JPH04121713A - Optical deflecting element - Google Patents

Optical deflecting element

Info

Publication number
JPH04121713A
JPH04121713A JP24131290A JP24131290A JPH04121713A JP H04121713 A JPH04121713 A JP H04121713A JP 24131290 A JP24131290 A JP 24131290A JP 24131290 A JP24131290 A JP 24131290A JP H04121713 A JPH04121713 A JP H04121713A
Authority
JP
Japan
Prior art keywords
light
electrodes
comb
optical waveguide
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24131290A
Other languages
Japanese (ja)
Inventor
Toshihiko Omi
俊彦 近江
Tomoyuki Koike
智之 小池
Koji Sakai
浩司 境
Norio Yoshikawa
吉川 宜男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP24131290A priority Critical patent/JPH04121713A/en
Publication of JPH04121713A publication Critical patent/JPH04121713A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow light deflection in many directions at a high speed by arranging plural comb-shaped electrodes on an optical waveguide so as to successively generate Bragg diffractions. CONSTITUTION:Since an LiNbO3 substrate 1 has an electrooptical effect, the refractive index of the optical waveguide 2 changes by impressing a voltage between electrodes 4a and 4b. The light Pi which propagates in the optical waveguide 2 and progresses to the place of the electrodes 4 is diffracted at a prescribed angle and is made into diffracted light Pd if the grating space of the diffraction gratings by the comb-shaped electrode 4 is as determined that the wavelength of the refractive index Pi and the incident angle satisfy the Bragg diffraction conditions. The incident light Pi advances rectilinear to provide the transmitted light Pt when the voltage is not impressed to the electrodes 4. The control of the propagation direction of light in two ways is possible if the impression of the voltage is controlled by a switch 6. The progressing direction of light is controlled in the direction of 2n if n-pieces of the electrodes 4 are used.

Description

【発明の詳細な説明】 発明の背景 技術分野 この発明は、電気光学効果を利用して外部から印加する
電圧によって先導波路内を伝搬する光の進行方向を制御
する光偏向素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical deflection element that utilizes the electro-optic effect to control the traveling direction of light propagating within a leading waveguide by an externally applied voltage.

従来技術とその問題点 光の進行方向を制御する光偏向素子には、ポリゴンミラ
ーを回転させて光を偏向をさせる回転多面鏡走査器、ホ
ログラム・ディスクを回転させて光を偏向をさせるホロ
グラム・ディスク走査器。
Conventional technology and its problems Optical deflection elements that control the traveling direction of light include a rotating polygon mirror scanner that deflects light by rotating a polygon mirror, and a hologram scanner that deflects light by rotating a hologram disk. disk scanner.

ガルバノ・メータを利用したガルバノ・メータ偏向走査
器などがある。しかしながら、これらの光偏向素子はミ
ラーやホログラム・ディスクなどを機械的に回転させて
光の進行方向を制御しているので、ミラー等がもつ慣性
のために高速光偏向には限界がある。装置が大型化し、
小型化を図ることが困難である。耐久性に劣る。という
問題点がある。
There are galvanometer deflection scanners that use galvanometers. However, since these optical deflection elements control the traveling direction of the light by mechanically rotating a mirror, hologram disk, etc., there is a limit to high-speed optical deflection due to the inertia of the mirror etc. As the equipment becomes larger,
It is difficult to achieve miniaturization. Poor durability. There is a problem.

上記問題点を解決するために電気光学効果をもつ結晶に
電圧を印加して屈折率変化により光を偏向させる光ビー
ム偏光器や、先導波路上に表面弾性波を伝搬させて表面
弾性波によるブラッグ回折により光の偏向を行なう音響
光学効果を利用したブラッグ変調回路などがある。しか
しながらこれらの光偏向素子においては偏向角度が小さ
く、かつ分解点数が少ないので実用的なものではない。
In order to solve the above problems, we have developed a light beam polarizer that deflects light by applying a voltage to a crystal with an electro-optic effect and changes the refractive index, and a Bragg-wave polarizer that uses surface acoustic waves to propagate on a leading waveguide. There are Bragg modulation circuits that utilize the acousto-optic effect to deflect light through diffraction. However, in these optical deflection elements, the deflection angle is small and the number of resolution points is small, so they are not practical.

発明の概要 発明の目的 この発明は高速かつ多方向の光偏向を達成でき、耐久性
に優れた小型の光偏向素子を提供することを目的とする
SUMMARY OF THE INVENTION OBJECTS OF THE INVENTION An object of the present invention is to provide a compact optical deflection element that can achieve high-speed and multidirectional optical deflection and has excellent durability.

発明の構成1作用および効果 この発明による光偏向素子は、電気光学効果をもつ材料
により形成された先導波路上に、この光導波路を伝搬す
る光に順次ブラッグ回折を起こさせる配置で複数の<゛
シ形電極が成形されていることを特徴とする。
Structure 1 of the Invention Functions and Effects The optical deflection element according to the present invention has a plurality of <゛It is characterized by a square shaped electrode.

この発明によると、先導波路上のくし形電極に電圧が印
加されると電気光学効果により光導波路の屈折率が変化
する。この屈折率変化は電界方向によって異なる。くし
形電極では電極間の領域ごとに電界の方向が交互に異な
る。このために先導波路中に相対的に高い屈折率をもつ
領域と相対的に低い屈折率をもつ領域とが交互に生じ屈
折率分布型回折格子が形成される。先導波路を伝搬して
きた光はこの回折格子によりブラッグ回折される。くし
形電極に電圧が印加されないときは光は回折されずに直
進する。このようにして1つのくし形電極で光の進行方
向を2方向に制御することができる。したがって先導波
路上にn個のくし形電極を一定方向に並べて配置するこ
とにより光の進行方向を2n方向に制御することができ
る。
According to this invention, when a voltage is applied to the comb-shaped electrodes on the leading waveguide, the refractive index of the optical waveguide changes due to the electro-optic effect. This refractive index change differs depending on the direction of the electric field. In comb-shaped electrodes, the direction of the electric field alternates in each region between the electrodes. For this reason, regions with a relatively high refractive index and regions with a relatively low refractive index are alternately formed in the leading waveguide, forming a gradient index diffraction grating. The light propagating through the leading waveguide is subjected to Bragg diffraction by this diffraction grating. When no voltage is applied to the comb-shaped electrodes, light travels straight without being diffracted. In this way, the traveling direction of light can be controlled in two directions with one comb-shaped electrode. Therefore, by arranging n comb-shaped electrodes in a fixed direction on the leading waveguide, the traveling direction of light can be controlled in the 2n direction.

この発明による光偏向素子は、電気光学効果を利用して
いるので高速偏向が可能となる。
The optical deflection element according to the present invention utilizes the electro-optic effect, so high-speed deflection is possible.

またくし形電極を適切な形状にすることにより低い駆動
電圧であっても高SN比の光偏向を達成することができ
る。
Furthermore, by appropriately shaping the comb-shaped electrodes, optical deflection with a high signal-to-noise ratio can be achieved even with a low driving voltage.

さらに電気光学効果をもつ材料に光導波路とくし形電極
を形成しているので、素子を小型化することが容易であ
り、かつ耐久性も向上する。
Furthermore, since the optical waveguide and comb-shaped electrodes are formed of a material that has an electro-optic effect, it is easy to miniaturize the device and its durability is improved.

実施例の説明 第1図はこの発明の実施例を示すもので、光偏向素子の
斜視図である。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows an embodiment of the present invention, and is a perspective view of a light deflection element.

YカットLiNb0.基板1上にTiを熱拡散すること
により光導波層2が形成されている。光導波層2はTE
  モードの光を伝搬するシングル・モードの先導波路
となるようにその厚さが調整されている。この光導波層
2上にはS i O2膜3がスパッタリングにより形成
されている。さらに5in2膜3上に、交互に所定間隔
で配置されてた2つの電極4aと4bとからなるくし形
電極4がフォトリソグラフィにより形成されている。く
し形電極4は複数個−列に配列して設けられている。こ
れらのくし形電極4にはそれぞれ、第3図に示すように
、電極4aと4bとの間にスイッチ6を介して直流電源
5が接続されている。
Y-cut LiNb0. An optical waveguide layer 2 is formed on a substrate 1 by thermally diffusing Ti. The optical waveguide layer 2 is TE
Its thickness is adjusted to provide a single mode leading wavepath for propagating the mode of light. A SiO2 film 3 is formed on this optical waveguide layer 2 by sputtering. Further, on the 5in2 film 3, a comb-shaped electrode 4 consisting of two electrodes 4a and 4b alternately arranged at a predetermined interval is formed by photolithography. A plurality of comb-shaped electrodes 4 are arranged in rows. As shown in FIG. 3, each of these comb-shaped electrodes 4 is connected to a DC power source 5 via a switch 6 between the electrodes 4a and 4b.

LiNb0i基板1は電気光学効果をもつので、電極4
aと4bとの間に電圧を印加することにより先導波層2
の屈折率が変化する。屈折率の変化は先導波層2におけ
る電界の方向によって異なる。
Since the LiNb0i substrate 1 has an electro-optic effect, the electrode 4
By applying a voltage between a and 4b, the leading wave layer 2
The refractive index of changes. The change in refractive index differs depending on the direction of the electric field in the leading wave layer 2.

第2図を参照して、基板1の屈折率をnとすると、電極
4aと4bとの間の領域D1では屈折率がΔn増加しn
+Δnとなり、それに隣接する領域Ddでは屈折率が減
少しn−Δnとなる。したがって光導波層2において屈
折率の高い領域D1と屈折率の低い領域Ddとが周期的
に形成される。これにより先導波層2に屈折率分布型回
折格子が生じる。
Referring to FIG. 2, if the refractive index of the substrate 1 is n, the refractive index increases by Δn in the region D1 between the electrodes 4a and 4b, and n
+Δn, and in the region Dd adjacent thereto, the refractive index decreases to n-Δn. Therefore, regions D1 with a high refractive index and regions Dd with a low refractive index are periodically formed in the optical waveguide layer 2. As a result, a gradient index diffraction grating is created in the leading wave layer 2.

再び、第3図を参照して、くシ形電極4による回折格子
の格子間隔、入射光P1の波長およびその回折格子に対
する入射角をブラッグ回折条件を満たすように定めてお
けば、先導波層2を伝搬してくし形電極4の場所に進行
する光P1はブラッグ回折により所定の角度で回折され
回折光Pdとなる。くし形電極4に電圧が印加されてい
ないときには先導波層2に回折格子が生じないので、入
射光Piは回折されずそのまま電極4が形成されている
部分を直進して透過光Ptとなる。このようにくし形電
極4を光導波層2上に形成しておき、電圧の印加をスイ
ッチ6により制御すれば光の伝搬方向を2方向に制御す
ることができる。n個のくし形電極4を光導波層2上に
並べて形成しておき、順次光を回折させるようにすれば
2°の方向に光の進行方向を制御することができる。実
際に第1図に示すようにYカットL i N b O3
基板1上に先導波層2と4対のくし形電極4を作成し。
Referring again to FIG. 3, if the grating spacing of the diffraction grating formed by the comb-shaped electrode 4, the wavelength of the incident light P1, and its angle of incidence with respect to the diffraction grating are determined so as to satisfy the Bragg diffraction conditions, the leading wave layer The light P1 propagating through the comb-shaped electrode 4 is diffracted at a predetermined angle by Bragg diffraction and becomes a diffracted light Pd. When no voltage is applied to the comb-shaped electrodes 4, no diffraction grating is generated in the leading wave layer 2, so the incident light Pi is not diffracted and travels straight through the portion where the electrodes 4 are formed to become transmitted light Pt. By forming the comb-shaped electrodes 4 on the optical waveguide layer 2 in this manner and controlling the application of voltage with the switch 6, the propagation direction of light can be controlled in two directions. If n comb-shaped electrodes 4 are arranged and formed on the optical waveguide layer 2 and the light is sequentially diffracted, the traveling direction of the light can be controlled in the 2° direction. Actually, as shown in Fig. 1, Y cut L i N b O3
A leading wave layer 2 and four pairs of comb-shaped electrodes 4 are formed on a substrate 1.

X軸に対して5.l@の角度で光を入射したところ4対
のくし形電極4への電圧の印加の有無の組合せを変える
こと異なる16点に光を出射することができた。
5 for the X axis. When light was incident at an angle of l@, the light could be emitted to 16 different points by changing the combination of whether or not a voltage was applied to the four pairs of comb-shaped electrodes 4.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光偏向素子の斜視図、第2図は電圧の印加によ
り屈折率が変化する様子を示す平面図。 第3図は入射光が2方向に制御される様子を示す平面図
である。 1・・・L i N b 03基板。 2・・・光導波層。 4・・・くし形電極。 以 上
FIG. 1 is a perspective view of the optical deflection element, and FIG. 2 is a plan view showing how the refractive index changes with the application of voltage. FIG. 3 is a plan view showing how incident light is controlled in two directions. 1...L i N b 03 board. 2... Optical waveguide layer. 4...Comb-shaped electrode. that's all

Claims (1)

【特許請求の範囲】[Claims] 電気光学効果をもつ材料により形成された光導波路上に
、この光導波路を伝搬する光に順次ブラッグ回折を起こ
させる配置で複数のくし形電極が形成されている光偏向
素子。
An optical deflection element in which a plurality of comb-shaped electrodes are formed on an optical waveguide made of a material with an electro-optic effect, arranged so as to sequentially cause Bragg diffraction in the light propagating through the optical waveguide.
JP24131290A 1990-09-13 1990-09-13 Optical deflecting element Pending JPH04121713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24131290A JPH04121713A (en) 1990-09-13 1990-09-13 Optical deflecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24131290A JPH04121713A (en) 1990-09-13 1990-09-13 Optical deflecting element

Publications (1)

Publication Number Publication Date
JPH04121713A true JPH04121713A (en) 1992-04-22

Family

ID=17072422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24131290A Pending JPH04121713A (en) 1990-09-13 1990-09-13 Optical deflecting element

Country Status (1)

Country Link
JP (1) JPH04121713A (en)

Similar Documents

Publication Publication Date Title
US5153770A (en) Total internal reflection electro-optic modulator
US4006967A (en) Directing optical beam
Lean et al. Thin-film acoustooptic devices
US6353690B1 (en) Electrically adjustable diffraction grating
GB2287327A (en) Electro-optic apparatus
US4243300A (en) Large aperture phased element modulator/antenna
US3804489A (en) Electro-optic thin-film diffraction loss modulator
EP0095563B1 (en) Opto-optical light deflector
US5291566A (en) Total internal reflection electro-optic modulator for multiple axis and asymmetric beam profile modulation
US4264125A (en) Transmissive surface layer effect electro-optic device for use in optical modulators and the like
EP0100418B1 (en) Opto-optical light deflector
JPH05204001A (en) Light deflecting device
JPH04121713A (en) Optical deflecting element
JPS6247627A (en) Optical deflector
JPH06110024A (en) Light reflector
JPS60136719A (en) Acoustooptic device
KR100878769B1 (en) Transmissive active grating device
JPH06118458A (en) Optical beam deflector having bragg lattice
JP2844356B2 (en) Optical deflector
JPH0361932B2 (en)
JPH08194197A (en) Waveguide type acousto-optical element
JPH06289440A (en) Optical scanner
SU528798A1 (en) Electrooptic switching device
JPH04242728A (en) Actuating method for light deflecting element
JPS6212487B2 (en)