】以下に特許請求の範囲における限定理由を
述べる。まず第1項記載の発明について述べる。水平ロ
ールによる1パス目の圧延を1000℃以上でかつ15
%以上の圧下率とする理由は、熱延疵の発生を完全矩形
スラブ使用時と同等程度にまで減じせしめる為である。
特にコイル幅方向での疵発生位置を、完全矩形スラブ使
用時と同程度のエッジ部にすることができる。ここで1
パス目の圧延温度を1000℃以上と限定した理由は、
それ以下の温度で通常の凝固組織を有するステンレス鋼
スラブを圧下率15%以上の1パス圧延すると微小割れ
が発生し易いからである。1パス目の圧延温度の上限は
特に規定しないが、通常のステンレス鋼の熱間圧延では
1350℃程度が限度である。しかしながら、鋳造機に
組み込んだ圧延機やピンチロール等で圧延する場合には
1500℃程度まで可能である。
The reasons for limitation in the claims will be described below. First, the invention described in item 1 will be described. Roll the first pass with a horizontal roll at 1000 ℃ or higher and
The reason for setting the rolling reduction to be not less than% is to reduce the occurrence of hot rolling defects to the same extent as when using a completely rectangular slab.
In particular, the flaw generation position in the coil width direction can be set to the same edge portion as when using the perfect rectangular slab. Where 1
The reason for limiting the rolling temperature of the pass to 1000 ° C or higher is
This is because if a stainless steel slab having a normal solidification structure is rolled at a temperature lower than that temperature by one-pass rolling with a rolling reduction of 15% or more, microcracks are likely to occur. Although the upper limit of the rolling temperature in the first pass is not particularly specified, the limit is about 1350 ° C. in the ordinary hot rolling of stainless steel. However, in the case of rolling with a rolling mill or a pinch roll incorporated in a casting machine, the rolling temperature can be up to about 1500 ° C.

【0012】また、初期圧延1パス圧下率を15%以上
と限定した理由は、それ以下の圧下率では凹部発生スラ
ブを使用した際にその凹部域に疵が発生するからであ
る。上述したように凹部域はスラブエッジから約300
mm内側まで広がっており、その領域に疵が発生すると製
品歩留まりの低下は甚大となる。1パス目圧下率の上限
は特に規定しないが、あまりに大圧下とするとスケール
疵やロール焼き付き疵等が発生するため、40%程度以
下であることが望ましい。尚、本発明における凹部発生
スラブを水平ロールにより圧延する際の圧下率Reは、
圧延前のスラブ中央部の平均スラブ厚みhc (図2参
照)と当該圧延後の板厚h′によりRe=1−h′/h
c として求められ、%表示するときはReを100倍す
れば良い。
Further, the reason why the reduction ratio of the first rolling in one pass is limited to 15% or more is that a flaw is generated in the recess area when the recess-forming slab is used at a reduction ratio of less than that. As mentioned above, the recessed area is about 300 from the slab edge.
It extends to the inside of mm, and if a flaw occurs in that area, the product yield will be greatly reduced. The upper limit of the first pass rolling reduction is not particularly specified, but if the rolling reduction is too large, scale flaws, roll seizure flaws, and the like will occur. The rolling reduction Re when rolling the recessed slab according to the present invention with a horizontal roll is
Re = 1-h '/ h depending on the average slab thickness h c (see FIG. 2) at the center of the slab before rolling and the plate thickness h'after rolling.
It is calculated as c , and when displaying in%, Re may be multiplied by 100.

【0013】つぎに第2項記載の発明について述べる。
1000℃以上の温度域で水平ロール圧延実施前に垂直
ロールによる圧延を1パス以上でその全圧下率を5%以
上とする理由は、凹部発生スラブを用いて水平ロール熱
延する前に垂直ロール圧延によりその凹部を消失せしめ
て、熱延疵の発生を完全矩形スラブ使用時と同等か或い
はそれ以上に減じせしめる為である。ここで1000℃
以上と限定した理由は、これ以下の温度域でスラブを圧
延すると疵が発生し易いからである。上限温度について
は特に規定しないが、鋳造機に組み込まれた圧延機等を
使用する場合でも高々1500℃程度までである。
Next, the invention described in item 2 will be described.
The reason why the total rolling reduction is 5% or more in one pass or more before the horizontal roll rolling is performed in the temperature range of 1000 ° C or more is that the vertical roll is rolled before the horizontal roll hot rolling using the recessed slab. This is because the recesses are eliminated by rolling, and the occurrence of hot-rolled defects can be reduced to the same level as or more than that when using a completely rectangular slab. 1000 ° C here
The reason for limiting the above is that when the slab is rolled in a temperature range lower than this range, a flaw easily occurs. The upper limit temperature is not particularly specified, but it is up to about 1500 ° C. even when using a rolling mill or the like incorporated in a casting machine.

【0014】垂直ロールによる全圧下率を5%以上と限
定した理由は、それ以下での圧下率では垂直ロール圧延
によるスラブ凹部消失効果が認められず、その後の水平
ロール圧延時に微小割れ等が発生するからである。全圧
下率の上限については特に規定しないが、極端に大きく
すると新たな割れや疵を誘発するため高々40%程度ま
でである。また垂直ロール圧延パス数は何パスでも本発
明の効果に影響を与えないが、徒にパス数を増やすとス
ラブの温度低下等の障害を来すので、通常の熱間圧延で
の垂直ロールパス数は5パス程度までで、鋳造機に組み
込んだ垂直ロール圧延機等においても高々10パス程度
までである。
The reason why the total reduction ratio by the vertical rolls is limited to 5% or more is that the reduction ratio below that does not show the effect of eliminating the slab recesses by the vertical roll rolling, and microcracks and the like occur during the subsequent horizontal roll rolling. Because it does. The upper limit of the total rolling reduction is not particularly specified, but if it is extremely increased, it causes new cracks and flaws, and is up to about 40% at most. Moreover, the number of vertical roll rolling passes does not affect the effect of the present invention with any number of passes, but since increasing the number of passes causes obstacles such as a temperature decrease of the slab, the number of vertical roll passes in normal hot rolling is small. Is up to about 5 passes, and up to about 10 passes even in a vertical roll rolling machine incorporated in a casting machine.

【0015】尚、本発明における垂直ロール圧延とはス
ラブ横断面の短辺面をロールで圧延することを意味し、
水平ロール圧延とはスラブ横断面の長辺面を圧延するこ
とを意味する。また、鋳造機に組み込まれた垂直ロール
圧延機等で全圧下率5%以上の圧延を加えた後に、当該
スラブを一旦室温まで下げ、再び1000℃以上に加熱
して水平ロール圧延を実施しても本発明の効果に何等遜
色を与えないことを付言しておく。本発明における垂直
ロール圧延圧下率rとは、垂直ロール圧延前のスラブ幅
wと圧延後のスラブ幅w′よりr=1−w′/wとして
求められ、%表示する時にはrを100倍すれば良い。
The vertical roll rolling in the present invention means rolling the short side surface of the slab cross section with a roll,
Horizontal roll rolling means rolling the long side surface of the slab cross section. In addition, after performing rolling with a total rolling reduction of 5% or more by a vertical roll rolling machine or the like incorporated in the casting machine, the slab is once cooled to room temperature and heated again to 1000 ° C. or more to perform horizontal roll rolling. Also, it should be added that the effects of the present invention are not inferior to the effects of the present invention. The vertical roll rolling reduction ratio r in the present invention is calculated as r = 1-w ′ / w from the slab width w before vertical roll rolling and the slab width w ′ after rolling, and when r is expressed as 100, r is multiplied by 100. Good.

【0016】ところで、上記本発明の第1項及び第2項
に記載された技術で熱延疵を改善乃至解消できる理由に
ついては現在のところ必ずしも明確ではないが、下記と
考えられる。上述したように従来粗熱延時に生成する微
小割れはすべてC方向に割れており、圧延時に圧延方向
の張力が作用したことが伺われる。この圧延方向張力
は、スラブ中央部とエッジ部の圧延方向のメタルフロー
の差に起因すると考えられる。即ちエッジ部では圧延時
に幅広がりが生じ、圧延方向へのメタルフロー量が中央
部に比較して小さくなる。その結果、エッジ部のメタル
は中央部のメタルのフローに引きずられ、エッジ部に圧
延方向の張力が発生する。上記が、従来矩形スラブでも
エッジ部に微小割れが生じた理由と考えられる。また図
2に示した凹部発生スラブでは、スラブ厚みが薄く圧延
方向へのメタルフローが少ない凹部域で、水平ロール圧
延初期パス時に圧延方向張力が高くなり、疵発生が集中
したものと考えられる。
By the way, the reason why the hot-rolling defects can be improved or eliminated by the techniques described in the first and second aspects of the present invention is not always clear at present, but it is considered as follows. As described above, all the micro-cracks generated during the conventional rough hot rolling are cracked in the C direction, which indicates that tension in the rolling direction acts during rolling. It is considered that this rolling direction tension is due to the difference in metal flow between the slab center part and the edge part in the rolling direction. That is, the width of the edge portion is widened during rolling, and the amount of metal flow in the rolling direction is smaller than that in the central portion. As a result, the metal at the edge portion is dragged by the flow of the metal at the central portion, and tension in the rolling direction is generated at the edge portion. The above is considered to be the reason why even the conventional rectangular slab has microcracks in the edge portion. In the recessed slab shown in FIG. 2, it is considered that in the recessed area where the slab thickness is thin and the metal flow in the rolling direction is small, the tension in the rolling direction becomes high during the initial pass of the horizontal roll rolling, and defects are concentrated.

【0017】即ち、本発明第1項記載の技術で凹部発生
スラブを熱延しても熱延疵が減じられる理由は、圧下率
を15%以上とする事でスラブエッジ凹部のメタルフロ
ー量と中央部のメタルフロー量との差を相対的に少なく
して、圧延方向張力を完全矩形スラブとほぼ同等にし、
熱延疵発生を完全矩形スラブ程度にまで減じせしめたと
考えられる。また第2項記載の技術で凹部発生スラブを
熱延しても熱延疵が減じられる理由は、圧延方向張力が
発生する水平ロール圧延初期パス前の垂直ロール圧延の
全圧下率を5%以上とする事で、スラブエッジの凹部が
消失してメタルフローが完全矩形スラブと同等になると
考えられる。更には垂直ロール圧延でスラブエッジ凹部
が凸部になり、エッジ部のメタルフロー量が増えて圧延
方向張力がなくなり、完全矩形スラブ使用時以上に熱延
疵が減じられたと考えられる。
That is, the reason why the hot-rolling flaw is reduced even when the slab in which the recess is formed is hot-rolled by the technique described in the first aspect of the present invention is that the metal flow amount of the slab-edge recess is set by reducing the rolling reduction to 15% or more. By relatively reducing the difference from the metal flow amount in the central part, the tension in the rolling direction is made almost equal to that of a perfect rectangular slab,
It is considered that the occurrence of hot-rolled defects was reduced to the level of a complete rectangular slab. Further, the reason why the hot rolling flaw is reduced even if the slab in which the recess is formed is hot-rolled by the technique described in paragraph 2 is that the total rolling reduction of the vertical roll rolling before the initial pass of the horizontal roll rolling in which rolling direction tension is generated is 5% or more. By doing so, it is considered that the concave part of the slab edge disappears and the metal flow becomes equal to that of a perfect rectangular slab. Further, it is considered that the vertical roll rolling made the slab edge concave portion a convex portion, the amount of metal flow at the edge portion increased, the tension in the rolling direction disappeared, and the hot rolling defect was reduced more than when the perfect rectangular slab was used.

【0018】上記仮説を検証するため、三次元剛塑性有
限要素法を用いてスラブエッジに凹部が存在する場合の
圧延方向に生じる応力分布を計算した。用いたスラブ形
状を表1に、その計算結果を図3及び図4に示す。表1
中のwはスラブ幅を、hc はスラブ中央部の厚みを、Δ
hは凹部発生スラブの凹部最大深さ(図2参照)を、Δ
wはスラブエッジから凹部最大深さ発生位置までの距離
(図2参照)を、各々示す。図3は、粗熱延1パス(水
平ロール圧延)の圧下率を従来法の5%とした時の圧延
方向の応力分布を示している。図中の横軸はスラブ幅中
心部からの距離を、縦軸は圧延方向の応力値を示す。
In order to verify the above hypothesis, the stress distribution generated in the rolling direction in the case where the slab edge has a recess was calculated using the three-dimensional rigid-plastic finite element method. The slab shape used is shown in Table 1, and the calculation results are shown in FIGS. 3 and 4. Table 1
Where w is the slab width, h c is the thickness of the central part of the slab, Δ
h is the maximum depth of the recess of the recess generating slab (see FIG. 2), Δ
w indicates the distance from the slab edge to the position where the maximum depth of the recess occurs (see FIG. 2). FIG. 3 shows the stress distribution in the rolling direction when the rolling reduction of 1 pass of crude hot rolling (horizontal roll rolling) is set to 5% of the conventional method. In the figure, the horizontal axis represents the distance from the center of the slab width, and the vertical axis represents the stress value in the rolling direction.

【0019】[0019]

【表1】 [Table 1]

【0020】図より完全矩形スラブ(図中実線)に比較
して凹部発生スラブ(図中○付きの実線及び破線)では
スラブエッジで高い張力が発生することが判る。しかも
高張力発生域は凹部発生スラブで内側にある等、熱延疵
発生状況と良く一致する。これに対し、図4は圧下率を
本発明第1項記載の技術である20%とした時の圧延方
向の応力分布を示している。図中の横軸はスラブ幅中心
部からの距離を、縦軸は圧延方向の応力値を示す。図よ
り完全矩形スラブ(図中実線)と凹部発生スラブ(図中
破線)での応力発生状況に大差の無いことが判る。
From the figure, it can be seen that a higher tension is generated at the slab edge in the recessed slab (solid line and broken line with circle in the figure) than in the complete rectangular slab (solid line in the figure). Moreover, the high-tension generation area is on the inside of the recess-forming slab, which is in good agreement with the state of hot-roll defect generation. On the other hand, FIG. 4 shows the stress distribution in the rolling direction when the reduction ratio is 20% which is the technique described in the first aspect of the present invention. In the figure, the horizontal axis represents the distance from the center of the slab width, and the vertical axis represents the stress value in the rolling direction. From the figure, it can be seen that there is no great difference in the stress generation situation between the perfect rectangular slab (solid line in the figure) and the recessed slab (broken line in the figure).

【0021】[0021]

【実施例】表2に示した成分のステンレス鋼を通常の溶
製法に従って溶製し、スラブ中央部厚みが165mmでス
ラブ幅が1250mmのスラブを鋳造した。得られたスラ
ブの一部はそのままの形状で熱延に供し、一部はスラブ
手入れしてその形状を変えて熱延に供した。熱延コイル
は全て通常の酸洗・冷延工程を経て1.0mm厚みの冷延
コイルとした。その冷延コイルを巻き戻して圧延方向1
m当たりの疵発生個数を求め、疵発生頻度とした。上記
プロセス条件とスラブ形状及び疵発生頻度をまとめて表
3に示す。表中のwはスラブ幅を、hはスラブ中央部の
厚みを、Δhはスラブに凹部が存在したときの最大凹部
深さ(スラブ中央部水平面からの深さ)を、Δwはスラ
ブ最エッジ(スラブ端面)から最大凹部深さ発生位置ま
での距離を、各々意味する。
EXAMPLE Stainless steels having the components shown in Table 2 were melted according to a common melting method, and a slab having a slab center portion thickness of 165 mm and a slab width of 1250 mm was cast. A part of the obtained slab was subjected to hot rolling in the same shape, and a part of the slab was maintained and subjected to hot rolling while changing its shape. All hot-rolled coils were made into a 1.0 mm-thick cold-rolled coil through normal pickling and cold-rolling steps. Rewind the cold rolled coil to roll direction 1
The number of defects generated per m was determined and used as the frequency of defects. The above process conditions, slab shape, and defect occurrence frequency are summarized in Table 3. In the table, w is the slab width, h is the thickness of the central portion of the slab, Δh is the maximum depth of the concave portion when there is a concave portion in the slab (depth from the horizontal plane of the central portion of the slab), and Δw is the slab outermost edge ( It means the distance from the slab end face) to the maximum recess depth generation position.

【0022】[0022]

【表2】 [Table 2]

【0023】表3より明らかな様に、比較法の熱延条件
に比較して本発明法による熱延条件に従って製造したと
きの表面疵の発生が少ないことが認められる。特に通常
得られる凹部発生スラブ(符号:7,8)での疵発生頻
度と本発明法により製造した場合の疵発生頻度を比較す
ると、本発明による効果が明確である。本発明第1項記
載の技術に従った符号1,2の場合と、同程度の凹部発
生スラブを使用した比較法7,8を比べると、格段の疵
発生改善効果が認められ、大略完全矩形スラブと考えら
れる場合(符号9)と同程度の疵発生頻度であることが
判る。また特許請求の範囲第2項記載の本発明により製
造した場合(符号:3,4,5,6)疵発生頻度は極め
て低く、歩留まり向上効果は著しく大きい。
As is clear from Table 3, it is recognized that the occurrence of surface flaws is less when the hot rolling condition according to the present invention is used as compared with the hot rolling condition according to the comparative method. In particular, the effect of the present invention is clear by comparing the defect occurrence frequency in the recessed slab (reference numeral: 7 and 8) that is usually obtained with the defect occurrence frequency when manufactured by the method of the present invention. Comparing the case of the reference numerals 1 and 2 according to the technique described in the first aspect of the present invention with the comparison methods 7 and 8 using the same degree of recess generation slab, a remarkable defect improvement effect is recognized, and a substantially perfect rectangle is obtained. It can be seen that the defect occurrence frequency is the same as that of the case considered to be a slab (reference numeral 9). Further, when manufactured by the present invention as set forth in claim 2 (reference numeral: 3, 4, 5, 6), the defect occurrence frequency is extremely low and the yield improving effect is remarkably large.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【発明の効果】以上詳述した様に、本発明の効果は、熱
間圧延により鋼板を製造するに際し所定の圧延条件で熱
延する事で、製品の表面疵を低減でき、製品歩留まりを
向上できる等、産業上裨益するところ大である。
As described in detail above, the effect of the present invention is that when a steel sheet is manufactured by hot rolling, hot rolling is performed under predetermined rolling conditions, so that surface defects of products can be reduced and product yield is improved. It is a great place to benefit industrially, such as being able to do it.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳造時にバルジングが生じなかった時に得られ
る矩形スラブの横断面形状を示す。
FIG. 1 shows a cross-sectional shape of a rectangular slab obtained when bulging does not occur during casting.

【図2】鋳造時にバルジング等によりスラブ長辺面に凹
部が形成された時のスラブ横断面形状を示す。
FIG. 2 shows a cross-sectional shape of a slab when a recess is formed on the long side surface of the slab by bulging or the like during casting.

【図3】表1に示した形状を有するスラブを水平ロール
で5%圧下した時の三次元剛塑性有限要素法で計算した
圧延方向の応力分布を示す。
FIG. 3 shows a stress distribution in the rolling direction calculated by the three-dimensional rigid-plastic finite element method when the slab having the shape shown in Table 1 is rolled down by 5% with a horizontal roll.

【図4】表1に示した形状を有するスラブを水平ロール
で20%圧下した時の三次元剛塑性有限要素法で計算し
た圧延方向の応力分布を示す。
FIG. 4 shows a stress distribution in the rolling direction calculated by the three-dimensional rigid-plastic finite element method when a slab having the shape shown in Table 1 is rolled down by 20% with a horizontal roll.

【符号の説明】[Explanation of symbols]

w 対向する長辺の長さ(即ちスラブ幅) h 対向する短辺長さ(スラブ厚み) Δh 最大凹部深さ(スラブ中央部水平面からの深
さ) Δw スラブエッジ(端面)から最大凹部深さ発生
位置までの距離 hc スラブ中央部の平均厚み
w Length of opposing long side (that is, slab width) h Length of opposing short side (slab thickness) Δh Maximum recess depth (depth from center horizontal plane of slab) Δw Maximum recess depth from slab edge (end face) Distance to generation location h c Average thickness of slab center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱間圧延によりステンレス鋼板を製造す
るに際し、水平ロールによる1パス目の圧延を1000
℃以上の温度域において、圧下率を少なくとも15%以
上とすることを特徴とする表面欠陥の少ないステンレス
鋼板の製造方法。
1. When manufacturing a stainless steel sheet by hot rolling, the first pass rolling by a horizontal roll is performed for 1000 times.
A method for producing a stainless steel sheet having few surface defects, which has a reduction rate of at least 15% or more in a temperature range of ℃ or more.
【請求項2】 熱間圧延によりステンレス鋼板を製造す
るに際し、1000℃以上の温度域で水平ロールによる
1パス目の圧延を実施する前に、垂直ロールによる圧延
を少なくとも1パス以上行い、かつ当該垂直ロールによ
る全圧下率を少なくとも5%以上とすることを特徴とす
る表面欠陥の少ないステンレス鋼板の製造方法。
2. When manufacturing a stainless steel sheet by hot rolling, at least one or more passes of vertical rolls are performed before the first pass of horizontal rolls in a temperature range of 1000 ° C. or higher, and A method for producing a stainless steel sheet with few surface defects, characterized in that the total rolling reduction by a vertical roll is at least 5% or more.
JP8493293A 1993-04-12 1993-04-12 Manufacturing method of stainless steel sheet with few surface defects Expired - Lifetime JP2863407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8493293A JP2863407B2 (en) 1993-04-12 1993-04-12 Manufacturing method of stainless steel sheet with few surface defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8493293A JP2863407B2 (en) 1993-04-12 1993-04-12 Manufacturing method of stainless steel sheet with few surface defects

Publications (2)

Publication Number Publication Date
JPH06292907A true JPH06292907A (en) 1994-10-21
JP2863407B2 JP2863407B2 (en) 1999-03-03

Family

ID=13844465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8493293A Expired - Lifetime JP2863407B2 (en) 1993-04-12 1993-04-12 Manufacturing method of stainless steel sheet with few surface defects

Country Status (1)

Country Link
JP (1) JP2863407B2 (en)

Also Published As

Publication number Publication date
JP2863407B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
CN112296098B (en) Method for improving surface quality of hot-rolled thin strip steel
JP2000271603A (en) Hot-rolling method of extra-thin strip and rolling apparatus
JPH0742513B2 (en) Method for producing austenitic stainless steel sheet
JP2863402B2 (en) Method for producing steel sheet with few surface defects by hot rolling
JP2826002B2 (en) Hot rolling method to reduce edge cracks in grain-oriented electrical steel sheets
JP3298730B2 (en) Manufacturing method of austenitic stainless steel sheet with few surface defects
JPH06292907A (en) Manufacture of stainless steel sheet having minimized surface defect
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JPH07164001A (en) Method and device for rolling steel sheet
JPS6053086B2 (en) Manufacturing method for ultra-thin galvanized steel sheets with excellent shape
JP3994852B2 (en) Continuous casting method using vertical bending die continuous casting machine and cast slab produced thereby
JP2001087801A (en) Rolling method for preventing rolling crack on billet in continuous casting
JPH0348250B2 (en)
JPH06315702A (en) Manufacture of thin steel sheet excellent in surface property and manufacturing equipment line therefor
JPH06312248A (en) Slab and mold
JPH0815640B2 (en) Method for manufacturing austenitic stainless steel strip
JPH02263931A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JP2002066601A (en) Method for preventing surface cracking of continuous cast slab under large reduction of hot rolled width
JP2505188B2 (en) Hot rolling method for stainless steel sheet
JP2004025272A (en) Continuously cast slab and method of producing steel sheet using the same
JPH0966303A (en) Production of hot rolled steel sheet excellent in surface condition
JPS63171254A (en) Non-solidified rolling method
JP3606249B2 (en) Rolling method of shape steel
SU1488040A1 (en) Method of producing billets from rimmed and semikilled steels
JPH0924401A (en) Method for reducing surface flaw of steel sheet in hot rolling

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981110