JPH06289440A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPH06289440A
JPH06289440A JP7312193A JP7312193A JPH06289440A JP H06289440 A JPH06289440 A JP H06289440A JP 7312193 A JP7312193 A JP 7312193A JP 7312193 A JP7312193 A JP 7312193A JP H06289440 A JPH06289440 A JP H06289440A
Authority
JP
Japan
Prior art keywords
optical
diffraction grating
optical material
light
electrode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7312193A
Other languages
Japanese (ja)
Inventor
Katsumi Yasuda
克己 安田
Yuichiro Goto
有一郎 後藤
Satoshi Yamazaki
敏 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7312193A priority Critical patent/JPH06289440A/en
Publication of JPH06289440A publication Critical patent/JPH06289440A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the optical scanner of an electrooptical deflection type having high efficiency and photoresolving power. CONSTITUTION:The refractive indices of a double refractive optical material 2a and optical material 2b are both equaled and the periodic structure of a diffraction grating 2 is not sensed when the incident light on an optical waveguide 1 is propagated as, for example, a polarization mode (a), This light advances rectilinearly in the optical waveguide 1 without being diffracted. The polarization mode is changed from (a) to (b) by an electrooptical effect when an electric field is generated in the optical waveguide 1 by impressing a prescribed voltage to an electrode group 3. Consequently, the double refractive optical material 2a and the optical material 2b have eventually the refractive indices different with the polarization mode (b) and the light senses the periodic structure of the diffraction grating 2 and is immediately diffracted so as to be bent in the progression direction. Then, the light scanning is executed by changing over the position where the voltage of the electrode group 3 is impressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,レーザビーム等の一方
向に発射された光線の進行経路を複数の方向に切りかえ
る光走査装置に係り,例えば,画像読み取り装置(スキ
ャナ),記録装置(レーザビームプリンタ),表面検査
装置,表示装置等における光走査装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device for switching a traveling path of a light beam emitted in one direction such as a laser beam into a plurality of directions, for example, an image reading device (scanner), a recording device (laser). Beam printers), surface inspection devices, display devices, and other optical scanning devices.

【0002】[0002]

【発明の背景】従来,上記のような光走査装置として,
走査方向の切りかえ手段に着目して分類すると,機械式
走査装置と非機械式走査装置とに大別される。機械式走
査装置としては,例えば,ポリゴンミラーやガルガノメ
ーター,ホログラムスキャナ等を用いた走査装置が知ら
れているが,このような機械式走査装置は文字通り回転
や振動等の機械的動きによって光線の走査を行うため,
走査速度は著しく限定される。また,走査中に任意の位
置で光ビームを止めたり,任意の態様で光走査をするこ
とが困難である。かかる装置としては,例えば,特開昭
62−212937号公報に開示のものが知られてい
る。そこで,これらの機械式走査装置の欠点を解消する
ために,非機械式走査装置が提案されている。例えば,
音響光学偏向器,ピエゾスキャナ,熱光学偏向器,電気
光学偏向器等である。図5(A)は音響光学偏向器の一
例であり,Ti拡散LiNbO3 導波路上で実現したも
のを示す。トランスジューサから発した超音波は,導波
路上を横断し,屈折率の周期的粗密を作る。それにより
ブラッグ回折が生じ,導波路が回折,即ち,偏向され
る。超音波の周波数を変えると粗密のピッチ(波長)が
変わり,偏向方向が変わる。このような音響光学偏向器
を用いた光走査装置は,偏向角が小さいこと及び偏向分
解能が不十分であるといった理由により実用化されてい
ない。また,ピエゾスキャナは,偏向角度が小さいとい
う理由から実用的でない。更に,熱光学偏向器は,温度
変化により屈折率が変化する熱光学効果を用いたもの
で,熱を用いることから走査速度が遅い欠点がある。電
気光学偏向器は,強誘電体の電場による屈折率の変化
(電気光学効果)を利用した偏向器で,図5(B)はそ
の改良された一例である。図5(B)はLiNbO
3 (LN)導波路を用いて実現した例で,フレネルゾー
ンプレートの原理を利用している。即ち,偶数番ゾーン
にはLN結晶の導波路が設けられており,電圧を印加し
ないときには点Pに集光されるが,電圧を印加し各チャ
ンネルの導波路を通過する光の位相を制御すれば,任意
の点Qに集光できる。この素子は,前述の偏向素子に比
べて走査速度が速く,集光機能を持つ等の長所がある
が,効率,偏向分解能の低いことが欠点である。従っ
て,本発明が目的とするところは、上記したような導波
路型電気光学偏向器における効率,偏向分解能の向上を
図った光走査装置を提供することである。
BACKGROUND OF THE INVENTION Conventionally, as the above optical scanning device,
When classified by focusing on the switching means in the scanning direction, they are roughly classified into a mechanical scanning device and a non-mechanical scanning device. As a mechanical scanning device, for example, a scanning device using a polygon mirror, a galvanometer, a hologram scanner, or the like is known. Such a mechanical scanning device literally causes a beam of light to move by a mechanical movement such as rotation or vibration. To scan,
The scanning speed is significantly limited. Further, it is difficult to stop the light beam at an arbitrary position during scanning or perform optical scanning in an arbitrary manner. As such a device, for example, one disclosed in Japanese Patent Laid-Open No. 62-1212937 is known. Therefore, in order to eliminate the disadvantages of these mechanical scanning devices, non-mechanical scanning devices have been proposed. For example,
An acousto-optic deflector, a piezo scanner, a thermo-optic deflector, an electro-optic deflector, etc. FIG. 5A shows an example of an acousto-optic deflector, which is realized on a Ti-diffused LiNbO 3 waveguide. The ultrasonic wave emitted from the transducer traverses the waveguide and creates periodic density variation of the refractive index. This causes Bragg diffraction, which diffracts or deflects the waveguide. When the frequency of ultrasonic waves is changed, the pitch (wavelength) of density changes, and the deflection direction changes. An optical scanning device using such an acousto-optic deflector has not been put to practical use because of its small deflection angle and insufficient deflection resolution. Moreover, the piezo scanner is not practical because the deflection angle is small. Further, the thermo-optic deflector uses the thermo-optic effect in which the refractive index changes with temperature changes, and has the drawback that the scanning speed is slow because heat is used. The electro-optical deflector is a deflector that utilizes the change in the refractive index (electro-optic effect) of the ferroelectric substance due to the electric field, and FIG. 5B is an improved example thereof. FIG. 5B shows LiNbO.
This is an example realized using a 3 (LN) waveguide, and uses the principle of the Fresnel zone plate. That is, even-numbered zones are provided with LN crystal waveguides, which are focused at point P when no voltage is applied, but the phase of light passing through the waveguides of each channel is controlled by applying a voltage. Therefore, it can be focused on an arbitrary point Q. Although this element has advantages such as a higher scanning speed and a condensing function than the above-described deflection element, it has a drawback in that efficiency and deflection resolution are low. Therefore, it is an object of the present invention to provide an optical scanning device which improves the efficiency and the deflection resolution in the above-mentioned waveguide type electro-optical deflector.

【0003】[0003]

【課題を解決するための手段】上記目的を達成するため
に,本発明は,一方向に発射された光線の進行経路を複
数の経路に切りかえる光走査装置において,電気光学効
果を有する材料により構成され,上記光線を異なる2つ
の偏光モードa,bで伝搬可能で且つ電界の有無により
偏光モードがa,b間で変化する光導波路部材と,上記
光導波路部材に併設され,上記偏光モードa,bに対し
て異なるか又は略等しい屈折率n1 ,n 2 を有する第1
の光学材料と上記屈折率n1 ,n2 が異なる場合上記偏
光モードa,bに対して上記屈折率n1 ,n2 のいずれ
かと略等しく,且つ上記屈曲率n 1 ,n2 が略等しい場
合上記偏光モードa,bに対して異なる屈折率n3 ,n
4(但しn3 又はn4 がn1 ,n2 と略等しい)を有す
る第2の光学材料とを光線の伝搬方向に交互に配置して
なる回折格子と,上記回折格子に対向して設けられた電
界発生用の電極群と,上記電極群の各電極に所定電圧を
選択的に印加して電界を発生させ,偏光モードを上記
a,b間で切り替える制御回路とを具備してなることを
特徴とする光走査装置として構成されている。
[Means for Solving the Problems] To achieve the above object
In addition, the present invention provides multiple traveling paths of rays emitted in one direction.
In an optical scanning device that switches to several paths, the electro-optical effect
It is composed of a fruit-bearing material and has two different rays.
Depending on the presence or absence of electric field
An optical waveguide member whose polarization mode changes between a and b;
Adjacent to the optical waveguide member, for the above polarization modes a and b
Refractive index n1, N 2First having
Optical material and the above refractive index n1, N2If different, above bias
The above refractive index n for the optical modes a and b1, N2Which of
Is almost equal to 1, N2When is almost equal
Different refractive index n for the above polarization modes a and b3, N
Four(However, n3Or nFourIs n1, N2Is approximately equal to)
And the second optical material, which is
The diffraction grating and the electric
A predetermined voltage is applied to the field-generating electrode group and each electrode of the electrode group.
Selectively apply an electric field to change the polarization mode
and a control circuit for switching between a and b.
It is configured as a characteristic optical scanning device.

【0004】[0004]

【作用】例えば,光導波路部材に入射された光を偏光モ
ードaとして伝搬させると,第1の光学材料の屈折率n
1 第2の光学材料の屈折率n3 は共に等しいか又は近い
値であるため,回折格子の周期構造は感じられず,光は
回折されることなく光導波路部材内を直進する。電極群
に所定電圧を印加して電界を発生させると,偏光モード
がaからbに切り替えられる。その結果,偏光モードb
に対して第1の光学材料の屈折率n2 と第2の光学材料
の屈折率n4 とは異なる値となり,光は回折格子の周期
構造を感じて直ちに回折され,進行方向が曲げられる。
従って,制御回路によって上記電極群の電圧を印加する
位置を切替えることによって,光走査が可能となる。こ
の場合,上記第1の光学材料又は第2の光学材料が所謂
複屈折性光学材料である。尚,上記第1,第2の光学材
料を共に複屈折性光学材料とし,第1又は第2の光学材
料のいずれかの屈折率の偏光モードa,b間での変化度
合いを他方の光学材料の屈折率の変化度合いに対して小
なる値として電界の有無により回折格子の周期構造を感
じ得るようにしてもよい。更に,上記の場合とは逆に,
電界を印加することによって偏光モードをbからaへ切
り替えられるように構成してもよい。
For example, when the light incident on the optical waveguide member is propagated as the polarization mode a, the refractive index n of the first optical material is
(1) Since the refractive indices n 3 of the second optical materials are both equal or close to each other, the periodic structure of the diffraction grating is not felt, and the light travels straight in the optical waveguide member without being diffracted. When a predetermined voltage is applied to the electrode group to generate an electric field, the polarization mode is switched from a to b. As a result, the polarization mode b
On the other hand, the refractive index n 2 of the first optical material and the refractive index n 4 of the second optical material have different values, and light is diffracted immediately by feeling the periodic structure of the diffraction grating, and the traveling direction is bent.
Therefore, optical scanning becomes possible by switching the position to which the voltage of the electrode group is applied by the control circuit. In this case, the first optical material or the second optical material is a so-called birefringent optical material. Both the first and second optical materials are birefringent optical materials, and the degree of change in the refractive index of either the first or second optical material between the polarization modes a and b is the other optical material. The periodic structure of the diffraction grating may be felt depending on the presence or absence of an electric field as a value that is small with respect to the degree of change in the refractive index. Furthermore, contrary to the above case,
The polarization mode may be switched from b to a by applying an electric field.

【0005】[0005]

【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る光走査装置の概念を
示す図,図2は上記光走査装置における光走査の作用を
示す図,図3は上記光走査装置の回折格子の形状例を示
す図,図4は本発明の他の実施例に係る光走査装置の概
略構成を示す図である。図1に本発明の一実施例である
LiNbO3 導波路型の光走査装置の構成を示すと共
に,その構成を更に明瞭にするために同装置の作成手順
を以下に示す。 (1)先ず,X板LiNbO3 基板5の上面に,Ti拡
散法により該基板5に対して光線を異なる二つの偏光モ
ードa,bで伝搬可能なスラブ型光導波路1を形成す
る。 (2)上記光導波路1上にレジストを塗布し,一方の偏
光モードでの光の伝搬方向(Y軸方向)に略直交した直
線で帯状の回折格子2のパターンをフォトリソグラフィ
ー法などにより形成する。これをマスクとしてドライエ
ッチングを行い,該光導波路1の表層にピッチΛgで凹
凸部を形成する。この凸部を上記回折格子2を構成する
複屈折性光学材料2a(第1の光学材料)とする。即
ち,本実施例では複屈折性光学材料2aと光導波路1に
同じ材料が用いられている。 (3)光導波路1の表層の凹部にニオブ酸(Nb1+x
3-X )をスパッタ法等により充填する。これが光学材料
2b(第2の光学材料)に相当する。一般に,スパッタ
により堆積されたNb1+X 3-x は多結晶状になるた
め,その屈折率は偏光モードによっては変化しない。た
だし,この場合の化学量論比xは,その屈折率ng がT
i 拡散による上記基板5(LiNbO3 )の常光屈折率
o に一致するように設定する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not intended to limit the technical scope of the present invention. 1 is a diagram showing a concept of an optical scanning device according to an embodiment of the present invention, FIG. 2 is a diagram showing an optical scanning operation in the optical scanning device, and FIG. 3 is a diffraction grating of the optical scanning device. FIG. 4 is a diagram showing a shape example, and FIG. 4 is a diagram showing a schematic configuration of an optical scanning device according to another embodiment of the present invention. FIG. 1 shows the structure of a LiNbO 3 waveguide type optical scanning device according to an embodiment of the present invention, and the manufacturing procedure of the device is shown below in order to further clarify the structure. (1) First, a slab type optical waveguide 1 capable of propagating light rays in two different polarization modes a and b to the substrate 5 is formed on the upper surface of the X plate LiNbO 3 substrate 5 by the Ti diffusion method. (2) A resist is coated on the optical waveguide 1, and a band-shaped diffraction grating 2 pattern is formed by a photolithography method with a straight line substantially orthogonal to the light propagation direction (Y-axis direction) in one polarization mode. . Using this as a mask, dry etching is performed to form irregularities on the surface layer of the optical waveguide 1 at a pitch Λg. This convex portion is used as the birefringent optical material 2a (first optical material) forming the diffraction grating 2. That is, in this embodiment, the same material is used for the birefringent optical material 2a and the optical waveguide 1. (3) Niobate (Nb 1 + x O
3-X ) is filled by a sputtering method or the like. This corresponds to the optical material 2b (second optical material). In general, Nb 1 + X O 3−x deposited by sputtering becomes polycrystalline and its refractive index does not change depending on the polarization mode. However, the stoichiometric ratio x in this case is such that the refractive index ng is T
It is set so as to match the ordinary refractive index n o of the substrate 5 (LiNbO 3 ) by i diffusion.

【0006】上記のようにして形成された回折格子2に
おける各偏光モードと各光学材料の屈折率との関係を以
下の表1に示す。
Table 1 below shows the relationship between each polarization mode and the refractive index of each optical material in the diffraction grating 2 formed as described above.

【表1】 即ち,上記回折格子2は,同図においてX軸方向に偏光
したモードa(TMモード),Z軸方向に偏光したモー
ドb(TEモード)に対して異なる屈折率(2.29,
2.20)を有する複屈折性光学材料2aと,TMモー
ドにおける上記複屈折性光学材料2aの屈折率2.29
に等しく且つ各モードにおいても屈折率の等しい(2.
29,2.29)光学材料2bとをY軸方向に交互に配
置することにより構成されている。 (4)引続き,上記のようにして形成された回折格子2
の上面にSiO2 をスパッタ法により堆積し,バッファ
層6を形成する。 (5)上記バッファ層6の上面に,光の伝搬方向に略直
交する帯状の電極3aをピッチΛm/2で配列し,電界
発生用の電極群3を形成する。 (6)上記電極群3の内,例えば偶数番目の各電極3a
を接地すると共に,奇数番目の各電極3aに所定電圧V
の印加と接地とを選択的に切り換え可能なスイッチ4a
を接続し,電圧制御回路4を構成する。上記構成におい
て,上記スイッチ4aを切り換えて奇数番目の各電極3
aに所定電圧Vを印加することにより,上記電極群3に
電界が発生し,偏光モードがTMからTEに切り換えら
れる。尚この場合,奇数番目と偶数番目の各電極3aの
接続は逆であってもよい。
[Table 1] That is, the diffraction grating 2 has a different refractive index (2.29, for the mode a (TM mode) polarized in the X-axis direction and the mode b (TE mode) polarized in the Z-axis direction in the figure).
2.20) having a birefringent optical material 2a and a refractive index of 2.29 of the birefringent optical material 2a in the TM mode.
And the refractive index is equal in each mode (2.
29, 2.29) and the optical material 2b are alternately arranged in the Y-axis direction. (4) Subsequently, the diffraction grating 2 formed as described above
A buffer layer 6 is formed by depositing SiO 2 on the upper surface of the substrate by sputtering. (5) On the upper surface of the buffer layer 6, band-shaped electrodes 3a substantially orthogonal to the light propagation direction are arranged at a pitch Λm / 2 to form an electrode group 3 for generating an electric field. (6) Of the electrode group 3, for example, each even-numbered electrode 3a
Is grounded, and a predetermined voltage V is applied to each odd-numbered electrode 3a.
Switch 4a capable of selectively switching application of voltage and ground
To form the voltage control circuit 4. In the above configuration, the switch 4a is switched to change the odd-numbered electrodes 3
By applying a predetermined voltage V to a, an electric field is generated in the electrode group 3 and the polarization mode is switched from TM to TE. In this case, the odd-numbered and even-numbered electrodes 3a may be connected in reverse.

【0007】引続き,上記のようにして構成された光走
査装置において,光導波路1内部を例えばTMモードで
光を伝搬させた場合の当該装置の動作について説明す
る。 (a)電極群3に電圧を印加しない場合(図2(A)参
照)。 回折格子2を構成する複屈折性光学材料2aと光学材料
2bの屈折率は,TMモードにおいては共に2.29で
等しく,該回折格子2に於ける周期構造は感知されな
い。従って,光は回折されることなく導波路1内部を直
進する。尚,当該光走査装置においては,前述の如く光
導波路1と光学材料2bとは同一材料であって上記回折
格子2内部をも光は回折されることなく直進する。 (b)電極群3に電圧を印加した場合(図2(B)参
照)。 上記スイッチ4aを切り換えて電極群3に所定電圧を印
加すると,同図中の電気力線7で示される電界が生じ
る。電界が生じると,電気光学効果によりTMモードか
らTEモードに切り換えられる。その結果,複屈折性光
学材料2aと光学材料2bとはTEモードに対して異な
る屈折率(2.20,2.29)となり,光は回折格子
2の周期構造を感じて回折され,基板5側に角度θで出
射される。この時,もっとも効率よく偏光モードの切り
換えを行うための電極群3のピッチΛmは, Λm=λ/|NTE−NTM| … で与えられる。ここで,λは光波長,NTE,NTMはそれ
ぞれTEモードとTMモードでの導波路1における実効
屈折率である。本実施例において,光導波路1は複屈折
性光学材料2aと同一材料であることから,それぞれの
値は該複屈折性光学材料2aに等しい。更に,この時,
角度θは次式で与えられる。 ng ・sinθ=NTE+q・λ/Λg … ここで,ng は基板5の屈折率,qは回折の次数を示
し,負の整数である。従って,上式よりq=−1次回析
光をθ=45°で出射するには,Λg=0.37μmと
すればよい。前記したような電圧制御回路4を,当該光
走査装置の光の伝搬方向に複数組並設し,それぞれの電
極群3への電圧の印加を高速で順次切替えることによ
り,光の出射位置が移動して高速での光走査が可能とな
る。
Next, the operation of the optical scanning device configured as described above when the light is propagated in the optical waveguide 1 in the TM mode, for example, will be described. (A) When no voltage is applied to the electrode group 3 (see FIG. 2A). The birefringent optical materials 2a and 2b forming the diffraction grating 2 have the same refractive index of 2.29 in the TM mode, and the periodic structure in the diffraction grating 2 is not sensed. Therefore, the light goes straight inside the waveguide 1 without being diffracted. In the optical scanning device, as described above, the optical waveguide 1 and the optical material 2b are the same material, and the light travels straight inside the diffraction grating 2 without being diffracted. (B) When voltage is applied to the electrode group 3 (see FIG. 2B). When the switch 4a is switched to apply a predetermined voltage to the electrode group 3, an electric field shown by an electric force line 7 in the figure is generated. When an electric field is generated, the TM mode is switched to the TE mode due to the electro-optic effect. As a result, the birefringent optical material 2a and the optical material 2b have different refractive indices (2.20, 2.29) for the TE mode, and the light is diffracted by feeling the periodic structure of the diffraction grating 2 and the substrate 5 The light is emitted to the side at an angle θ. At this time, the pitch Λm of the electrode group 3 for switching the polarization mode most efficiently is given by Λm = λ / | N TE −N TM | Here, λ is the light wavelength, and N TE and N TM are the effective refractive index in the waveguide 1 in the TE mode and the TM mode, respectively. In this embodiment, the optical waveguide 1 is made of the same material as the birefringent optical material 2a, so that the respective values are equal to the birefringent optical material 2a. Furthermore, at this time,
The angle θ is given by the following equation. n g · sin θ = N TE + q · λ / Λg Here, n g is the refractive index of the substrate 5, q is the order of diffraction, and is a negative integer. Therefore, from the above equation, in order to emit the q = −1 next-order diffracted light at θ = 45 °, Λg = 0.37 μm. By arranging a plurality of the voltage control circuits 4 as described above in parallel in the light propagation direction of the optical scanning device and sequentially switching the voltage application to each electrode group 3 at high speed, the light emission position is moved. Thus, optical scanning can be performed at high speed.

【0008】引続き,本実施例装置において高分解能で
高消光比,即ち発光強度の減少の極めて少ない状態での
光走査が可能なことを以下に示す。 分解能について 分解能は電極群3のピッチΛmで決定される。本実施例
装置においては光波長がλ=0.633μm,導波路1
の実効屈折率が上述の如く複屈折性光学材料2aに等し
くNTE=2.20,NTM=2.29であることから,上
記式よりΛm=7μmという高分解能であることを示
す値が得られる。尚,本実施例において,電極群3の全
ての電極3aについて電圧印加と接地とを切り換え可能
なスイッチ4aを設けることにより,Λm/2の更に高
い分解能での走査が可能となる。 消光比について 上記回折格子2において,光学材料2bの作製誤差など
によりその屈折率ngと複屈折性光学材料2aの屈折率
O に差が生じた場合,TMモードでの光も回折格子2
により回折されて消光比が劣化することが考えられる。
そこで,上記光学材料2bの屈折率ng の設定精度につ
いて考察する。一般に,回折効率は回折格子を構成する
2種類の材料の屈折率差Δnの2乗にほぼ比例する。本
実施例においてTEモードの場合,Δn=2.29−
2.20=0.09であり,一般にTMモードでの回折
効率がTEモードでの回折効率に比べて小さいことと考
え併せると,屈折率ng を0.01の精度で屈折率nO
に一致させれば,100:1以上の差を持たせることが
可能となり,比較的容易に高消光比の得られることが判
明する。
Next, it will be shown below that the apparatus of this embodiment can perform optical scanning with a high resolution and a high extinction ratio, that is, in a state in which the reduction of the emission intensity is extremely small. Regarding the resolution The resolution is determined by the pitch Λm of the electrode group 3. In the device of this embodiment, the light wavelength is λ = 0.633 μm, and the waveguide 1
As described above, since the effective refractive index of N is equal to that of the birefringent optical material 2a and N TE = 2.20 and N TM = 2.29, the above formula shows that Λm = 7 μm is a high resolution value. can get. In this embodiment, by providing the switch 4a capable of switching between voltage application and grounding for all the electrodes 3a of the electrode group 3, it is possible to perform scanning with a higher resolution of Λm / 2. Extinction ratio In the above diffraction grating 2, when a difference occurs between the refractive index n g of the optical material 2 b and the refractive index n o of the birefringent optical material 2 a due to a manufacturing error of the optical material 2 b, etc.
It is considered that the extinction ratio is deteriorated due to the diffraction by
Therefore, the setting accuracy of the refractive index ng of the optical material 2b will be considered. Generally, the diffraction efficiency is approximately proportional to the square of the refractive index difference Δn between the two types of materials that form the diffraction grating. In the case of the TE mode in this embodiment, Δn = 2.29−
2.20 = 0.09, the general diffraction efficiency in the TM mode Taken together considered smaller than the diffraction efficiency of the TE mode and the refractive index n O of the refractive index n g 0.01 accuracy
It becomes clear that a high extinction ratio can be obtained relatively easily by making the difference of 100: 1 or more possible.

【0009】以下に,他の実施例について例記する。 (1)回折格子の形状について 上述の実施例では,複屈折性光学材料2aと光学材料2
bとを光の伝搬方向にほぼ直交する直線の帯状として交
互に配置することにより回折格子2が構成されている
が,出射光を集光させるためにそれぞれ平面視で湾曲し
た帯状に形成してもよい。また,光を導波路の側面から
出射させるために,回折格子2′(図3参照)を光の伝
搬方向に対して傾斜した直線の帯状に形成してもよい。 (2)回折格子の材料について 上記実施例における光学材料2bの材料として,Nb
1+X 3-X に代えLiNbO3 を用いてもよい。この場
合の回折格子の屈折率の関係を表2に示す。
Other examples will be described below. (1) Regarding the shape of the diffraction grating In the above-mentioned embodiment, the birefringent optical material 2a and the optical material 2 are used.
The diffraction grating 2 is configured by alternately arranging b and b in the shape of a straight line substantially orthogonal to the light propagation direction. The diffraction grating 2 is formed in a curved band shape in plan view to collect the emitted light. Good. Further, in order to emit the light from the side surface of the waveguide, the diffraction grating 2 '(see FIG. 3) may be formed in the shape of a straight line inclined with respect to the light propagation direction. (2) Material of Diffraction Grating As the material of the optical material 2b in the above embodiment, Nb is used.
LiNbO 3 may be used instead of 1 + X O 3-X . Table 2 shows the relationship of the refractive index of the diffraction grating in this case.

【表2】 又,上記実施例における回折格子2ではそれ自身の内部
を光が伝搬したが,例えば以下の表3に示すように,複
屈折性光学材料2a′としてTiO2 ,光学材料2b′
としてカルコゲナイド系ガラスの一種であるAs2 Se
3 を用いて構成された回折格子2″(図4参照)では,
その内部を光が伝搬することはない。上記構成では,光
導波路1と複屈折性光学材料2a′とはその材質が異な
り,上記光導波路1内部を伝搬してその表面側へもれ出
た光が上記回折格子2″の作用にて回折される。
[Table 2] Further, in the diffraction grating 2 in the above-described embodiment, light propagates inside itself. For example, as shown in Table 3 below, as the birefringent optical material 2a ′, TiO 2 and optical material 2b ′ are used.
As 2 Se which is a kind of chalcogenide type glass
In a diffraction grating 2 ″ (see FIG. 4) constructed using 3 ,
No light propagates inside it. In the above structure, the optical waveguide 1 and the birefringent optical material 2a ′ are different in material, and the light propagating inside the optical waveguide 1 and leaking to the surface side thereof is operated by the diffraction grating 2 ″. Be diffracted.

【表3】 [Table 3]

【0010】更に,本発明に係る回折格子では,第1の
光学材料として複屈折性を有さない光学材料を用いて構
成すると共に,第2の光学材料を複屈折性を有する光学
材料を用いて構成するようにしてもい。更にまた,第
1,第2の光学材料と共に複屈折性を有する光学材料に
て構成するようにしてもよい。この場合,異なる偏光モ
ードに対して一方の光学材料の屈折率を他方の光学材料
の屈折率に比べてその変化度合いが小さくなるように設
定する必要がある。 (3)光導波路の形状について 上述の実施例では光導波路1をスラブ型としたが,チャ
ンネル型の光導波路(3次元光導波路)を用いてもよ
い。 (4)光導波路の材料について 上述の実施例ではX板LiNbO3 の基板5上に形成し
たTi拡散型の導波路を用いたが,Z板LiNbO3
板に形成したTi拡散型の導波路を用いることも可能で
ある。又,タンタル酸リチウム(LiTaO3 )等,他
の電気光学性結晶を用いてもよい。
Further, in the diffraction grating according to the present invention, an optical material having no birefringence is used as the first optical material, and an optical material having birefringence is used as the second optical material. It may be configured with. Furthermore, it may be made of an optical material having birefringence together with the first and second optical materials. In this case, it is necessary to set the refractive index of one of the optical materials for different polarization modes so that the degree of change is smaller than that of the other optical material. (3) Shape of Optical Waveguide Although the optical waveguide 1 is a slab type in the above-mentioned embodiment, a channel type optical waveguide (three-dimensional optical waveguide) may be used. (4) Regarding Material of Optical Waveguide In the above-mentioned embodiment, the Ti diffusion type waveguide formed on the substrate 5 of the X plate LiNbO 3 was used, but the Ti diffusion type waveguide formed on the Z plate LiNbO 3 substrate is used. It is also possible to use. Further, other electro-optic crystal such as lithium tantalate (LiTaO 3 ) may be used.

【0011】[0011]

【発明の効果】本発明は,上記したように,一方向に発
射された光線の進行経路を複数の経路に切りかえる光走
査装置において,電気光学効果を有する材料により構成
され,上記光線を異なる2つの偏光モードa,bで伝搬
可能で且つ電界の有無により偏光モードがa,b間で変
化する光導波路部材と,上記光導波路部材に併設され,
上記偏光モードa,bに対して異なるか又は略等しい屈
折率n1 ,n2 を有する第1の光学材料と上記屈折率n
1 ,n2 が異なる場合上記偏光モードa,bに対して上
記屈折率n1 ,n2 のいずれかと略等しく,且つ上記屈
曲率n1 ,n2 が略等しい場合上記偏光モードa,bに
対して異なる屈折率n3 ,n4 (但しn3又はn4 がn
1 ,n2 と略等しい)を有する第2の光学材料とを光線
の伝搬方向に交互に配置してなる回折格子と,上記回折
格子に対向して設けられた電界発生用の電極群と,上記
電極群の各電極に所定電圧を選択的に印加して電界を発
生させ,偏光モードを上記a,b間で切り替える制御回
路とを具備してなることを特徴とする光走査装置である
から,以下に示すような優れた効果を奏する。 1)高速走査:本発明では高速応答が可能な電気光学効
果を利用しているため,電圧を印加する電極の高速切り
換えにより,高速光走査が可能となる。さらに電極の印
加位置を選択することによりランダム走査もできる。 2)高分解能:電極群を細かく分割することにより高分
解能での走査が可能となる。 3)高効率:第1,第2の光学材料により光の伝搬方向
に周期構造を有する回折格子を構成しているため,相互
作用長が長く取れ,光の利用効率が高い。 4)高消光比:いわゆる複屈折による回折効率の差を利
用しているため高消光比が容易に得られる。
As described above, the present invention is an optical scanning device that switches the traveling path of a light beam emitted in one direction into a plurality of paths. An optical waveguide member that is capable of propagating in two polarization modes a and b and whose polarization mode changes between a and b depending on the presence or absence of an electric field;
The first optical material having different or substantially equal refractive indexes n 1 and n 2 with respect to the polarization modes a and b, and the refractive index n
When 1 and n 2 are different from each other, the polarization modes a and b are substantially equal to one of the refractive indices n 1 and n 2 , and when the bending indices n 1 and n 2 are substantially equal, the polarization modes a and b are selected. On the other hand, different refractive indices n 3 and n 4 (where n 3 or n 4 is n
And a second optical material having substantially the same number 1 and n 2 ) are alternately arranged in the propagation direction of the light beam, and an electric field generating electrode group provided opposite to the diffraction grating. An optical scanning device comprising: a control circuit for selectively applying a predetermined voltage to each electrode of the electrode group to generate an electric field and switching the polarization mode between a and b. , It has the following excellent effects. 1) High-speed scanning: In the present invention, since the electro-optical effect capable of high-speed response is utilized, high-speed optical scanning is possible by high-speed switching of electrodes to which a voltage is applied. Random scanning can also be performed by selecting the electrode application position. 2) High resolution: Scanning with high resolution is possible by finely dividing the electrode group. 3) High efficiency: Since the diffraction grating having the periodic structure in the light propagation direction is formed by the first and second optical materials, the interaction length can be long and the light utilization efficiency is high. 4) High extinction ratio: A high extinction ratio can be easily obtained because the difference in diffraction efficiency due to so-called birefringence is utilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る光走査装置の概念を
示す図。
FIG. 1 is a diagram showing a concept of an optical scanning device according to an embodiment of the present invention.

【図2】 その光走査の作用を示す図。FIG. 2 is a diagram showing the operation of the optical scanning.

【図3】 同光走査装置の回折格子の形状例を示す図。FIG. 3 is a diagram showing a shape example of a diffraction grating of the optical scanning device.

【図4】 本発明の他の実施例に係る光走査装置の概略
構成を示す図。
FIG. 4 is a diagram showing a schematic configuration of an optical scanning device according to another embodiment of the present invention.

【図5】 従来の光走査装置の概念図。FIG. 5 is a conceptual diagram of a conventional optical scanning device.

【符号の説明】[Explanation of symbols]

1…光導波路 2,2′,2″…回折格子 2a,2a′…複屈折性光学材料 2b,2b′…光学材料 3…電極群 3a…電極 4…電圧制御回路 4a…スイッチ 5…基板 6…バッファ層 DESCRIPTION OF SYMBOLS 1 ... Optical waveguide 2, 2 ', 2 "... Diffraction grating 2a, 2a' ... Birefringent optical material 2b, 2b '... Optical material 3 ... Electrode group 3a ... Electrode 4 ... Voltage control circuit 4a ... Switch 5 ... Substrate 6 … Buffer layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一方向に発射された光線の進行経路を複
数の経路に切りかえる光走査装置において,電気光学効
果を有する材料により構成され,上記光線を異なる2つ
の偏光モードa,bで伝搬可能で,かつ電界の有無によ
り偏光モードがa,b間で変化する光導波路部材と,上
記光導波路部材に併設され,上記偏光モードa,bに対
して異なるか又は略等しい屈折率n1 ,n2 を有する第
1の光学材料と上記屈折率n1 ,n2 が異なる場合上記
偏光モードa,bに対して上記屈折率n1 ,n2 のいず
れかと略等しく,且つ上記屈曲率n1 ,n2 が略等しい
場合上記偏光モードa,bに対して異なる屈折率n3
4 (但しn3 又はn4 がn1 ,n2 と略等しい)を有
する第2の光学材料とを光線の伝搬方向に交互に配置し
てなる回折格子と,上記回折格子に対向して設けられた
電界発生用の電極群と,上記電極群の各電極に所定電圧
を選択的に印加して電界を発生させ,偏光モードを上記
a,b間で切り替える制御回路とを具備してなることを
特徴とする光走査装置。
1. An optical scanning device for switching a traveling path of a light beam emitted in one direction into a plurality of paths, which is made of a material having an electro-optical effect and can propagate the light beam in two different polarization modes a and b. And an optical waveguide member whose polarization mode changes between a and b depending on the presence or absence of an electric field, and a refractive index n 1 or n that is provided adjacent to the optical waveguide member and is different or substantially equal to the polarization modes a and b. If the first optical material having a 2 and the refractive indexes n 1, n 2 are different the polarization mode a, substantially equal to the one of the refractive indexes n 1, n 2 with respect to b, and the bending modulus n 1, When n 2 is substantially equal, different refractive indexes n 3 for the polarization modes a and b,
and a second diffraction grating having n 4 (where n 3 or n 4 is substantially equal to n 1 and n 2 ) alternately arranged in the propagation direction of the light beam, and facing the diffraction grating. It is provided with an electric field generating electrode group provided and a control circuit for selectively applying a predetermined voltage to each electrode of the electrode group to generate an electric field and switching the polarization mode between a and b. An optical scanning device characterized by the above.
JP7312193A 1993-03-31 1993-03-31 Optical scanner Pending JPH06289440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7312193A JPH06289440A (en) 1993-03-31 1993-03-31 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7312193A JPH06289440A (en) 1993-03-31 1993-03-31 Optical scanner

Publications (1)

Publication Number Publication Date
JPH06289440A true JPH06289440A (en) 1994-10-18

Family

ID=13509099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7312193A Pending JPH06289440A (en) 1993-03-31 1993-03-31 Optical scanner

Country Status (1)

Country Link
JP (1) JPH06289440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018008183A1 (en) * 2016-07-07 2019-04-18 日本碍子株式会社 Optical scanning element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018008183A1 (en) * 2016-07-07 2019-04-18 日本碍子株式会社 Optical scanning element
EP3483650A4 (en) * 2016-07-07 2019-06-26 NGK Insulators, Ltd. Optical scanning element
US11385334B2 (en) 2016-07-07 2022-07-12 Ngk Insulators, Ltd. Optical scanning element

Similar Documents

Publication Publication Date Title
US5481636A (en) Wavelength conversion element
US5640267A (en) Optical apparatus
US5153770A (en) Total internal reflection electro-optic modulator
Lean et al. Thin-film acoustooptic devices
EP0775929A2 (en) Electro-optical device having inverted domains formed inside a ferro-electric substrate
JPH1164809A (en) Optical waveguide device and optical communication system using optical waveguide device
US6473542B1 (en) Optical switch and optical disk drive
US5291566A (en) Total internal reflection electro-optic modulator for multiple axis and asymmetric beam profile modulation
JPH06289440A (en) Optical scanner
US5714240A (en) Integrated frequency conversion and scanner
US20060072186A1 (en) Microwave frequency electro-optical beam deflector and analog to digital conversion
JP2613942B2 (en) Waveguide type optical device
JPH09185025A (en) Optical control element
JP2844356B2 (en) Optical deflector
JP2004004194A (en) Optical deflection element using 90 degree polarization interface
JPH05289117A (en) Optical scanning device
JPH0778587B2 (en) Optical scanning recorder
JPH0728101A (en) Light scan device
JPH04242728A (en) Actuating method for light deflecting element
JPH10115814A (en) Electrooptical element and light source
JPH05204008A (en) Wavelength conversion element
JPH10333189A (en) Focal distance variable lens device
Hinkov Beam steering without moving parts
JPH08194197A (en) Waveguide type acousto-optical element
JPH04121713A (en) Optical deflecting element