JPH0629131A - Thin film magnetic core for magnetic element - Google Patents

Thin film magnetic core for magnetic element

Info

Publication number
JPH0629131A
JPH0629131A JP18119092A JP18119092A JPH0629131A JP H0629131 A JPH0629131 A JP H0629131A JP 18119092 A JP18119092 A JP 18119092A JP 18119092 A JP18119092 A JP 18119092A JP H0629131 A JPH0629131 A JP H0629131A
Authority
JP
Japan
Prior art keywords
magnetic
strip
shaped
thin film
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18119092A
Other languages
Japanese (ja)
Inventor
Kiwamu Shirakawa
究 白川
Masahiro Kasuya
昌弘 粕谷
Jiro Torio
次郎 鳥生
Shoji Terasaka
正二 寺坂
Masao Midera
正雄 三寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMORPHOUS DENSHI DEVICE KENKYU
AMORPHOUS DENSHI DEVICE KENKYUSHO KK
Original Assignee
AMORPHOUS DENSHI DEVICE KENKYU
AMORPHOUS DENSHI DEVICE KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMORPHOUS DENSHI DEVICE KENKYU, AMORPHOUS DENSHI DEVICE KENKYUSHO KK filed Critical AMORPHOUS DENSHI DEVICE KENKYU
Priority to JP18119092A priority Critical patent/JPH0629131A/en
Publication of JPH0629131A publication Critical patent/JPH0629131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a magnetic device thin film core which is capable of minimizing an anti-magnetic field factor in a film formation process of a magnetic thin film, providing an uniaxial magnetic anisotropy effectively, reducing the size of a triangular magnetic domain and providing excellent high frequency magnetic properties. CONSTITUTION:On a substrate having strip-shaped stepped portions 11a, 11b and 11c comprising a plurality of nonmagnetic substances formed in parallel at a specified width and span on the top, there are formed magnetic thin films each of which is continued under the application of similar magnetic fields (marked with the arrow Hf) in a direction which intersects the stepped portions 11a, 11b and 11ca, thereby forming a plurality of strip-shaped magnetic cores 12a to 12e.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は電気回路素子として使
用されるマイクロインダクタ、トランス等又は各種セン
サー等の磁気素子の薄膜磁心構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetic core structure of a magnetic element used as an electric circuit element such as a micro inductor, a transformer or various sensors.

【0002】[0002]

【従来の技術】図4は例えば電気学会・マグネティック
ス研究会資料MAG90−125およびMAG90−4
4に示された従来の巻線構造型薄膜インダクタの斜視図
である。図において、1は非磁性基板、2aは非磁性基
板1上に写真製版技術とスパッタリング、メッキ等の成
膜技術を用いて形成された銅薄膜よりなる下層コイルで
素子の第1層に相当する。第2層はレジスト等の有機材
料、又はSiO2 等の無機材料より成る絶縁層であるが
簡単のため図では省略した。4a,4b,4cはスパッ
タリング又はメッキ等により形成された合金又はアモル
ファス薄膜等より成るストリップ状磁心で素子の第3層
に相当する。第4層は第2層と同じく絶縁層であるが図
では省略した。2bは第1層と同様、銅薄膜より成る上
層コイルで素子の第5層を形成する。3a,3bはコイ
ルの端子部である。
2. Description of the Related Art FIG. 4 shows, for example, the MAG90-125 and MAG90-4 materials of the Institute of Electrical Engineers and Magnetics Research Group.
4 is a perspective view of the conventional winding structure type thin film inductor shown in FIG. In the figure, 1 is a non-magnetic substrate, and 2a is a lower layer coil made of a copper thin film formed on the non-magnetic substrate 1 by using a photolithography technique and a film forming technique such as sputtering and plating, and corresponds to the first layer of the element. . The second layer is an insulating layer made of an organic material such as a resist or an inorganic material such as SiO 2 , but is omitted in the figure for simplicity. The strip-shaped magnetic cores 4a, 4b and 4c are made of alloy or amorphous thin film formed by sputtering or plating, and correspond to the third layer of the device. The fourth layer is an insulating layer like the second layer, but is omitted in the drawing. Similarly to the first layer, 2b is an upper coil made of a copper thin film to form the fifth layer of the device. 3a and 3b are coil terminal portions.

【0003】次に動作について説明する。図5は図4の
従来のストリップ状磁心4a,4b,4cのA−A′線
断面図を示す。図6は同じく従来のストリップ状磁心4
a,4b,4cの平面図である。
Next, the operation will be described. FIG. 5 is a sectional view taken along the line AA 'of the conventional strip-shaped magnetic cores 4a, 4b, 4c of FIG. FIG. 6 also shows a conventional strip-shaped magnetic core 4
It is a top view of a, 4b, 4c.

【0004】端子部3a,3bより印加される高周波信
号電流Isにより誘起される信号磁界は高周波で交番す
る矢印Hs1 ,Hs2 で示される。ストリップ状磁心の
高周波磁気特性を改善する目的から信号磁界(矢印Hs
1 ,Hs2 )と直交する方向に磁化容易軸を規制するた
め、図5に示すように外部より直流磁界を矢印Hfの方
向に印加しながらストリップ状磁心4a,4b,4cが
成膜される。一様な外部印加磁界(矢印Hf)下で成膜
される磁心4a,4b,4cの近傍の磁束は破線の矢印
5で示すような磁束分布を示し、この磁束の一部が磁心
の内部を横断し、この結果磁心4a,4b,4cは印加
磁界(矢印Hf)の方向に磁化容易軸が規制される。
The signal magnetic field induced by the high frequency signal current Is applied from the terminal portions 3a and 3b is indicated by arrows Hs 1 and Hs 2 alternating at high frequencies. In order to improve the high frequency magnetic characteristics of the strip-shaped magnetic core, the signal magnetic field (arrow Hs
1 , Hs 2 ) to regulate the easy axis of magnetization, the strip-shaped magnetic cores 4a, 4b, 4c are formed while applying a DC magnetic field from the outside in the direction of arrow Hf as shown in FIG. . The magnetic flux in the vicinity of the magnetic cores 4a, 4b, 4c formed under a uniform externally applied magnetic field (arrow Hf) shows a magnetic flux distribution as shown by a dashed arrow 5, and a part of this magnetic flux is generated inside the magnetic core. As a result, the magnetic cores 4a, 4b, 4c have their axes of easy magnetization restricted in the direction of the applied magnetic field (arrow Hf).

【0005】磁化容易軸が外部印加磁界(矢印Hf)の
方向に規制された結果、ストリップ状磁心4a,4b,
4cは図6の平面図に示すような磁区構造を呈する。矢
印6は各磁区の磁化の向きを示し、7は90度磁壁を、
8は180度磁壁を示す。9は90度磁壁7で囲まれた
三角磁区を示し、高周波で交番する信号磁界(矢印Hs
1 ,Hs2 )に対しては有効に応答しない部分である。
矢印Hs1 ,Hs2 で示す高周波信号磁界に対しては六
角形で示した磁区中の矢印6a,6bで示した方向に揃
ったスピンの回転により有効な高周波磁気応答が得られ
る。
As a result of the easy axis of magnetization being restricted in the direction of the externally applied magnetic field (arrow Hf), the strip-shaped magnetic cores 4a, 4b,
4c has a magnetic domain structure as shown in the plan view of FIG. Arrow 6 indicates the direction of magnetization of each magnetic domain, and 7 indicates a 90 degree domain wall,
8 shows a 180 degree domain wall. Reference numeral 9 indicates a triangular magnetic domain surrounded by the 90 degree domain wall 7, and a signal magnetic field alternating with a high frequency (arrow Hs
1 , Hs 2 ) does not respond effectively.
For the high frequency signal magnetic fields indicated by the arrows Hs 1 and Hs 2 , effective high frequency magnetic response is obtained by rotation of spins aligned in the directions indicated by the arrows 6a and 6b in the hexagonal magnetic domains.

【0006】また、ストリップ状磁心は磁心の長さl1
と、図4、図5中、10aで示す信号磁界方向(矢印H
1 ,Hs2 )に対向する磁心の断面積S1 との比l1
/S1 で決まる反磁界係数N1 が小さく、実効的な高周
波透磁率μの大きな磁心が得られるという利点がある。
反磁界係数Nは磁心の磁化方向の磁心の長さlと磁化方
向の磁心の断面積Sとの比l/Sの増大とともに減少す
る性質を有する。
The strip-shaped magnetic core has a length l 1 of the magnetic core.
4 and 5, the signal magnetic field direction (arrow H
s 1 , Hs 2 ), the ratio of the cross-sectional area S 1 of the magnetic core opposite to l 1
The diamagnetic field coefficient N 1 determined by / S 1 is small, and there is an advantage that a magnetic core having a large effective high-frequency permeability μ can be obtained.
The demagnetizing factor N has the property of decreasing with an increase in the ratio 1 / S of the length 1 of the magnetic core in the magnetization direction of the magnetic core and the cross-sectional area S of the magnetic core in the magnetization direction.

【0007】[0007]

【発明が解決しようとする課題】従来のストリップ状磁
心は図5に示すように分割されているので、一様な外部
磁界(矢印Hf)下での成膜工程において、外部磁界
(矢印Hf)方向の磁心の長さl2 と、これに対向する
10bで示す磁心の側断面積S2 との比l2 /S2が小
さく、反磁界係数N2 が大きくなる結果、外部印加磁界
により磁心内を横断する磁束5が減少する。この結果、
外部磁界(矢印Hf)による一軸異方性の付与の効果が
少ないという問題があった。
Since the conventional strip-shaped magnetic core is divided as shown in FIG. 5, an external magnetic field (arrow Hf) is applied in a film forming process under a uniform external magnetic field (arrow Hf). the length l 2 of the direction of the magnetic core, which the ratio l 2 / S 2 is small and the side cross-sectional area S 2 of the core shown in opposed 10b, demagnetizing factor N 2 increases result, the magnetic core by an externally applied magnetic field The magnetic flux 5 traversing inside is reduced. As a result,
There is a problem that the effect of imparting uniaxial anisotropy by the external magnetic field (arrow Hf) is small.

【0008】また上記の結果、図6の磁区構造にみるよ
うに、高周波交番磁界(矢印Hs1,Hs2 )に有効に
作用しない三角磁区9の大きさが大きくなり、これが磁
心中に占める体積が大きくなる結果、有効磁心体積が小
さくなるという問題を有していた。
As a result of the above, as shown in the magnetic domain structure of FIG. 6, the size of the triangular magnetic domain 9 which does not effectively act on the high frequency alternating magnetic field (arrows Hs 1 and Hs 2 ) becomes large, and this increases the volume occupied in the magnetic core. As a result, the effective magnetic core volume decreases, which is a problem.

【0009】また三角磁区は実際には図6に示すように
整然と配列される場合は少なく、応力等の存在によりし
ばしば不規則な配列を呈する。この不規則な三角磁区の
存在は交番磁界下において磁化の不連続な挙動を生じ、
これに起因する磁気的ノイズを生ずる等の問題があっ
た。
In addition, the triangular magnetic domains are rarely arranged in order as shown in FIG. 6, and often have an irregular arrangement due to the presence of stress or the like. The presence of this irregular triangular magnetic domain causes discontinuous magnetization behavior under an alternating magnetic field,
There is a problem that magnetic noise is generated due to this.

【0010】この発明は上記のような問題点を解消する
ためになされたもので、磁性薄膜の成膜工程における反
磁界係数を小さくできるとともに、一軸異方性が有効に
付与され三角磁区の大きさを低減でき、高周波磁気特性
の優れた磁気素子用薄膜磁心を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to reduce the demagnetizing field coefficient in the film forming process of the magnetic thin film and effectively impart uniaxial anisotropy to the size of the triangular magnetic domain. It is intended to obtain a thin film magnetic core for a magnetic element which can reduce the thickness and has excellent high frequency magnetic characteristics.

【0011】[0011]

【課題を解決するための手段】この発明は上記課題を解
決するために、上面に所定の幅と間隔で平行に形成され
た複数個の非磁性体よりなるストリップ状段差部を有す
る絶縁部材上に、前記段差部に直交する方向に一様な直
流磁界を印加しながら成膜された互いに連続した磁性薄
膜により複数のストリップ状磁心が構成されたことを特
徴とするものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an insulating member having a strip-shaped step portion formed of a plurality of non-magnetic members on the upper surface in parallel with a predetermined width and interval. In addition, a plurality of strip-shaped magnetic cores are constituted by mutually continuous magnetic thin films formed by applying a uniform DC magnetic field in a direction orthogonal to the step portion.

【0012】[0012]

【作用】この発明におけるストリップ状磁心は互いに段
差を有し、隣接する磁心が互いに連続した磁性薄膜構造
としたので、従来のストリップ状磁心に比べ、高周波信
号磁界による磁化方向に対応する磁心の占有断面積を大
きくできるので磁心の磁気抵抗を小さくできる。さらに
加えて、隣接する磁心が互いに連続した磁性薄膜構造と
したことにより、磁性薄膜の成膜工程および成膜後の外
部磁界を印加しながらの熱処理工程において外部印加磁
界に対する反磁界係数を低減でき、一軸異方性が強く付
与され三角磁区の大きさを小さく規制でき、磁心の有効
体積が大きく、かつ高周波磁気特性の優れたストリップ
状磁心が得られる。
Since the strip-shaped magnetic core according to the present invention has a step difference and the adjacent magnetic cores have a continuous magnetic thin film structure, the magnetic core corresponding to the magnetization direction by the high-frequency signal magnetic field is occupied as compared with the conventional strip-shaped magnetic core. Since the cross-sectional area can be increased, the magnetic resistance of the magnetic core can be reduced. In addition, by having a magnetic thin film structure in which adjacent magnetic cores are continuous with each other, it is possible to reduce the demagnetizing factor against the externally applied magnetic field in the magnetic thin film deposition process and the heat treatment process while applying the external magnetic field after deposition. The uniaxial anisotropy is strongly imparted, the size of the triangular magnetic domain can be controlled to be small, the effective volume of the magnetic core is large, and a strip-shaped magnetic core having excellent high-frequency magnetic characteristics can be obtained.

【0013】[0013]

【実施例】以下この発明の実施例を図について説明す
る。図1はこの発明の一実施例による磁心の高周波信号
磁界の方向に対向する断面図を示し、図2はその平面図
である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross-sectional view of a magnetic core according to an embodiment of the present invention, which is opposed to the direction of a high-frequency signal magnetic field, and FIG. 2 is a plan view thereof.

【0014】11a,11b,11cは基板(図では省
略)上に形成されたSiO2 等の非磁性体より成るスト
リップ状段差部であり、所定のストリップ幅l2 と厚み
tを有し、間隔dをおいて配列される。12a〜12e
は互いに接続した複数のストリップ状磁心で、上記段差
部11a〜11cおよび間隔dの基板上に、一様な外部
印加磁界(矢印Hf)の下でスパッタリング又はメッキ
等により成膜された合金又はアモルファス等よりなる厚
みTの互いに連続した一枚の磁性薄膜で構成される。こ
の実施例においては磁性薄膜の厚みT=3μm、段差部
11a〜11cの厚みt=1μmである。ストリップ状
磁心12a,12c,12eは幅l2 のストリップ状段
差部11a,11b,11c上に成膜され、ストリップ
状磁心12b,12dは基板上に成膜され幅dを有す
る。この実施例においては幅l2 =d=100μmとし
た。またストリップ状磁心12a,12c,12eとス
トリップ状磁心12b,12dとは互いに厚みtに相当
する段差を有し、隣接する磁心は互いに磁気的に接続さ
れている。
Reference numerals 11a, 11b and 11c denote strip-shaped step portions formed of a non-magnetic material such as SiO 2 formed on a substrate (not shown), having a predetermined strip width l 2 and a thickness t, and being spaced apart from each other. It is arranged with d. 12a to 12e
Is a plurality of strip-shaped magnetic cores connected to each other, and is an alloy or amorphous film formed by sputtering or plating on the substrate having the step portions 11a to 11c and the distance d under a uniform external magnetic field (arrow Hf). It is composed of one continuous magnetic thin film having a thickness T of, for example. In this embodiment, the thickness T of the magnetic thin film is 3 μm and the thickness t of the steps 11a to 11c is 1 μm. The strip-shaped magnetic cores 12a, 12c, 12e are formed on the strip-shaped stepped portions 11a, 11b, 11c having the width l 2 , and the strip-shaped magnetic cores 12b, 12d are formed on the substrate and have a width d. In this embodiment, the width l 2 = d = 100 μm. The strip-shaped magnetic cores 12a, 12c, 12e and the strip-shaped magnetic cores 12b, 12d have a step corresponding to the thickness t, and adjacent magnetic cores are magnetically connected to each other.

【0015】以上のごとくストリップ状磁心12a〜1
2eは互いに磁気的に接続されているので、成膜時にお
ける外部印加磁界(矢印Hf)方向に対する磁性薄膜の
長さは従来のl2 (実施例では100μm)に対して実
質的に3l2 +2d(実施例では500μm)と大幅に
長くなっており、反磁界係数が大幅に低減される結果、
破線矢印15で示す磁束線の多くが磁心12a〜12e
中を横断する結果、外部磁界(矢印Hf)の方向に強い
一軸異方性が付与された磁心が得られる。
As described above, the strip-shaped magnetic cores 12a-1
Since 2e are magnetically connected to each other, the length of the magnetic thin film in the direction of the externally applied magnetic field (arrow Hf) during film formation is substantially 3l 2 + 2d with respect to the conventional l 2 (100 μm in the embodiment). (500 μm in the example), which is significantly long, and the demagnetizing factor is significantly reduced.
Most of the magnetic flux lines indicated by the broken line arrow 15 are magnetic cores 12a to 12e.
As a result of traversing the inside, a magnetic core provided with strong uniaxial anisotropy in the direction of the external magnetic field (arrow Hf) is obtained.

【0016】この結果図2の平面図に示すように磁区の
幅wがきわめて小さく規制される。アモルファス(C
o,Fe,SiB)スパッタ膜を用いた実施例において
は磁区の幅wは10μm以下に規制され、三角磁区の占
める体積は実質的に無視できるほど小さくなる。この結
果、数100MHzの高周波信号に対応する交番磁界
(矢印Hs1 ,Hs2 )に対しても優れた磁気特性を有
する磁心が得られる。
As a result, the width w of the magnetic domain is restricted to be extremely small as shown in the plan view of FIG. Amorphous (C
In the embodiment using the (o, Fe, SiB) sputtered film, the width w of the magnetic domain is regulated to 10 μm or less, and the volume occupied by the triangular magnetic domain is substantially negligibly small. As a result, a magnetic core having excellent magnetic characteristics can be obtained even with an alternating magnetic field (arrows Hs 1 and Hs 2 ) corresponding to a high frequency signal of several 100 MHz.

【0017】また高周波信号磁界(矢印Hs1 ,H
2 )に対応する磁心の断面積も従来例に比べ本実施例
では約1.7倍に増大し、この磁心の占有面積の増大に
伴って、磁心の磁気抵抗を低減することができる。
The high frequency signal magnetic field (arrows Hs 1 , H
The cross-sectional area of the magnetic core corresponding to s 2 ) is also increased by about 1.7 times in this embodiment as compared with the conventional example, and the magnetic resistance of the magnetic core can be reduced with the increase of the occupied area of the magnetic core.

【0018】また上記実施例では非磁性ストリップ状段
差部11a〜11cの厚みtに比べて磁性薄膜の厚みT
が大きい場合について述べたが、図3の他の実施例に示
すように非磁性ストリップ状段差部111a〜111c
にテーパ部13を設けることにより磁性薄膜の厚みTが
小さい場合においても、成膜されたストリップ状磁心1
2a〜12eはテーパ部13に対応する部分で磁気的に
接続され、外部印加磁界(矢印Hf)に対する反磁界を
大幅に低減することができ上記実施例と同様の効果を奏
する。
In the above embodiment, the thickness T of the magnetic thin film is larger than the thickness t of the non-magnetic strip-shaped step portions 11a to 11c.
However, as shown in the other embodiment of FIG. 3, the non-magnetic strip-shaped step portions 111a to 111c are formed.
Even if the thickness T of the magnetic thin film is small by providing the taper portion 13 in the
2a to 12e are magnetically connected at a portion corresponding to the taper portion 13, and a demagnetizing field against an externally applied magnetic field (arrow Hf) can be significantly reduced, and the same effect as that of the above-described embodiment can be obtained.

【0019】また上記実施例ではストリップ状磁心は1
2a〜12eの5本で構成され、その幅l2 =d=10
0μmとしたが、ストリップ状磁心の本数、またその幅
は任意に構成することができる。
In the above embodiment, the strip-shaped magnetic core is 1
It is composed of 5 lines 2a to 12e, and its width l 2 = d = 10
Although it is set to 0 μm, the number of strip-shaped magnetic cores and the width thereof can be arbitrarily configured.

【0020】また上記実施例ではストリップ状段差部1
1a,11b,11cは基板上に形成する場合について
述べたが、多層構造の磁気素子においてはストリップ状
段差部は必ずしも基板上に形成されるとは限らず、多層
構造磁気素子の中間絶縁層上に形成しても上記実施例と
同様の効果を奏する。
In the above embodiment, the strip-shaped step portion 1
Although 1a, 11b, and 11c are described as being formed on the substrate, the strip-shaped step portion is not always formed on the substrate in a magnetic element having a multilayer structure, and the strip-shaped step portion is not necessarily formed on the intermediate insulating layer of the magnetic element having a multilayer structure. Even if it is formed, the same effect as that of the above embodiment can be obtained.

【0021】[0021]

【発明の効果】以上のように、この発明によれば、高周
波信号磁界の方向と平行する複数個のストリップ状段差
部を設け、各段差部間および段差部上に、段差の厚みよ
り厚い磁性薄膜を成膜することにより、各ストリップ状
磁心は成膜時には連続した一枚の磁性薄膜として作用
し、反磁界の影響を大幅に軽減でき強い一軸異方性が付
与された磁性薄膜が得られる。一方高周波信号磁界によ
る動作を考える場合においては、隣接する各ストリップ
状磁心は互いに所定の段差を保って接続されている結
果、磁区構造的には互いに独立したストリップ状磁心と
して作用することが、本発明によるストリップ状磁心の
特徴である。この結果、三角磁区の占有体積を大幅に低
減でき、高周波特性に優れ、又、従来のストリップ状磁
心に比べ、磁心の占有断面積の大きなストリップ状磁心
が得られる効果がある。
As described above, according to the present invention, a plurality of strip-shaped step portions that are parallel to the direction of the high-frequency signal magnetic field are provided, and a magnetic layer having a thickness greater than the step thickness is provided between and on each step portion. By forming a thin film, each strip-shaped magnetic core acts as one continuous magnetic thin film at the time of film formation, and the influence of the demagnetizing field can be significantly reduced, and a magnetic thin film with strong uniaxial anisotropy can be obtained. . On the other hand, when considering operation by a high-frequency signal magnetic field, adjacent strip-shaped magnetic cores are connected to each other with a predetermined step difference, and as a result, they act as strip-shaped magnetic cores that are independent from each other in terms of magnetic domain structure. It is a feature of the strip-shaped magnetic core according to the invention. As a result, there is an effect that the volume occupied by the triangular magnetic domains can be significantly reduced, the high frequency characteristics are excellent, and a strip-shaped magnetic core having a larger occupied cross-sectional area of the magnetic core can be obtained as compared with the conventional strip-shaped magnetic core.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】本発明の一実施例を示す平面図である。FIG. 2 is a plan view showing an embodiment of the present invention.

【図3】本発明の他の実施例を示す断面図である。FIG. 3 is a sectional view showing another embodiment of the present invention.

【図4】従来のストリップ状磁心を用いたインダクタを
示す斜視図である。
FIG. 4 is a perspective view showing an inductor using a conventional strip-shaped magnetic core.

【図5】従来のストリップ状磁心を示す断面図である。FIG. 5 is a cross-sectional view showing a conventional strip-shaped magnetic core.

【図6】従来のストリップ状磁心を示す平面図である。FIG. 6 is a plan view showing a conventional strip-shaped magnetic core.

【符号の説明】[Explanation of symbols]

4a,4b,4c…従来のストリップ状磁心、9…三角
磁区、11a,11b,11c…非磁性ストリップ状段
差部、12a〜12e…本発明の一実施例によるストリ
ップ状磁心、13…非磁性ストリップ状段差部のテーパ
部、Hf…磁心の成膜工程における外部印加磁界の方向
を示す矢印、Hs1 ,Hs2 …高周波信号による交番磁
界の方向を示す矢印。
4a, 4b, 4c ... Conventional strip-shaped magnetic core, 9 ... Triangular domain, 11a, 11b, 11c ... Non-magnetic strip-shaped stepped portion, 12a-12e ... Strip-shaped magnetic core according to one embodiment of the present invention, 13 ... Non-magnetic strip Tapered portion of the stepped portion, Hf ... Arrows showing the direction of the externally applied magnetic field in the film forming process of the magnetic core, Hs 1 , Hs 2 ... Arrows showing the direction of the alternating magnetic field by the high frequency signal.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 41/24 (72)発明者 寺坂 正二 宮城県仙台市青葉区八幡3−3−14 (72)発明者 三寺 正雄 宮城県仙台市青葉区吉成1−24−39─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location H01F 41/24 (72) Inventor Shoji Terasaka 3-3-14 Hachiman, Aoba-ku, Sendai-shi, Miyagi (72) ) Inventor Masao Sandera 1-24-39 Yoshinari Aoba-ku, Sendai City, Miyagi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上面に所定の幅と間隔で平行に形成され
た複数個の非磁性体よりなるストリップ状段差部を有す
る絶縁部材上に、前記段差部に直交する方向に一様な直
流磁界を印加しながら成膜された互いに連続した磁性薄
膜により複数のストリップ状磁心が構成されたことを特
徴とする磁気素子用薄膜磁心。
1. A uniform DC magnetic field in a direction orthogonal to the stepped portion on an insulating member having a strip-shaped stepped portion made of a plurality of non-magnetic materials formed on the upper surface in parallel with a predetermined width and interval. A thin film magnetic core for a magnetic element, characterized in that a plurality of strip-shaped magnetic cores are constituted by magnetic thin films which are continuous with each other while being applied.
【請求項2】 ストリップ状段差部の側部がテーパ部を
有することを特徴とする請求項1記載の磁気素子用薄膜
磁心。
2. The thin film magnetic core for a magnetic element according to claim 1, wherein a side portion of the strip-shaped step portion has a taper portion.
JP18119092A 1992-07-08 1992-07-08 Thin film magnetic core for magnetic element Pending JPH0629131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18119092A JPH0629131A (en) 1992-07-08 1992-07-08 Thin film magnetic core for magnetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18119092A JPH0629131A (en) 1992-07-08 1992-07-08 Thin film magnetic core for magnetic element

Publications (1)

Publication Number Publication Date
JPH0629131A true JPH0629131A (en) 1994-02-04

Family

ID=16096432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18119092A Pending JPH0629131A (en) 1992-07-08 1992-07-08 Thin film magnetic core for magnetic element

Country Status (1)

Country Link
JP (1) JPH0629131A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975610A (en) * 1982-10-25 1984-04-28 Hitachi Ltd Iron base magnetic alloy thin film and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975610A (en) * 1982-10-25 1984-04-28 Hitachi Ltd Iron base magnetic alloy thin film and manufacture thereof

Similar Documents

Publication Publication Date Title
KR960006848B1 (en) Plane magnetic elements
TW451232B (en) Inductive element
EP0427171A2 (en) Magnetic thin film structures
JP2008197089A (en) Magnetic sensor element and method for manufacturing the same
US5032947A (en) Method of improving magnetic devices by applying AC or pulsed current
US5018038A (en) Thin film magnetic head with laminated metal and non magnetic film
JPH0629131A (en) Thin film magnetic core for magnetic element
US7138188B2 (en) Magnetic implement using magnetic metal ribbon coated with insulator
JPH0529146A (en) Thin film inductance element utilizing rectangular magnetic core
JP2744945B2 (en) Magnetic multilayer film
JP2000055995A (en) Magnetic impedance element
Zhang et al. An improved microchip thin film transformer formed by vacuum evaporation and sputtering
JP3324481B2 (en) Plate member for core and laminated core using the same
JP2694114B2 (en) Thin film magnetic element and manufacturing method thereof
JP2898129B2 (en) Amorphous soft magnetic multilayer thin film and manufacturing method thereof
JP3091817B2 (en) Micro magnetic element core
JP3228995B2 (en) Planar magnetic element
JP3290828B2 (en) Thin film inductance element and method of manufacturing the same
JP2003197436A (en) Core for magnetic element, magnetic element using the same, manufacturing method of the magnetic element and switching power supply using the magnetic element
JP2572686Y2 (en) Induction magnet
JPH0766046A (en) Electromagnetic device
JPS6372102A (en) Thin film magnetic circuit
JP2650890B2 (en) Multilayer magnetic film
JP2821622B2 (en) Oblique orientation device
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film