JPH06289064A - Fabry-perot resonator type electric field sensor - Google Patents

Fabry-perot resonator type electric field sensor

Info

Publication number
JPH06289064A
JPH06289064A JP5074383A JP7438393A JPH06289064A JP H06289064 A JPH06289064 A JP H06289064A JP 5074383 A JP5074383 A JP 5074383A JP 7438393 A JP7438393 A JP 7438393A JP H06289064 A JPH06289064 A JP H06289064A
Authority
JP
Japan
Prior art keywords
electro
optic crystal
crystal
electric field
field sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5074383A
Other languages
Japanese (ja)
Inventor
Nobuaki Toyoshima
伸朗 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5074383A priority Critical patent/JPH06289064A/en
Publication of JPH06289064A publication Critical patent/JPH06289064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To improve the S/N ratio and measuring sensitivity of the sensor by applying a signal voltage to transparent electrodes arranged on both sides of a first electrooptical crystal and controlling an optical resonator length. CONSTITUTION:Transparent electrodes 1, 2 are provided on both sides of a first electrooptical crystal 5, and a dielectric mirror 3 is arranged between the electrode 1 and the crystal 5. A second electrical crystal 6 is disposed near the crystal 5 to constitute an optical resonator with a dielectric mirror 7 provided on one side of the crystal 6. If an incident laser light varies in its wavelength, a DC voltage is applied to the electrodes 1, 2 to vary a refractive index of the crystal 5 to control an optical resonator length, thereby turning the resonance frequency of the resonator with the frequency of the incident light. Thus, an electric field sensor having a high sensitivity can be realized. As the crystal 5, electrooptical crystal belonging to point groups 4, 4mm, 3, 3m, 6, 6mm is used, and a longitudinal modulator in which an optical axis coincides with the direction of the probe light is formed. Further, a spatially electric field can be measured by the crystal 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光応用計測に利用され
る空間電界、表面電位を測定する電界センサ−に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric field sensor for measuring a spatial electric field and surface potential used for optical application measurement.

【0002】[0002]

【従来の技術】従来の空間電界の測定方法には、静電誘
導を用いたものから電界の力やイオンの運動を利用した
ものなど様々なものが挙げられる。最近では、その応答
性の速さから電気光学効果を利用した方法が高速な電子
デバイスの評価方法として利用されているが、この方法
は電気光学サンプリング法と呼ばれる方法で、電気光学
結晶などの電気光学効果を有する光学素子を電子デバイ
スからの漏れ電界を検知する電界センサ−として、複屈
折によるプロ−ブ光の位相変化や偏光状態の変化を検出
することにより、電界を測定する方法である。この方法
では検出感度を上げるために電気光学結晶の電気光学定
数を大きなものとしなければならないが、実際には電気
光学定数の大きな電気光学結晶は存在せず、そのため、
微小な電界の測定は困難とされている。このような問題
を解決したものとしては、例えば、本出願人の特願平4
−122309号に示されているようなファブリ−ペロ
−共振器型の電界センサ−がある。この方法は、共振器
内部に電気光学結晶を配設し、この電気光学結晶に電界
が加わると、共振器の光路長の変化に従って共振器から
の透過光または反射光の強度が変わり、これを検出する
ことで電界の測定を行なうことができるものである。
2. Description of the Related Art Conventional methods for measuring a spatial electric field include various methods such as a method using electrostatic induction, a method using electric field force and ion motion. Recently, a method utilizing the electro-optical effect has been used as a method for evaluating a high-speed electronic device because of its high responsiveness.This method is called an electro-optical sampling method, and is a method called electro-optical sampling. This is a method of measuring an electric field by using an optical element having an optical effect as an electric field sensor for detecting a leakage electric field from an electronic device and detecting a phase change and a polarization state change of probe light due to birefringence. In this method, the electro-optic constant of the electro-optic crystal must be made large in order to increase the detection sensitivity, but in reality, no electro-optic crystal with a large electro-optic constant exists, and therefore,
It is difficult to measure a minute electric field. As a solution to such a problem, for example, Japanese Patent Application No.
-122309, there is a Fabry-Perot-resonator type electric field sensor. In this method, an electro-optic crystal is arranged inside the resonator, and when an electric field is applied to this electro-optic crystal, the intensity of transmitted light or reflected light from the resonator changes in accordance with the change in the optical path length of the resonator. The electric field can be measured by detecting the electric field.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この方
法では入射光の波長変動があった場合、正確な電界の測
定を行なうことができない。そのため、入射光を共振周
波数近傍で安定させなければならいという問題を抱えて
おり、この問題がファブリ−ペロ−共振器型電界センサ
−の実用化を妨げている。この発明は上記の問題点に鑑
みてなされたものであり、入射光の周波数を制御するの
ではなく、電界センサ−の光学的な共振器長を制御する
ことにより上記の問題点を解決した実用的なファブリ−
ペロ−共振器型の電界センサ−を提供することを目的と
する。
However, this method cannot accurately measure the electric field when the wavelength of the incident light fluctuates. Therefore, there is a problem that the incident light must be stabilized in the vicinity of the resonance frequency, and this problem hinders the practical application of the Fabry-Perot-resonator type electric field sensor. The present invention has been made in view of the above problems, and is a practical solution to the above problems by controlling the optical resonator length of the electric field sensor instead of controlling the frequency of incident light. Fabry
An object is to provide a Pero-resonator type electric field sensor.

【0004】[0004]

【課題を解決するための手段】請求項1の発明では、誘
電体ミラ−間に電気光学結晶を有するファブリ−ペロ−
共振器型の電界センサ−において、第一の電気光学結晶
の両側に第1及び第2の透明電極を配設し前記第1の透
明電極と前記第一の電気光学結晶の間に第一の誘電体ミ
ラ−を配設し、前記第一の電気光学結晶の近傍に第二の
電気光学結晶を配置し、前記第二の電気光学結晶の一方
の側面に誘電体体ミラ−配設し、前記第2の透明電極と
前記第二の電気光学結晶の間に空隙を設け、前記第一の
電気光学結晶の両側に配設された透明電極に波長変動に
対応するフィ−ドバック信号電圧をかけて前記第一の電
気光学結晶の屈折率を変化させて光学的な共振器長を制
御させるようにした。
According to the invention of claim 1, a Fabry-Perot having an electro-optic crystal between dielectric mirrors.
In a resonator type electric field sensor, first and second transparent electrodes are arranged on both sides of a first electro-optical crystal, and a first electro-optical crystal is provided between the first transparent electrode and the first electro-optical crystal. A dielectric mirror is arranged, a second electro-optic crystal is arranged in the vicinity of the first electro-optic crystal, and a dielectric mirror is arranged on one side surface of the second electro-optic crystal. An air gap is provided between the second transparent electrode and the second electro-optic crystal, and a feedback signal voltage corresponding to wavelength fluctuation is applied to the transparent electrodes provided on both sides of the first electro-optic crystal. The refractive index of the first electro-optic crystal is changed to control the optical resonator length.

【0005】請求項2の発明では、電圧を印加する共振
器長制御用の電気光学結晶には、点群4、4mm、3、
3m、6、6mmに属する電気光学結晶を用いることに
した。
According to the second aspect of the invention, the electro-optic crystal for controlling the resonator length for applying a voltage has a point group of 4, 4 mm, 3,
It was decided to use electro-optic crystals belonging to 3 m, 6 and 6 mm.

【0006】請求項3の発明では、ファブリ−ペロ−共
振器型電界センサ−において、第二の電気光学結晶で空
間電界を測定することにした。
According to the third aspect of the invention, in the Fabry-Perot-resonator type electric field sensor, the spatial electric field is measured by the second electro-optic crystal.

【0007】請求項4の発明では、第二の電気光学結晶
の一方の側面に透明体ミラ−配設し他方の側面に透明電
極を配設して表面電位を測定ことすることにした。
According to the fourth aspect of the invention, the surface potential is measured by disposing the transparent mirror on one side surface of the second electro-optic crystal and disposing the transparent electrode on the other side surface.

【0008】請求項5の発明では、第一の電気光学結晶
に配設された第2透明電極と第二の電気光学結晶に配設
された第3透明電極を共通にして表面電位を測定ことす
ることにした。
According to the invention of claim 5, the surface potential is measured by using the second transparent electrode provided on the first electro-optic crystal and the third transparent electrode provided on the second electro-optic crystal in common. I decided to do it.

【0009】[0009]

【作用】請求項1の発明においては、誘電体ミラ−間に
電気光学結晶を有するファブリ−ペロ−共振器型の電界
センサ−において、第一の電気光学結晶の両側に第1及
び第2の透明電極を配設し前記第1の透明電極と前記第
一の電気光学結晶の間に第一の誘電体ミラ−を配設し、
前記第一の電気光学結晶の近傍に第二の電気光学結晶を
配置し、第二の電気光学結晶の一方の側面に誘電体ミラ
−配設し、前記第2の透明電極と前記第二の電気光学結
晶の間に空隙を設け、前記第一の電気光学結晶の両側に
配設された透明電極に波長変動に対応するフィ−ドバッ
ク信号電圧をかけて前記第一の電気光学結晶の屈折率を
変化させて光学的な共振器長を制御することが可能とな
る。
According to the invention of claim 1, in a Fabry-Perot resonator type electric field sensor having an electro-optic crystal between dielectric mirrors, a first and a second electro-optic crystal are provided on both sides of the first electro-optic crystal. A transparent electrode is provided, and a first dielectric mirror is provided between the first transparent electrode and the first electro-optic crystal,
A second electro-optic crystal is arranged in the vicinity of the first electro-optic crystal, a dielectric mirror is arranged on one side surface of the second electro-optic crystal, and the second transparent electrode and the second electro-optic crystal are arranged. A void is provided between the electro-optic crystals, and a transparent electrode provided on both sides of the first electro-optic crystal is applied with a feedback signal voltage corresponding to the wavelength variation, and the refractive index of the first electro-optic crystal is applied. Can be changed to control the optical resonator length.

【00010】請求項2の発明においては、第一の電気
光学結晶として点群4、4mm、3、3m、6、6mm
に属するものを用いたので、第二の電気光学結晶だけの
複屈折を利用し電界の測定を行うことが可能となる。
According to the second aspect of the invention, the first electro-optic crystal has a point group of 4, 4 mm, 3, 3 m, 6, 6 mm.
It is possible to measure the electric field by utilizing the birefringence of only the second electro-optic crystal, since the one belonging to (1) is used.

【00011】請求項3の発明においては、第一の電気
光学結晶の透明電極に入射レ−ザ−光の波長変動に応じ
た直流電圧を印加して共振器長を制御し、更に、第二の
電気光学結晶により空間電界の測定を行うことが可能と
なる。
According to the third aspect of the invention, a direct current voltage corresponding to the wavelength variation of the incident laser light is applied to the transparent electrode of the first electro-optical crystal to control the resonator length, and the second electrode It becomes possible to measure the spatial electric field by the electro-optic crystal.

【00012】請求項4の発明においては、第二の電気
光学結晶の一方の側面に誘電体ミラ−配設し他方の側面
に透明電極を配設して表面電位を測定を行うことが可能
となる。
According to the fourth aspect of the present invention, the surface potential can be measured by disposing a dielectric mirror on one side surface of the second electro-optic crystal and disposing a transparent electrode on the other side surface. Become.

【00013】請求項5の発明においては、第一の電気
光学結晶に配設された第2の透明電極と第二の電気光学
結晶に配設された第3の透明電極を共通にして第二の電
気光学結晶により表面電位の測定を行うことが可能とな
る。
According to the fifth aspect of the invention, the second transparent electrode provided on the first electro-optic crystal and the third transparent electrode provided on the second electro-optic crystal are commonly used as the second transparent electrode. It becomes possible to measure the surface potential by using the electro-optic crystal.

【00014】[00014]

【実施例】以下、本発明の実施例を説明する。本発明
は、高感度な電界測定に用いられるファブリ−ペロ−共
振器型の電界センサ−において、電界センサ−の光学的
な共振器長を制御し、更に、電位、電界の測定ができる
ようにしたものである。
EXAMPLES Examples of the present invention will be described below. The present invention, in a Fabry-Perot-resonator type electric field sensor used for high-sensitivity electric field measurement, controls the optical resonator length of the electric field sensor so that the potential and the electric field can be measured. It was done.

【00015】ファブリ−ペロ−共振器型の電界センサ
−は、図4に示すように共振器内部に電気光学結晶が挿
入された構造を持っている。この電気光学結晶に電界が
加わると、共振器の光路長の変化に従って共振器からの
透過光または反射光の強度や位相が変わり、これを検出
することで電界の測定を行なうことができる。ファブリ
−ペロ−共振器型の電界センサ−は、ミラ−の反射率を
高く、また共振器長を長くすることで電界に対して更
に、高い感度を持った電界センサ−を実現できる。
The Fabry-Perot resonator type electric field sensor has a structure in which an electro-optic crystal is inserted inside the resonator as shown in FIG. When an electric field is applied to this electro-optic crystal, the intensity or phase of the transmitted light or reflected light from the resonator changes according to the change in the optical path length of the resonator, and the electric field can be measured by detecting this. The Fabry-Perot resonator type electric field sensor can realize an electric field sensor having a higher mirror reflectivity and a longer resonator length to have a higher sensitivity to an electric field.

【00016】図1に本発明の構成を示す。図1は空間
電界内に置かれたファブリ−ペロ−共振器型電界センサ
−である。第一の電気光学結晶5の両側には透明電極
1,2が設けられており透明電極1と第一の電気光学結
晶5の間には誘電体ミラ−3配設されている。また第一
の電気光学結晶5の近傍には第二の電気光学結晶6が配
置されており、第二の電気光学結晶6の一方の側面に設
けられた誘電体ミラ−とで光学的共振器を構成してい
る。第一の電気光学結晶5の材料としては例えば、Li
NbO3があり、第二の電気光学結晶6の材料としては
例えば、KDP、ADPが挙げられる。
FIG. 1 shows the configuration of the present invention. FIG. 1 is a Fabry-Perot-resonator type electric field sensor placed in a spatial electric field. Transparent electrodes 1 and 2 are provided on both sides of the first electro-optic crystal 5, and a dielectric mirror 3 is provided between the transparent electrode 1 and the first electro-optic crystal 5. A second electro-optic crystal 6 is arranged near the first electro-optic crystal 5, and an optical resonator is formed by a dielectric mirror provided on one side surface of the second electro-optic crystal 6. Are configured. As a material of the first electro-optic crystal 5, for example, Li
There is NbO 3 , and examples of the material of the second electro-optical crystal 6 include KDP and ADP.

【00017】このような構成において空間電界内に置
かれたファブリ−ペロ−共振器型電界センサ−にレ−ザ
−光を入射させると空間電界の強度に応じて共振器の光
路長が変化し、光路長の変化に応じて共振器からの透過
光または反射光の強度や位相が変わり、これを検出する
ことで電界の測定を行なうことができる。また、入射レ
−ザ−光に波長変動が生じた場合には第一の電気光学結
晶の両側に配設された透明電極1,2に直流電圧を印加
し共振器長を制御する。このように、図4の構成に電極
を備えた電気光学結晶をもう1つ共振器内に挿入し、こ
の電気光学結晶に波長変動に対応するフィ−ドバック信
号電圧をかけて屈折率を変化させ光学的な共振器長を制
御することが可能となる。尚、共振器長制御のための電
圧印加のしかたは図2と同様にすればよい。
When laser light is incident on the Fabry-Perot-resonator type electric field sensor placed in the spatial electric field in such a structure, the optical path length of the resonator changes in accordance with the intensity of the spatial electric field. The intensity or phase of the transmitted light or the reflected light from the resonator changes according to the change of the optical path length, and the electric field can be measured by detecting this. When the wavelength of the incident laser light fluctuates, a direct current voltage is applied to the transparent electrodes 1 and 2 arranged on both sides of the first electro-optic crystal to control the resonator length. As described above, another electro-optic crystal provided with electrodes in the configuration of FIG. 4 is inserted into the resonator, and a feedback signal voltage corresponding to wavelength fluctuation is applied to the electro-optic crystal to change the refractive index. It is possible to control the optical resonator length. The voltage application for controlling the resonator length may be the same as in FIG.

【00018】共振器長制御用の電気光学結晶の選択に
おいては、これによる複屈折が生じないようにしておか
なければならず、そのための電気光学結晶としては、点
群4、4mm、3、3m、6、6mmに属する電気光学
結晶を用い、光学軸をプロ−ブ光の方向と一致させた縦
型変調器の構成とする。これは、光学軸方向に電界を印
加する場合には、これらの結晶の屈折率楕円体は、電界
の有無に関わらず等方的であることを利用したものであ
る。
When selecting an electro-optic crystal for controlling the cavity length, it is necessary to prevent birefringence due to this, and as an electro-optic crystal therefor, the point groups 4, 4 mm, 3 and 3 m are used. , 6 mm, 6 mm, and 6 mm, and a vertical modulator having an optical axis aligned with the direction of the probe light is used. This is because when the electric field is applied in the optical axis direction, the refractive index ellipsoid of these crystals is isotropic regardless of the presence or absence of the electric field.

【00019】第2図は本発明の電界センサ−を表面電
位センサ−として使用する場合の例である。第一の電気
光学結晶5の両側には透明電極1,2が設けられており
透明電極1と第一電気光学結晶5の間には誘電体ミラ−
3配設されている。また第一の電気光学結晶5の近傍に
は第二の電気光学結晶6が配置されており、第二の電気
光学結晶6の一方の側面に設けられた透明体ミラ−とで
光学的共振器を構成している。第1図との相違点は、第
2図においては第二の電気光学結晶6の誘電体ミラ−7
が配設された反対面に透明電極8を配設した点である。
電界測定用の電気光学結晶をプロ−ブ光と同方向の電界
に対してのみ屈折率が変化する縦型変調の構成にすると
結晶の両面に加わる電圧によって複屈折の大きさが決定
される。従って、結晶の上側の面に透明電極を設けて電
位の基準を作ることで結晶底面上の電位を測定すること
ができる。つまりこのセンサ−を表面電位センサ−とし
て使用することができる。換言すると、図2のように誘
電体ミラ−に対向する共振器内部の面に透明電極を設け
ることで、この電極の電位に対する電界測定用の電気光
学結晶の誘電体ミラ−面上の電位を測定することができ
る。
FIG. 2 shows an example in which the electric field sensor of the present invention is used as a surface potential sensor. Transparent electrodes 1 and 2 are provided on both sides of the first electro-optical crystal 5, and a dielectric mirror is provided between the transparent electrode 1 and the first electro-optical crystal 5.
3 are arranged. Further, a second electro-optic crystal 6 is arranged in the vicinity of the first electro-optic crystal 5, and an optical resonator is formed with a transparent mirror provided on one side surface of the second electro-optic crystal 6. Are configured. The difference from FIG. 1 is that the dielectric mirror 7 of the second electro-optic crystal 6 in FIG.
The point is that the transparent electrode 8 is provided on the opposite surface where is provided.
When the electro-optic crystal for electric field measurement has a vertical modulation structure in which the refractive index changes only with respect to the electric field in the same direction as the probe light, the magnitude of birefringence is determined by the voltage applied to both sides of the crystal. Therefore, the potential on the bottom face of the crystal can be measured by providing a transparent electrode on the upper surface of the crystal to form a reference for the potential. That is, this sensor can be used as a surface potential sensor. In other words, by providing a transparent electrode on the surface inside the resonator facing the dielectric mirror as shown in FIG. 2, the potential on the dielectric mirror surface of the electro-optic crystal for electric field measurement with respect to the potential of this electrode Can be measured.

【00020】ここで透明電極1,2に印加する電圧を
具体的に説明する。第二の電気光学結晶6の後に偏光ビ
−ムスプリッタ−9を配置し第二の電気光学結晶6から
出射したレ−ザ−光を透過光と反射光に分けそれぞれの
光をフォトダイオ−ドなどの光センサ−11(PD
1)、12(PD2)で受光し11、12の出力信号の
差信号PD1−PD2をフィ−ドバック信号として透明
電極1,2に印加する。こうして入射光の周波数に対応
した共振器長の制御が可能となる。また、PD1の出力
信号を電界強度を表わす信号として取り出すことができ
る。この場合も、測定される電位は透明電極8を基準に
した電位となる。
Here, the voltage applied to the transparent electrodes 1 and 2 will be specifically described. A polarization beam splitter 9 is arranged after the second electro-optical crystal 6, and the laser light emitted from the second electro-optical crystal 6 is divided into transmitted light and reflected light, and each light is a photodiode. Optical sensor-11 (PD
1) and 12 (PD2) receive light, and the difference signals PD1-PD2 of the output signals of 11 and 12 are applied to the transparent electrodes 1 and 2 as a feedback signal. In this way, the resonator length can be controlled according to the frequency of incident light. Further, the output signal of PD1 can be taken out as a signal representing the electric field strength. Also in this case, the measured potential is a potential based on the transparent electrode 8.

【00021】第3図は第2図の変形例である。第3図
ではレ−ザ−光入射側から透明電極1、誘電体ミラ−
3、第一の電気光学結晶5、透明電極10、第二の電気
光学結晶6、誘電体ミラ−7の順に構成されている。第
2図との相違点は、第一の電気光学結晶5に設けられた
透明電極2と、第二の電気光学結晶6に設けられた透明
電極8との間に空隙部がなく透明電極が共用されている
点である。一般的には第2図に示された構成の方が検出
感度は高いが、検出感度をさほど考慮しなくてもよい用
途の場合は、空隙部を排することができるので電界セン
サ−を小型にでき、また、透明電極を共用したので、経
済的にも安価にすることができる。
FIG. 3 is a modification of FIG. In FIG. 3, the transparent electrode 1 and the dielectric mirror are arranged from the laser light incident side.
3, the first electro-optic crystal 5, the transparent electrode 10, the second electro-optic crystal 6, and the dielectric mirror 7 are arranged in this order. The difference from FIG. 2 is that there is no space between the transparent electrode 2 provided on the first electro-optic crystal 5 and the transparent electrode 8 provided on the second electro-optic crystal 6, and the transparent electrode is It is a common point. In general, the structure shown in FIG. 2 has a higher detection sensitivity, but in the case where the detection sensitivity does not have to be considered so much, the electric field sensor can be made compact because the void can be eliminated. Moreover, since the transparent electrode is shared, the cost can be reduced economically.

【00022】[00022]

【発明の効果】請求項1記載の発明は、第一の電気光学
結晶に、該電気光学結晶を挟むように透明電極を設け、
前記透明電極に直流電圧を印加し、プロ−ブ用レ−ザ−
光の波長変動に追従するように該ファブリ−ペロ−共振
器の光学的共振器長の制御を行うようにしたのでレ−ザ
−光の波長変動があっても光学的共振器長を一定に保つ
ことができるので、SN比が改善され感度を向上させる
ことができる。
According to the invention of claim 1, a transparent electrode is provided on the first electro-optic crystal so as to sandwich the electro-optic crystal,
A direct current voltage is applied to the transparent electrode, and a laser for probe is used.
Since the optical resonator length of the Fabry-Perot resonator is controlled so as to follow the wavelength fluctuation of the light, the optical resonator length is kept constant even if the wavelength of the laser light changes. Since it can be maintained, the SN ratio is improved and the sensitivity can be improved.

【00023】請求項2記載の発明は、点群4、4m
m、3、3m、6、6mmに属する電気光学結晶を用い
たので複屈折を起こさずに共振器長の制御ができる。
The invention according to claim 2 is characterized in that the point cloud is 4, 4 m.
Since the electro-optic crystal belonging to m, 3, 3 m, 6, and 6 mm is used, the resonator length can be controlled without causing birefringence.

【00024】請求項3記載の発明は、光学的共振器長
の制御ができ、更に、第二の電気光学結晶により空間電
界を測定することができる。
According to the third aspect of the present invention, the optical resonator length can be controlled, and the spatial electric field can be measured by the second electro-optic crystal.

【00025】請求項4記載の発明は、第二の電気光学
結晶の一方の側面に誘電体ミラ−を配設し他方の側面に
透明電極を配設したので表面電位を測定ことすることが
できる。
According to the fourth aspect of the invention, since the dielectric mirror is disposed on one side surface of the second electro-optic crystal and the transparent electrode is disposed on the other side surface, the surface potential can be measured. .

【00026】請求項5記載の発明は、第一の電気光学
結晶に配設された第2の透明電極と第二の電気光学結晶
に配設された第3の透明電極を共通にしたので両者の間
にある空隙部がなくなるので装置が小型化されさらに透
明電極が共通化されるので経済的にも安価にすることが
できる。
According to a fifth aspect of the present invention, the second transparent electrode provided on the first electro-optic crystal and the third transparent electrode provided on the second electro-optic crystal are made common, so that both are provided. Since there is no space between them, the device is downsized and the transparent electrode is shared, so that the cost can be reduced economically.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1記載の発明の一実施例を示す図であ
る。
FIG. 1 is a diagram showing an embodiment of the invention described in claim 1.

【図2】請求項4記載の発明の一実施例を示す図であ
る。
FIG. 2 is a diagram showing an embodiment of the invention described in claim 4;

【図3】請求項5記載の発明の一実施例を示す図であ
る。
FIG. 3 is a diagram showing an embodiment of the invention described in claim 5;

【図4】従来の誘電体ミラ−間に電気光学結晶を有する
ファブリ−ペロ−共振器型の電界センサ−の基本構成を
示す図である。
FIG. 4 is a diagram showing a basic configuration of a conventional Fabry-Perot-resonator type electric field sensor having an electro-optic crystal between dielectric mirrors.

【符号の説明】[Explanation of symbols]

1,2,8,10 透明電極 3,4,7 誘電体ミラ− 5 第一の電気光学結晶 6 第二の電気光学結晶 9 偏光ビ−ムスプリッタ− 11, 電圧印加手段 12,13 光センサ− 1,2,8,10 Transparent electrode 3,4,7 Dielectric mirror 5 First electro-optic crystal 6 Second electro-optic crystal 9 Polarization beam splitter-11, Voltage applying means 12,13 Optical sensor-

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】誘電体ミラ−間に電気光学結晶を有するフ
ァブリ−ペロ−共振器型の電界センサ−において、第一
の電気光学結晶の両側に第1及び第2の透明電極を配設
し前記第1の透明電極と前記第一の電気光学結晶の間に
第一の誘電体ミラ−を配設し、前記第一の電気光学結晶
の近傍に第二の電気光学結晶を配置し、前記第二の電気
光学結晶の一方の側面に誘電体ミラ−配設し、前記第2
の透明電極と前記第二の電気光学結晶の間に空隙を設
け、前記第一の電気光学結晶の両側に配設された透明電
極に波長変動に対応するフィ−ドバック信号電圧をかけ
て前記第一の電気光学結晶の屈折率を変化させて光学的
な共振器長を制御することを特徴とするファブリ−ペロ
−共振器型電界センサ−。
1. A Fabry-Perot resonator type electric field sensor having an electro-optic crystal between dielectric mirrors, wherein first and second transparent electrodes are provided on both sides of the first electro-optic crystal. A first dielectric mirror is arranged between the first transparent electrode and the first electro-optic crystal, and a second electro-optic crystal is arranged in the vicinity of the first electro-optic crystal, A dielectric mirror is disposed on one side surface of the second electro-optic crystal, and the second mirror
An air gap is provided between the transparent electrode and the second electro-optic crystal, and a feedback signal voltage corresponding to wavelength fluctuation is applied to the transparent electrodes provided on both sides of the first electro-optic crystal. 1. A Fabry-Perot-resonator type electric field sensor, characterized in that the optical resonator length is controlled by changing the refractive index of the electro-optic crystal.
【請求項2】電圧を印加する共振器長制御用の電気光学
結晶には、点群4、4mm、3、3m、6、6mmに属
する電気光学結晶を用いることを特徴とする請求項1に
記載のファブリ−ペロ−共振器型電界センサ−。
2. The electro-optic crystal for controlling the resonator length for applying a voltage is an electro-optic crystal belonging to the point group 4, 4 mm, 3, 3 m, 6, 6 mm. The described Fabry-Perot-resonator type electric field sensor.
【請求項3】第二の電気光学結晶で空間電界を測定する
ことを特徴とする請求項1記載のファブリ−ペロ−共振
器型電界センサ−。
3. The Fabry-Perot-resonator type electric field sensor according to claim 1, wherein the spatial electric field is measured by the second electro-optic crystal.
【請求項4】第二の電気光学結晶の一方の側面に誘電体
ミラ−配設し他方の側面に透明電極を配設して表面電位
を測定ことすることを特徴とする請求項1記載のファブ
リ−ペロ−共振器型電界センサ−。
4. The surface potential is measured by disposing a dielectric mirror on one side surface of the second electro-optical crystal and disposing a transparent electrode on the other side surface of the second electro-optical crystal. Fabry-Perot-Resonator type electric field sensor-.
【請求項5】第一の電気光学結晶に配設された第2の透
明電極と第二の電気光学結晶に配設された第3の透明電
極を共通にしたことを特徴とする請求項4記載のファブ
リ−ペロ−共振器型電界センサ−。
5. The second transparent electrode provided on the first electro-optic crystal and the third transparent electrode provided on the second electro-optic crystal are commonly used. The described Fabry-Perot-resonator type electric field sensor.
JP5074383A 1993-03-31 1993-03-31 Fabry-perot resonator type electric field sensor Pending JPH06289064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5074383A JPH06289064A (en) 1993-03-31 1993-03-31 Fabry-perot resonator type electric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5074383A JPH06289064A (en) 1993-03-31 1993-03-31 Fabry-perot resonator type electric field sensor

Publications (1)

Publication Number Publication Date
JPH06289064A true JPH06289064A (en) 1994-10-18

Family

ID=13545595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5074383A Pending JPH06289064A (en) 1993-03-31 1993-03-31 Fabry-perot resonator type electric field sensor

Country Status (1)

Country Link
JP (1) JPH06289064A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007098602A1 (en) * 2006-03-03 2007-09-07 UNIVERSITé LAVAL Method and apparatus for spatially modulated electric field generation and electro-optical tuning using liquid crystals
CN106970253A (en) * 2017-04-10 2017-07-21 哈尔滨理工大学 The ac high voltage sensor and measuring method of a kind of new diaphragm structure
CN112433102A (en) * 2020-10-15 2021-03-02 西安理工大学 Optical fiber electric field sensor based on F-P interference principle and method thereof
CN112763812A (en) * 2020-12-30 2021-05-07 西安理工大学 Electrostatic scanning measurement system based on optical interference principle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007098602A1 (en) * 2006-03-03 2007-09-07 UNIVERSITé LAVAL Method and apparatus for spatially modulated electric field generation and electro-optical tuning using liquid crystals
US8553197B2 (en) 2006-03-03 2013-10-08 Universite Laval Method and apparatus for spatially modulated electric field generation and electro-optical tuning using liquid crystals
CN106970253A (en) * 2017-04-10 2017-07-21 哈尔滨理工大学 The ac high voltage sensor and measuring method of a kind of new diaphragm structure
CN106970253B (en) * 2017-04-10 2019-08-09 哈尔滨理工大学 A kind of the ac high voltage sensor and measurement method of novel diaphragm structure
CN112433102A (en) * 2020-10-15 2021-03-02 西安理工大学 Optical fiber electric field sensor based on F-P interference principle and method thereof
CN112763812A (en) * 2020-12-30 2021-05-07 西安理工大学 Electrostatic scanning measurement system based on optical interference principle
CN112763812B (en) * 2020-12-30 2022-10-14 西安理工大学 Electrostatic scanning measurement system based on optical interference principle

Similar Documents

Publication Publication Date Title
US5963034A (en) Electro-optic electromagnetic field sensor system with optical bias adjustment
JP2571385B2 (en) Voltage detector
EP2839334B1 (en) Electro-optic modulator and electro-optic distance-measuring device
US20060245679A1 (en) Electromagnetic field sensing apparatus
Li et al. Optical voltage sensor based on electrooptic crystal multiplier
US7859666B2 (en) Electric field sensor
US4982151A (en) Voltage measuring apparatus
US5629793A (en) Frequency shifter and optical displacement measurement apparatus using the same
JPH06289064A (en) Fabry-perot resonator type electric field sensor
Filippov et al. Optically controlled fiber voltage sensor
JPH06250130A (en) Optical isolator
EP0913666A2 (en) Interference measurement apparatus and probe used for interference measurement apparatus
EP0506358B1 (en) Sampling-type optical voltage detector
JPH0989961A (en) Electric field detecting device
US7102757B2 (en) Current measurement method and device based on a fiber optic in-line Sagnac interferometer
US5007060A (en) Linear laser with two-swept frequencies of controlled splitting
KR101107977B1 (en) Optical sensor system and optical sensor included in the same
JP3114104B2 (en) Electric field sensor device using electro-optic effect
US4762988A (en) Circuit arrangement for stabilizing an optical resonator
JP3260928B2 (en) Electric field sensor and voltage sensor
JPH02150776A (en) Voltage detecting device
JPH04170078A (en) Semiconductor laser device
Lecona et al. Fiber optic voltage sensor with optically controlled sensitivity
JP3435584B2 (en) Electric field sensor head and electric field sensor
SU989518A1 (en) Electric optical device for adjusting light radiation intensity