JP3114104B2 - Electric field sensor device using electro-optic effect - Google Patents

Electric field sensor device using electro-optic effect

Info

Publication number
JP3114104B2
JP3114104B2 JP03149248A JP14924891A JP3114104B2 JP 3114104 B2 JP3114104 B2 JP 3114104B2 JP 03149248 A JP03149248 A JP 03149248A JP 14924891 A JP14924891 A JP 14924891A JP 3114104 B2 JP3114104 B2 JP 3114104B2
Authority
JP
Japan
Prior art keywords
electric field
light
crystal
electro
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03149248A
Other languages
Japanese (ja)
Other versions
JPH04350574A (en
Inventor
伸夫 桑原
公博 田島
不二雄 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP03149248A priority Critical patent/JP3114104B2/en
Publication of JPH04350574A publication Critical patent/JPH04350574A/en
Application granted granted Critical
Publication of JP3114104B2 publication Critical patent/JP3114104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空間のある一点の電界
強度を正確に測定するため、センサを挿入することによ
り周囲の電磁界分布を乱さないことを目的として、電界
を検出する電極以外は全て非金属で構成された電界セン
サに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode other than an electrode for detecting an electric field for the purpose of accurately measuring the electric field intensity at a certain point in a space so as not to disturb the surrounding electromagnetic field distribution by inserting a sensor. Relates to an electric field sensor composed entirely of non-metal.

【0002】[0002]

【従来の技術】オートマチック車の暴走問題に代表され
るように、近年、電灯のスイッチから放射される妨害波
等によりデジタル処理回路が誤動作を起こす現象が問題
となっている。この問題に対処するためには、このよう
なインパルス性の妨害波のレベルを測定するためのアン
テナが必要である。
2. Description of the Related Art In recent years, as typified by the runaway problem of automatic vehicles, a phenomenon in which a digital processing circuit malfunctions due to an interference wave or the like radiated from a switch of an electric light has become a problem in recent years. To cope with this problem, an antenna for measuring the level of such an impulse interference wave is required.

【0003】インパルス性の電磁界を測定するためのア
ンテナとして現在は、微小ダイポールアンテナ、円錐ア
ンテナやホーンアンテナが使用されている。しかし、こ
れらのアンテナはアンテナと信号の受信機間の接続に同
軸ケーブルを使用しているため、受信した電磁界の特性
にケーブルの影響が出てしまい、測定レベルがケーブル
の引回しの状況で変化するので、再現性に優れた測定は
困難であった。そのため、電磁界を検出するセンサ部と
受信機間を光ファイバで結ぶ電界センサが検討されてい
る。この種の電界センサは、その機構により、センサ内
部にレーザダイオード等の発光素子を内蔵するものと、
LiNbO3等の電気光学効果を持つ結晶を用いた光変調器を
内蔵するものに分類される。
At present, a small dipole antenna, a conical antenna and a horn antenna are used as an antenna for measuring an impulsive electromagnetic field. However, these antennas use a coaxial cable to connect the antenna and the signal receiver, so the characteristics of the received electromagnetic field are affected by the cable, and the measurement level may not be as high as that in the case of cable routing. Because of the change, measurement with excellent reproducibility was difficult. Therefore, an electric field sensor that connects a sensor unit for detecting an electromagnetic field and a receiver with an optical fiber has been studied. This type of electric field sensor has a built-in light emitting element such as a laser diode inside the sensor due to its mechanism,
It is categorized as a type incorporating a light modulator using a crystal having an electro-optic effect such as LiNbO 3 .

【0004】これら2種類のアンテナのうち、後者は、
前者に比べ感度では劣るが、バッテリーを内蔵する必要
がないので、デジタル装置の誤動作の原因となるよう
な、強い電磁界パルスの長時間観測には有効である。後
者のセンサ装置の基本的全体構成を図5に示す。
[0004] Of these two types of antennas, the latter is:
Although the sensitivity is lower than the former, it is effective for long-term observation of a strong electromagnetic field pulse which may cause a malfunction of a digital device because it does not require a built-in battery. FIG. 5 shows the basic overall configuration of the latter sensor device.

【0005】図5で、1は光源、2はグレーデッドイン
デックスレンズ、3−1は偏波面保持光ファイバ、3−
2はシングルモードファイバ、4はグレーデッドインデ
ックスレンズ(入力用)、5は偏光子、6はセンサロッ
ド、7は電気光学効果を持つ結晶、8はバビネソウレイ
ユ位相補償器、9は検光子、10はグレーデッドインデ
ックスレンズ(出力用)、11は光検出器、12は受信
機である。
In FIG. 5, 1 is a light source, 2 is a graded index lens, 3-1 is a polarization maintaining optical fiber,
2 is a single mode fiber, 4 is a graded index lens (for input), 5 is a polarizer, 6 is a sensor rod, 7 is a crystal having an electro-optic effect, 8 is a Babinet-Souille phase compensator, 9 is an analyzer, and 10 is an analyzer. A graded index lens (for output), 11 is a photodetector, and 12 is a receiver.

【0006】このセンサ装置は光源として波長1.3μ
mのレーザダイオードを、電気光学効果を持つ結晶7と
して1mm×1mm×10mmのLiNbO3を2本使用して
いる。レーザダイオード1を出た光波は偏波面保持ファ
イバ3−1を伝搬して、センサ4〜10に達する。セン
サに達した光波はグレーデッドインデックスレンズ4で
平行光線に変換された後、偏光子5で直線偏光成分のみ
にされる。直線偏光の状態で結晶7に入射した光は、電
界ベクトルと同じ方向の結晶軸の複屈折率が変化するの
で、印加された電界ベクトルの方向と同方向の偏光成分
のみ光波の伝搬速度が変化する。そのため、結晶を出射
する光波の偏光は楕円偏光となる。結晶を出射した光波
はバビネソウレイユ位相補償器8によって結晶の出射端
で電界が印加されていない状態において円偏光となるよ
うに位相補償される。この光波の楕円偏光の形状は印加
電界の強さにより変化するので、検光子9を用いて特定
な偏光面のみを取り出すと、強度変調された光信号が得
られる。
This sensor device has a wavelength of 1.3 μm as a light source.
As the crystal 7 having the electro-optical effect, two 1 mm × 1 mm × 10 mm LiNbO 3 are used for the laser diode of m. The light wave exiting the laser diode 1 propagates through the polarization maintaining fiber 3-1 and reaches the sensors 4 to 10. After the light wave reaching the sensor is converted into a parallel light beam by the graded index lens 4, the light wave is converted into only a linearly polarized light component by the polarizer 5. Since the light incident on the crystal 7 in the state of linearly polarized light changes in the birefringence of the crystal axis in the same direction as the electric field vector, the propagation speed of the light wave changes only in the polarization component in the same direction as the direction of the applied electric field vector. I do. Therefore, the polarization of the light wave exiting the crystal is elliptically polarized. The light wave emitted from the crystal is phase-compensated by the Babinet-Soureil phase compensator 8 so that the light wave becomes circularly polarized light when no electric field is applied at the exit end of the crystal. Since the shape of the elliptically polarized light of this light wave changes depending on the strength of the applied electric field, if only a specific polarization plane is extracted using the analyzer 9, an intensity-modulated optical signal is obtained.

【0007】この時の、7への印加電界Eと変調信号V
mの関係は式(1)で表される。 Vm=αI0 [1−cos (δB +δ0 +πβE/V0 )] (1) δ0 =(2π/λ)(n0 −ne )(L1 −L2 ) V0 =λd/(ne 3γc1 ) γc =γ33−(n0 /ne3 γ13 ここで、 V0 :半波長電圧 I0 :光信号の振幅 δB :バビネソウレイユ位相補償器による位相補正値 d :結晶の厚さ ne :電界が印加される方向の屈折率 n0 :電界が印加される方向と垂直方向の屈折率 γ33,γ13:電気光学定数 L1 ,L2 :結晶の長さ λ:光の波長 である。
At this time, the electric field E applied to 7 and the modulation signal V
The relationship of m is represented by equation (1). Vm = αI 0 [1-cos (δ B + δ 0 + πβE / V 0)] (1) δ 0 = (2π / λ) (n 0 -n e) (L 1 -L 2) V 0 = λd / ( n e 3 γ c L 1) γ c = γ 33 - (n 0 / n e) 3 γ 13 where, V 0: half-wave voltage I 0: light signal amplitude [delta] B: Babinesoureiyu phase compensator according to the phase correction the value d: thickness of the crystal n e: refractive index in a direction electric field is applied n 0: direction perpendicular to the direction of the refractive index gamma 33 an electric field is applied, gamma 13: electro-optic constant L 1, L 2: crystalline Is the wavelength of light.

【0008】センサ部分の構造を図6に示す。図6に於
いて、13は光変調器を取りつけるための基盤、14は
光を反射させるためのプリズム、である。図に示すよう
に、2本の金属棒(長さ15cm)の中心に変調器が設
置される。このセンサを用いるとDC〜約700MHz
の周波数範囲で、1V/mの電界強度を観測可能であ
る。
FIG. 6 shows the structure of the sensor portion. In FIG. 6, reference numeral 13 denotes a base for mounting the optical modulator, and reference numeral 14 denotes a prism for reflecting light. As shown in the figure, a modulator is installed at the center of two metal rods (length 15 cm). With this sensor, DC to about 700MHz
The electric field strength of 1 V / m can be observed in the frequency range of

【0009】このセンサを通過する光電力(光ファイバ
3−1に入射する光電力と光ファイバー3−2から出射
する光電力の比)の温度依存性を図7に示す。測定で
は、センサを恒温槽に入れ、恒温槽の外部に安定化光源
を置いて光電力をセンサの3−1に入力し3−2から出
てくる出力レベルを光パワーメータで測定した。図7は
電界センサの周囲温度を変化させた時の通過光電力の変
動を表している。同図に示すように、周囲温度を0度〜
40度変化させた場合、通過光電力は最大で25dB程
度変動していることがわかる。式(1)に示すように、
電界センサの感度は通過光電力(光信号振幅)に比例す
るから、この電界センサは周囲温度による感度変動が非
常に大きい欠点があることがわかる。
FIG. 7 shows the temperature dependence of the optical power passing through the sensor (the ratio of the optical power incident on the optical fiber 3-1 to the optical power emitted from the optical fiber 3-2). In the measurement, the sensor was placed in a thermostat, a stabilizing light source was placed outside the thermostat, optical power was input to 3-1 of the sensor, and the output level coming out of 3-2 was measured with an optical power meter. FIG. 7 shows the variation of the passing optical power when the ambient temperature of the electric field sensor is changed. As shown in FIG.
It can be seen that when the angle is changed by 40 degrees, the passing optical power fluctuates by about 25 dB at the maximum. As shown in equation (1),
Since the sensitivity of the electric field sensor is proportional to the transmitted light power (optical signal amplitude), it can be seen that this electric field sensor has a disadvantage that the sensitivity variation due to the ambient temperature is extremely large.

【0010】[0010]

【発明が解決しようとする課題】本発明は、これらの問
題点を解決して、周囲温度による感度変動が少ない、電
気光学効果を用いた電界センサ装置を実現することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and to realize an electric field sensor device using the electro-optic effect, which has little sensitivity fluctuation due to ambient temperature.

【0011】[0011]

【課題を解決するための手段】本発明の特徴は、1対の
導体棒(6)を空隙をもって配置し、該空隙の間に偏光
子と電気光学効果をもつ光学結晶(7)とバビネソウレ
イユ位相補償器を有する光強度変調器(100)を配置
し、前記1対の導体棒(6)の間に変調用電界を印加
し、前記光強度変調器(100)に印加した光の当該変
調器からの出力光の強度により電界強度を測定する電界
センサ装置において、前記光学結晶(7)の光が通過し
ない4つの側面を隙間ができないように密着させてかこ
む、線膨張係数が実質的に一定の包囲部材が設けられ、
該包囲部材は、長さL,厚さc,幅c+aの直方体の材
料2本と、長さL,厚さc,幅c+bの直方体の材料2
本とを有する電気光学効果を用いた電解センサ装置にあ
る。
SUMMARY OF THE INVENTION A feature of the present invention is that a pair of conductor rods (6) are arranged with a gap, a polarizer, an optical crystal (7) having an electro-optic effect, and a Babinet-Sourille phase between the gaps. A light intensity modulator (100) having a compensator is arranged, a modulation electric field is applied between the pair of conductor bars (6), and the light intensity modulator (100) is applied to the light intensity modulator (100). In the electric field sensor device for measuring the electric field intensity based on the intensity of the output light from the optical crystal, the light of the optical crystal (7) passes.
Make sure there are no gaps between the four sides
A surrounding member having a substantially constant linear expansion coefficient is provided,
The surrounding member is a rectangular parallelepiped member having a length L, a thickness c, and a width c + a.
Material and a rectangular parallelepiped material 2 of length L, thickness c, width c + b
The present invention is directed to an electrolytic sensor device using an electro-optic effect having a book .

【0012】[0012]

【作用】図7に示す温度変動の原因として、LiNbO3
の電気光学効果を持つ結晶の屈折率、電気光学定数が温
度により変動する、結晶に加わる温度歪みにより、屈
折率、電気光学定数が変動する、が考えられる。そこ
で、どちらの要因により、透過光電力の変動が生じてい
るか検討を行った。
[Function] As a cause of the temperature fluctuation shown in FIG. 7, the refractive index and the electro-optical constant of a crystal having an electro-optical effect such as LiNbO 3 fluctuate with temperature. Fluctuate. Therefore, it was examined which of the factors caused the fluctuation of the transmitted light power.

【0013】図8にLiNbO3の屈折率、電気光学定数の温
度変動による通過光電力変動を示す。図8で黒点はLiNb
O3結晶に温度歪みが加わらない状態で測定を行ったとき
の測定値である。また、実線は文献で報告されている屈
折率および電気光学定数の温度依存性をもとに計算した
通過光電力の温度変動である。図に示すように、理論値
と測定値はほぼ一致していることと温度変動による透過
光電力変動は±0.2dB以下であることから、の屈
折率、電気光学定数の温度依存性は透過光電力変動の要
因ではないことがわかる。従って、通過光電力変動の要
因は、の結晶に加わる温度歪みによる屈折率、電気光
学定数の変動であることがわかる。
FIG. 8 shows a change in transmitted light power due to a change in temperature of the refractive index and the electro-optic constant of LiNbO 3 . In FIG. 8, the black dots are LiNb.
This is a measured value when the measurement is performed in a state where temperature distortion is not applied to the O 3 crystal. The solid line shows the temperature fluctuation of the transmitted light power calculated based on the temperature dependence of the refractive index and the electro-optic constant reported in the literature. As shown in the figure, the theoretical value and the measured value are almost the same and the transmitted light power fluctuation due to temperature fluctuation is ± 0.2 dB or less. It can be seen that this is not the cause of the optical power fluctuation. Therefore, it is understood that the factors of the fluctuation of the transmitted light power are the fluctuation of the refractive index and the electro-optic constant due to the temperature distortion applied to the crystal.

【0014】本発明の特徴と従来技術との差異を図1と
図9に示す。これらの図において15は電気光学効果を
持つ結晶を乗せる台、16は光変調器を構成する光学系
が組立られている台である。本発明の特徴は、従来は図
9に示すように結晶7の一面のみを台座15に接着剤で
固定していたのに対して、図1に示すように、光変調器
を構成する電気光学効果を持つ結晶7の周囲を線膨張係
数が小さく一様な材料17で囲んだことである。このよ
うな構成にすることにより、結晶の周囲を線膨張係数が
等しい材料で囲んでいるため、結晶に加わる温度歪みが
一様になり、電界センサ感度の温度依存性が小さくでき
る利点がある。
FIGS. 1 and 9 show the difference between the features of the present invention and the prior art. In these figures, 15 is a table on which a crystal having an electro-optical effect is mounted, and 16 is a table on which an optical system constituting an optical modulator is assembled. A feature of the present invention is that, while only one surface of the crystal 7 is conventionally fixed to the pedestal 15 with an adhesive as shown in FIG. 9, as shown in FIG. That is, the crystal 7 having the effect is surrounded by a uniform material 17 having a small linear expansion coefficient. With such a configuration, since the crystal is surrounded by a material having the same linear expansion coefficient, there is an advantage that the temperature distortion applied to the crystal becomes uniform and the temperature dependence of the electric field sensor sensitivity can be reduced.

【0015】以上の結果より、本発明は、従来報告され
ているセンサの欠点である感度の温度依存性を改善した
ため、周囲温度が変動しても、感度の変動が小さい、安
定で実用的な電界センサが実現できる利点がある。
From the above results, the present invention has improved the temperature dependency of the sensitivity, which is a drawback of the sensor which has been reported so far. Therefore, even if the ambient temperature fluctuates, the fluctuation of the sensitivity is small and stable and practical. There is an advantage that an electric field sensor can be realized.

【0016】[0016]

【実施例】本発明の具体的な実施例を図2に示す。図2
で17は図1に示す周囲を線膨張係数の等しい材料で囲
んだ電気光学効果を持つ結晶であり、18(a)はアン
テナロッドと結晶7を結ぶリード線である。図3に示す
ように本実施例では長さ10mm,幅1mm,厚さ1m
mの結晶を2本、光軸が互いに直行するようにならべ、
その周囲を長さ20mm,幅3.5mm,厚さ2.5m
mの石英ガラスを張りつけている。図3で18は光変調
器の電極であり、本実施例ではこの部分にCr−Au合
金を蒸着している。
FIG. 2 shows a specific embodiment of the present invention. FIG.
Numeral 17 denotes a crystal having an electro-optic effect surrounded by a material having the same linear expansion coefficient as shown in FIG. 1, and numeral 18 (a) denotes a lead wire connecting the antenna rod and the crystal 7. As shown in FIG. 3, in this embodiment, the length is 10 mm, the width is 1 mm, and the thickness is 1 m.
m two crystals, the optical axes of which are perpendicular to each other,
The circumference is 20mm long, 3.5mm wide and 2.5m thick
m quartz glass. In FIG. 3, reference numeral 18 denotes an electrode of the optical modulator. In this embodiment, a Cr-Au alloy is deposited on this portion.

【0017】ここで、図3に示す構造において、電気光
学効果を持つ結晶の寸法とその結晶を囲む線膨張係数の
小さい材料の寸法の関係について述べる。たとえば、電
気光学効果を有する結晶が長さL,厚さa,幅bの直方
体の場合、長さL,厚さc,幅c+aの線膨張係数の小
さな材料2本と長さL,厚さc,幅c+bの線膨張係数
の小さな材料2本を、図3のように組み合わせれば、図
3に示すように、この結晶の光が通過しない4つの面に
隙間ができないように密着させることができる。
Here, in the structure shown in FIG. 3, the relationship between the size of the crystal having the electro-optic effect and the size of the material surrounding the crystal and having a small linear expansion coefficient will be described. For example, when the crystal having the electro-optic effect is a rectangular parallelepiped having a length L, a thickness a, and a width b, two materials having a small linear expansion coefficient having a length L, a thickness c, and a width c + a, and a length L, a thickness If two materials having a small linear expansion coefficient c and a width c + b are combined as shown in FIG. 3, as shown in FIG. Can be.

【0018】次に、図2を用いて、本実施例の動作を説
明する。偏波面保持ファイバ3−1から入射した光波は
グレーデッドインデックスレンズ4により平行光線に変
換され、偏光子5によりLiNbO3の結晶光軸に対して45
度傾いた直線偏光成分にされる。本実施例では偏光子5
としてラミポールを使用して、光変調器の小型化を図っ
ている。また、光コネクタ部とグレーデッドインデック
スレンズ、偏光板を一体化し、図6に比べて組立の簡易
化を図っている。偏光板を通過した光はLiNbO3結晶7を
通り、バビネソウレイユ位相補償器8により、電圧が印
加されない状態で円偏波となるように位相補償され、検
光子9を通り、グレーデッドインデックスレンズ10に
よりシングルモードファイバ3−2に入射される。
Next, the operation of this embodiment will be described with reference to FIG. The light wave incident from the polarization maintaining fiber 3-1 is converted into a parallel light beam by the graded index lens 4, and the light wave is shifted by 45 degrees with respect to the crystal optical axis of LiNbO 3 by the polarizer 5.
It is converted to a linearly polarized light component inclined at an angle. In this embodiment, the polarizer 5
The size of the optical modulator is reduced by using a Ramipole. Further, the optical connector, the graded index lens, and the polarizing plate are integrated to simplify the assembly as compared with FIG. The light that has passed through the polarizing plate passes through the LiNbO 3 crystal 7, is phase-compensated by a Babinet-Sourille phase compensator 8 so as to be circularly polarized with no voltage applied, passes through the analyzer 9, and passes through the graded index lens 10. The light enters the single mode fiber 3-2.

【0019】[0019]

【発明の効果】本実施例の通過光電力の温度依存性を図
4に示す。図4は電界センサの周囲温度を変化させた時
の電界センサを通過する光電力の変動を表している。図
に示すように、周囲温度を0度〜40度変化させた場
合、通過光電力変動は最大で1dB程度であり、図7に
示す従来品に比べて大幅に温度特性が改善されているこ
とがわかる。
FIG. 4 shows the temperature dependence of the passing optical power in this embodiment. FIG. 4 shows the fluctuation of the optical power passing through the electric field sensor when the ambient temperature of the electric field sensor is changed. As shown in the figure, when the ambient temperature is changed from 0 degree to 40 degrees, the fluctuation of the passing light power is about 1 dB at the maximum, and the temperature characteristic is significantly improved as compared with the conventional product shown in FIG. I understand.

【0020】通過電力変動は感度変動に比例するから、
本実施例の電界センサは、周囲温度が変化しても従来品
に比べ感度変動が非常に小さいことがわかる。以上の結
果より、本発明は、従来報告されているセンサの欠点で
ある感度の温度依存性を改善した、周囲温度が変動して
も、感度の変動が小さい、安定で実用的な電界センサが
実現できる利点がある。
Since the passing power fluctuation is proportional to the sensitivity fluctuation,
It can be seen that the electric field sensor according to the present embodiment has a much smaller sensitivity variation than the conventional product even when the ambient temperature changes. Based on the above results, the present invention has improved the temperature dependence of sensitivity, which is a drawback of the conventionally reported sensors, and has a stable and practical electric field sensor with small fluctuations in sensitivity even when the ambient temperature fluctuates. There are benefits that can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による結晶の実装構造を示す図である。FIG. 1 is a view showing a mounting structure of a crystal according to the present invention.

【図2】本発明の具体的な実施例を示す図である。FIG. 2 is a diagram showing a specific example of the present invention.

【図3】電気光学結晶を包囲部材でかこんだ状態を示す
図である。
FIG. 3 is a diagram showing a state where an electro-optical crystal is surrounded by an enclosing member.

【図4】本発明における温度依存性を示す図である。FIG. 4 is a diagram showing temperature dependency in the present invention.

【図5】従来のセンサ装置の構成を示す。FIG. 5 shows a configuration of a conventional sensor device.

【図6】従来の装置におけるセンサ部材を示す。FIG. 6 shows a sensor member in a conventional device.

【図7】従来の技術における出射光電力の温度依存性を
示す。
FIG. 7 shows the temperature dependence of the output light power in the conventional technique.

【図8】結晶の屈折率および電気光学定数の温度依存性
のみを考慮した時の出射光電力の温度依存性を示す。
FIG. 8 shows the temperature dependence of the emitted light power when only the temperature dependence of the refractive index and the electro-optic constant of the crystal are taken into account.

【図9】結晶の実装構造の従来の技術を示す。FIG. 9 shows a conventional technique of a crystal mounting structure.

【符号の説明】[Explanation of symbols]

1 光源 2 グレーデッドインデックスレンズ 3 偏光面保持光ファイバ 3’ シングルモード光ファイバ 4 グレーデッドインデックスレンズ(入力用) 5 偏光子 6 センサ電極 7 電気光学効果をもつ結晶 8 バビネソウレイユ位相補償器 9 検光子 10 グレーデッドインデックスレンズ(出力用) 11 光検出器 12 受信機 13 光変調器をとりつけるための基板 14 プリズム 15 結晶をのせる台 16 光変調器を構成する光学系が組立てられている台 17 結晶を包囲部材で囲んだ組立体 18 光変調器の電極 100 光強度変調器組立体 REFERENCE SIGNS LIST 1 light source 2 graded index lens 3 polarization plane maintaining optical fiber 3 ′ single mode optical fiber 4 graded index lens (for input) 5 polarizer 6 sensor electrode 7 crystal having electro-optical effect 8 Babinet-Souille phase compensator 9 analyzer 10 Graded index lens (for output) 11 Photodetector 12 Receiver 13 Substrate for mounting optical modulator 14 Prism 15 Crystal mounting base 16 Base on which optical system constituting optical modulator is assembled 17 Crystal Assembly surrounded by surrounding member 18 Electrode of light modulator 100 Light intensity modulator assembly

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−184772(JP,A) 特開 昭60−210770(JP,A) 実開 平1−163875(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01R 29/08 G01R 15/24 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-184772 (JP, A) JP-A-60-210770 (JP, A) JP-A 1-163875 (JP, U) (58) Survey Field (Int.Cl. 7 , DB name) G01R 29/08 G01R 15/24

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1対の導体棒(6)を空隙をもって配置
し、該空隙の間に偏光子と電気光学効果をもつ光学結晶
(7)とバビネソウレイユ位相補償器を有する光強度変
調器(100)を配置し、 前記1対の導体棒(6)の間に変調用電界を印加し、前
記光強度変調器(100)に印加した光の当該変調器か
らの出力光の強度により電界強度を測定する電界センサ
装置において、前記光学結晶(7)の光が通過しない4つの側面を隙間
ができないように密着させてかこむ、線膨張係数が実質
的に一定の包囲部材を設け、該包囲部材は、長さL,厚
さc,幅c+aの直方体の材料2本と、長さL,厚さ
c,幅c+bの直方体の材料2本とを有する ことを特徴
とする、電気光学効果を用いた電界センサ装置。
An optical intensity modulator (100) having a pair of conductor rods (6) arranged with a gap, a polarizer, an optical crystal (7) having an electro-optic effect, and a Babinet-Souille phase compensator between the gaps. ) Is arranged, an electric field for modulation is applied between the pair of conductor bars (6), and the electric field intensity is determined by the intensity of the output light from the light intensity modulator (100) output from the modulator. In the electric field sensor device to be measured, four sides of the optical crystal (7) through which light does not pass are separated by gaps.
The linear expansion coefficient is substantially
A constant surrounding member is provided, and the surrounding member has a length L and a thickness.
Two rectangular parallelepiped materials of length c and width c + a, length L and thickness
c, and two rectangular parallelepiped materials having a width of c + b .
【請求項2】 前記包囲部材は石英ガラスであることを
特徴とする請求項1に記載の電気光学効果を用いた電界
センサ装置。
2. The electric field sensor device according to claim 1, wherein said surrounding member is made of quartz glass .
JP03149248A 1991-05-27 1991-05-27 Electric field sensor device using electro-optic effect Expired - Lifetime JP3114104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03149248A JP3114104B2 (en) 1991-05-27 1991-05-27 Electric field sensor device using electro-optic effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03149248A JP3114104B2 (en) 1991-05-27 1991-05-27 Electric field sensor device using electro-optic effect

Publications (2)

Publication Number Publication Date
JPH04350574A JPH04350574A (en) 1992-12-04
JP3114104B2 true JP3114104B2 (en) 2000-12-04

Family

ID=15471114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03149248A Expired - Lifetime JP3114104B2 (en) 1991-05-27 1991-05-27 Electric field sensor device using electro-optic effect

Country Status (1)

Country Link
JP (1) JP3114104B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207318A (en) * 2013-03-11 2013-07-17 北京航空航天大学 Quasi-reciprocal optical closed-loop lithium niobate optical waveguide alternating electric field/voltage sensor
CN104298042A (en) * 2014-09-23 2015-01-21 合肥鑫晟光电科技有限公司 Display panel and display device

Also Published As

Publication number Publication date
JPH04350574A (en) 1992-12-04

Similar Documents

Publication Publication Date Title
US5963034A (en) Electro-optic electromagnetic field sensor system with optical bias adjustment
US4933629A (en) Method and apparatus for optically measuring electric and magnetic quantities having an optical sensing head exhibiting the Pockel's and Faraday effects
US4539519A (en) Fiber optics device for measuring the intensity of an electric current utilizing the Faraday effect
US5210407A (en) Electric field intensity detecting device having a condenser-type antenna and a light modulator
GB2068137A (en) Voltage and electric field measuring device
EP0586226B1 (en) Optical voltage electric field sensor
US4612500A (en) Temperature stabilized Faraday rotator current sensor by thermal mechanical means
JP2619981B2 (en) Electromagnetic field strength measuring device
EP0458255B1 (en) Polarimetric directional field sensor
JPH08304430A (en) Frequency shifter and optical displacement measuring apparatus using it
JP3114104B2 (en) Electric field sensor device using electro-optic effect
US5134361A (en) Opitcal system for linearizing non-linear electro-optic
CN110187525B (en) Electro-optic phase modulator with low residual amplitude modulation
US3230820A (en) Polarimeter
US4068951A (en) Distance measuring apparatus
US5737082A (en) Method of electro-optical measurement for vector components of electric fields and an apparatus thereof
JP3489701B2 (en) Electric signal measuring device
US4632556A (en) Method and apparatus for optically measuring clearance change
WO1989009413A1 (en) Electro-optic probe
US20220107349A1 (en) Electric field sensor
JPH0260985B2 (en)
JP3049190B2 (en) Electric field sensor device
JPH0989961A (en) Electric field detecting device
JPH02184772A (en) Electric field antenna using optical crystal
Dakin et al. A passive all-dielectric field probe for RF measurement using the electro-optic effect

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070929

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11