JPH06287851A - Netlike fiber nonwoven fabric - Google Patents

Netlike fiber nonwoven fabric

Info

Publication number
JPH06287851A
JPH06287851A JP5095230A JP9523093A JPH06287851A JP H06287851 A JPH06287851 A JP H06287851A JP 5095230 A JP5095230 A JP 5095230A JP 9523093 A JP9523093 A JP 9523093A JP H06287851 A JPH06287851 A JP H06287851A
Authority
JP
Japan
Prior art keywords
polymer
nonwoven fabric
reticulated
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5095230A
Other languages
Japanese (ja)
Inventor
Hiroshi Nishimura
弘 西村
Shigemitsu Murase
繁満 村瀬
Fumio Matsuoka
文夫 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP5095230A priority Critical patent/JPH06287851A/en
Publication of JPH06287851A publication Critical patent/JPH06287851A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a nonwoven fabric, having high strength and bacterial barrier properties and further hygroscopicity and printability by partially heat bonding a netlike fibrous web composed of a polyethylenic polymer and a polyvinyl alcoholic polymer. CONSTITUTION:This netlike nonwoven fabric is obtained by carrying out the flash spinning of high-density polyethylene (A) and a polyvinyl alcoholic polymer (B) so as to satisfy 1<=BX100/[A+B]<=25 (A and B are respectively wt.%), providing netlike fiber, containing the polyvinyl alcoholic polymer finely dispersed in the high-density polyethylene and having at least 10m<2>/g specific surface area, forming the netlike fiber into a web and then subjecting the formed web to hot-pressing treatment with embossing rolls. The web is partially heat bonded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,ポリエチレン系重合体
Aとポリビニルアルコール系重合体Bとからなる網状繊
維から構成され,強力が高く,柔軟性に富み,バクテリ
アバリア性を有し,かつ吸湿性と印刷性が優れ,例えば
保温材,医療衛生分野での保護服,カーペツト等のイン
テリア用品,各種生活関連材用の素材として好適な網状
繊維不織布に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a reticulated fiber composed of a polyethylene-based polymer A and a polyvinyl alcohol-based polymer B, has high strength, is highly flexible, has a bacterial barrier property, and absorbs moisture. The present invention relates to a reticulated non-woven fabric which has excellent heat resistance and printability and is suitable as a material for heat insulating materials, protective clothing in the medical and hygiene field, interior products such as carpets, and various life-related materials.

【0002】[0002]

【従来の技術】従来から,フラツシユ紡糸法により得ら
れる極細網状繊維不織布が知られている。このフラツシ
ユ紡糸法とは,熱可塑性重合体を特定の溶媒に高温高圧
下で溶解して得た溶液を自生圧以上にさらに加圧し大気
中に紡出する方法であり,例えば,米国特許第3081
519号公報には,このフラツシユ紡糸法により前記網
状繊維を得る技術が開示されている。しかしながら,こ
の網状繊維を用いて作成した不織布は,構成繊維自体が
疎水性のあるいは少なくとも吸湿性が乏しい熱可塑性重
合体からなるものであるため,不織布製品の用途が限定
される。例えば,ポリエチレンやポリプロピレン等の疎
水性のあるいは少なくとも吸湿性が乏しい熱可塑性重合
体を採用した場合,得られた網状繊維不織布は撥水性と
耐水性は優れるものの,当然のことながら吸湿性が乏し
く,したがって,例えば水性インクを用いての印刷や執
筆を行うため吸湿性や印刷性を必要とする用途分野に適
用することができないという問題を有することになる。
2. Description of the Related Art Conventionally, an ultrafine reticulated fiber nonwoven fabric obtained by the flash spinning method has been known. The flash-spinning method is a method in which a solution obtained by dissolving a thermoplastic polymer in a specific solvent under high temperature and high pressure is further pressurized to an autogenous pressure or higher and spun into the atmosphere.
Japanese Patent No. 519 discloses a technique for obtaining the reticulated fiber by this flash spinning method. However, the non-woven fabric made by using the reticulated fiber is limited in its use as a non-woven fabric product because the constituent fibers themselves are made of a thermoplastic polymer having a hydrophobic property or at least a poor hygroscopic property. For example, when a hydrophobic or at least poorly hygroscopic thermoplastic polymer such as polyethylene or polypropylene is used, the resulting reticulated fiber nonwoven fabric has excellent water repellency and water resistance, but naturally has poor hygroscopicity. Therefore, there is a problem that it cannot be applied to a field of application that requires hygroscopicity or printability, for example, because printing or writing is performed using a water-based ink.

【0003】[0003]

【発明が解決しようとする課題】本発明は,前記問題を
解決し,ポリエチレン系重合体Aとポリビニルアルコー
ル系重合体Bとからなる網状繊維から構成され,強力が
高く,柔軟性に富み,バクテリアバリア性を有し,かつ
吸湿性と印刷性が優れ,例えば保温材,医療衛生分野で
の保護服,カーペツト等のインテリア用品,各種生活関
連材用の素材として好適な網状繊維不織布を提供しよう
とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and is composed of a reticulated fiber composed of a polyethylene-based polymer A and a polyvinyl alcohol-based polymer B, and has high strength, high flexibility, and bacteria. An attempt is to provide a reticulated fiber nonwoven fabric having barrier properties and excellent hygroscopicity and printability, which is suitable as a material for heat insulating materials, protective clothing in the medical and hygiene field, interior goods such as carpets, and various life-related materials. To do.

【0004】[0004]

【課題を解決するための手段】本発明者らは,前記問題
を解決すべく鋭意検討の結果,本発明に到達した。すな
わち,本発明は,ポリエチレン系重合体Aとポリビニル
アルコール系重合体Bとからなり,ポリエチレン系重合
体Aの中にポリビニルアルコール系重合体Bが微細に分
散されてなる網状繊維から構成され,かつ前記網状繊維
が部分的に熱圧着されていることを特徴とする網状繊維
不織布を要旨とするものである。
The present inventors have arrived at the present invention as a result of extensive studies to solve the above problems. That is, the present invention is composed of a polyethylene-based polymer A and a polyvinyl alcohol-based polymer B, composed of a reticulated fiber in which the polyvinyl alcohol-based polymer B is finely dispersed in the polyethylene-based polymer A, and The gist of the present invention is a reticulated fiber non-woven fabric, wherein the reticulated fibers are partially thermocompression bonded.

【0005】次に,本発明の網状繊維不織布を詳細に説
明する。本発明の不織布を構成する網状繊維とは,ポリ
エチレン系重合体Aとポリビニルアルコール系重合体B
とからなるものである。本発明における網状繊維の一構
成成分であるポリエチレン系重合体Aとは,繊維形成性
を有する低密度ポリエチレン,線状低密度ポリエチレ
ン,中密度ポリエチレン,高密度ポリエチレン,あるい
はエチレンを主体としこれに他の成分が共重合された共
重合ポリエチレン等であり,かつその融点が100℃以
上のものである。これらの重合体は,その融点が100
℃未満であると沸騰水によっても融解してしまうことに
なり,網状繊維を用いて不織布としたときにその実用性
が低下する。
Next, the reticulated fiber nonwoven fabric of the present invention will be described in detail. The reticulated fibers constituting the nonwoven fabric of the present invention are polyethylene-based polymer A and polyvinyl alcohol-based polymer B.
It consists of and. The polyethylene-based polymer A, which is one component of the reticulated fiber in the present invention, is mainly composed of low-density polyethylene having a fiber-forming property, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, or ethylene. Is a copolymerized polyethylene or the like having a melting point of 100 ° C. or higher. These polymers have melting points of 100
If it is less than ℃, it will be melted even by boiling water, and its practicality will be reduced when a non-woven fabric is formed using reticulated fibers.

【0006】本発明における網状繊維の他構成成分であ
るポリビニルアルコール系重合体Bとは,繊維形成性を
有するポリビニルアルコール,あるいはエチレン,イタ
コン酸,ビニルピロリドン等の他のビニル基が10モル
%以下好ましくは2モル%以下共重合された共重合ポリ
ビニルアルコール等である。また,この重合体Bの重合
度は特に限定されないが,網状繊維を用いて得た不織布
の強度を向上させたいときには,この重合体の水溶液を
粘度法により温度30℃で測定したときの平均重合度を
1000以上,好ましくは1500以上,特に好ましく
は1700以上とするのがよい。さらに,この重合体B
のケン化度も特に限定されないが,不織布の耐熱性を向
上させたいときには,重合体のケン化度を87モル%以
上,好ましくは90モル%以上,特に好ましくは95モ
ル%以上とするのがよい。
The polyvinyl alcohol-based polymer B which is another constituent of the reticulated fiber in the present invention is a fiber-forming polyvinyl alcohol or other vinyl groups such as ethylene, itaconic acid and vinylpyrrolidone which are 10 mol% or less. Copolymerized polyvinyl alcohol or the like copolymerized with 2 mol% or less is preferable. The degree of polymerization of the polymer B is not particularly limited, but when it is desired to improve the strength of the non-woven fabric obtained by using the reticulated fibers, the average polymerization of the aqueous solution of the polymer measured at a temperature of 30 ° C. by a viscosity method. The degree is 1000 or more, preferably 1500 or more, and particularly preferably 1700 or more. Further, this polymer B
The degree of saponification is not particularly limited, but when it is desired to improve the heat resistance of the nonwoven fabric, the degree of saponification of the polymer is 87 mol% or more, preferably 90 mol% or more, and particularly preferably 95 mol% or more. Good.

【0007】本発明における網状繊維は,前記ポリエチ
レン系重合体Aの中に前記ポリビニルアルコール系重合
体Bが微細に分散されてなるものである。本発明がいう
微細に分散されてなるとは,ポリビニルアルコール系重
合体Bが直径0.0001〜0.1μm程度の微粒子状
態あるいはフイブリル状態で繊維中にランダムに散在し
ていることを意味する。このポリビニルアルコール系重
合体Bの散在状態は,例えば,繊維を四酸化オスミウム
で電子染色し,次いでエポキシ樹脂で包理し,トリミン
グして面出しを行い,包理ブロツクのまま四酸化ルテニ
ウムで染色し,その染色固定後の繊維を超薄型切片に切
り出し,透過型電子顕微鏡を用い6万倍程度の拡大率で
観察することにより知ることができる。本発明の不織布
は,前記ポリエチレン系重合体Aの中に前記ポリビニル
アルコール系重合体Bが前述したように極めて微細な微
粒子状態あるいはフイブリル状態でランダムに散在して
いる前記網状繊維から構成されるため,ほぼ永久的な吸
湿性を具備することになるのである。
The reticulated fiber in the present invention is one in which the polyvinyl alcohol polymer B is finely dispersed in the polyethylene polymer A. The term “finely dispersed” as used in the present invention means that the polyvinyl alcohol-based polymer B is randomly dispersed in the fibers in the form of fine particles having a diameter of about 0.0001 to 0.1 μm or in the form of fibrils. The scattered state of the polyvinyl alcohol-based polymer B is, for example, that the fibers are electron-stained with osmium tetroxide, then embedded with an epoxy resin, trimmed and surfaced, and the embedded block is stained with ruthenium tetroxide. Then, the dyed and fixed fiber is cut into an ultrathin section and observed by a transmission electron microscope at a magnification of about 60,000 times. Since the non-woven fabric of the present invention is composed of the reticulated fibers in which the polyvinyl alcohol polymer B is randomly dispersed in the extremely fine particulate state or the fibril state as described above in the polyethylene polymer A. That is, it will have almost permanent moisture absorption.

【0008】本発明における網状繊維においては,前記
ポリエチレン系重合体Aと前記ポリビニルアルコール系
重合体Bとが前記式(1)を満足することが好ましい。
この網状繊維において,ポリビニルアルコール系重合体
Bの存在比〔B×100/(A+B)〕が1未満である
と,網状繊維自体の吸湿性や印刷性が低下するため好ま
しくない。一方,この存在比が25を超えると,繊維の
粘着性や接着性が増大し,しかも紡出された繊維はその
フイブリルがその側面で相互に接合して良好に開繊しな
いため,得られた不織布の地合いが著しく低下し,特に
100g/m2 以下の低目付けの場合にその品位が大幅
に低下するため好ましくない。したがって,本発明で
は,この存在比を1〜25とし,好ましくは2〜20,
特に好ましくは3〜10とする。
In the reticulated fiber of the present invention, it is preferable that the polyethylene polymer A and the polyvinyl alcohol polymer B satisfy the formula (1).
In this reticulated fiber, if the abundance ratio [B × 100 / (A + B)] of the polyvinyl alcohol-based polymer B is less than 1, the hygroscopicity and printability of the reticulated fiber itself are deteriorated, which is not preferable. On the other hand, when the abundance ratio exceeds 25, the tackiness and adhesiveness of the fibers are increased, and the spun fibers are obtained because the fibrils are bonded to each other at their side faces and the fibers are not well opened. The texture of the non-woven fabric is remarkably deteriorated, and especially in the case of a low basis weight of 100 g / m 2 or less, its quality is remarkably deteriorated, which is not preferable. Therefore, in the present invention, this abundance ratio is set to 1 to 25, preferably 2 to 20,
Particularly preferably, it is 3 to 10.

【0009】本発明における網状繊維は,前述したよう
な2種の重合体からなりかつ0.1〜10μm相当径で
かつ比表面積が少なくとも10m2 /gのフイブリルが
連続しながら集合し,三次元的な網状構造を呈するごと
く網状に広がった構造を有するものである。この網状繊
維において,フイブリルの相当径が小さいほど,網状繊
維を用いて不織布としたとき緻密性や柔軟性を向上させ
ることができ,さらに透湿性を十分に保持したまま通菌
性を低下させることもできる。この網状繊維における比
表面積(m2 /g)とは,BET窒素吸着法によって測
定されるもので,試料繊維1g当りの窒素の単分子容量
すなわち試料繊維の全表面が単分子層で被覆されたとき
の吸着窒素量をいい,この比表面積の値が大きいという
ことは試料繊維の表面積が大きいことを意味し,したが
って,この場合には試料繊維の網状化が進行しているこ
とが理解できる。この網状繊維における比表面積が10
2 /g未満であると,繊維の網状化が十分に進行して
おらず,この繊維を用いて得た不織布の地合いが著しく
低下するため好ましくない。
The reticulated fiber in the present invention is composed of the above-mentioned two kinds of polymers and has a three-dimensional structure in which fibrils having an equivalent diameter of 0.1 to 10 μm and a specific surface area of at least 10 m 2 / g are continuously gathered. It has a structure that spreads like a net like a typical net structure. In this reticulated fiber, the smaller the equivalent diameter of the fibril is, the more dense and flexible the reticulated fiber can be made into a non-woven fabric, and the more the permeable property is reduced while the moisture permeability is sufficiently maintained. You can also The specific surface area (m 2 / g) of the reticulated fiber is measured by the BET nitrogen adsorption method. The monomolecular capacity of nitrogen per 1 g of sample fiber, that is, the entire surface of the sample fiber is covered with a monomolecular layer. The amount of adsorbed nitrogen at this time means that the value of the specific surface area is large, which means that the surface area of the sample fiber is large. Therefore, in this case, it can be understood that the reticulation of the sample fiber is progressing. The specific surface area of this reticulated fiber is 10
When it is less than m 2 / g, the reticulation of the fibers does not proceed sufficiently and the texture of the nonwoven fabric obtained by using the fibers is remarkably deteriorated, which is not preferable.

【0010】本発明の不織布は,前記網状繊維から構成
され,かつ網状繊維が部分的に熱圧着されているもので
ある。この部分的熱圧着とは,不織布の構成繊維同士が
その繊維交点において熱圧着した領域が一定間隔で配置
されてなるものであり,例えば特定の大きさでかつ特定
の間隔で配設された圧接点を用い,熱と圧力とを印加す
ることにより形成されるものである。そして,この不織
布は,前記網状繊維が部分的に熱圧着されているため強
力が高く,しかも柔軟性に富み,例えば従来のパルプを
原料とした紙より一層柔軟でかつ耐久性も優れるものと
なる。
The non-woven fabric of the present invention comprises the above-mentioned reticulated fibers, and the reticulated fibers are partially thermocompression bonded. The term "partial thermocompression bonding" means that the constituent fibers of the non-woven fabric are arranged at constant intervals in the regions where the fibers are thermocompression bonded at their fiber intersections. For example, the pressure welding is performed with a specific size and at a specific interval. It is formed by applying heat and pressure using points. This non-woven fabric is high in strength and rich in flexibility because the reticulated fibers are partially thermocompressed, and is more flexible and more durable than conventional pulp-based paper, for example. .

【0011】次に,本発明の網状繊維不織布を製造する
方法について説明する。本発明の不織布は,前記ポリエ
チレン系重合体Aと前記ポリビニルアルコール系重合体
Bとを用い,例えば米国特許第3227794号公報に
記載されたようないわゆるフラツシユ紡糸法により網状
繊維を紡出し,ウエブ化の後,熱圧着処理を施すことに
より効率良く製造することができる。まず,前記ポリエ
チレン系重合体Aと前記ポリビニルアルコール系重合体
Bとを同一浴で溶媒Cと水Dとを用い高温高圧下で溶解
混合して得た溶液を紡糸液とし,これを自生圧下で又は
加圧下で圧力降下室を有する紡糸孔を通して大気中に紡
出し,紡出直後に溶媒を瞬間的に気化させて網状の繊維
構造を形成する。溶液を作成するに際しては,常温では
前記重合体A及びBに対して非溶媒であるが,高温下で
は良溶媒であるような溶媒Cと水Dとを用いる。そし
て,この溶媒Cとしては,例えばベンゼン,トルエン等
の芳香族炭化水素,ブタン,ぺンタン,ヘキサン,ヘプ
タン,オクタン又はこれらの異性体や同族体等の脂肪族
炭化水素,シクロヘキサン等の脂環族炭化水素,塩化メ
チレン,四塩化炭素,クロロホルム,1,1−ジクロル
−2,2ジフルオロエタン,1,2−ジクロル−1,1
ジフルオロエタン,塩化メチル,塩化エチル,フルオロ
カーボン等のハロゲン化炭化水素,アルコール,エステ
ル,エーテル,ケトン,ニトリル,アミド,二酸化硫
黄,二硫化炭素,ニトロメタン等の不飽和炭化水素,あ
るいは上述した溶媒の混合物を用いることができる。近
年,地球環境の保護が注目されており,この観点から特
にオゾン層を破壊する溶媒は避けることが好ましく,し
たがって溶媒Cとして塩化メチレン,1,1−ジクロル
−2,2ジフルオロエタン,1,2−ジクロル−1,1
ジフルオロエタンを用いると,従来のフロンを溶媒とし
て用いる場合にみられたような地球環境を害するという
ことがなくて好ましい。本発明の不織布を製造するに際
しては,前記溶媒Cと共に水Dを用いるが,この水Dは
前記ポリビニルアルコール系重合体Bを溶解するととも
に紡糸液中での分散剤としての機能を有する。なお,こ
の水Dとしては,いわゆる純水を用いるのがよい。
Next, a method for producing the reticulated fiber nonwoven fabric of the present invention will be described. The nonwoven fabric of the present invention uses the polyethylene-based polymer A and the polyvinyl alcohol-based polymer B, and spins a reticulated fiber by a so-called flash-spinning method as described in, for example, US Pat. After that, it can be manufactured efficiently by performing thermocompression bonding treatment. First, a solution obtained by dissolving and mixing the polyethylene-based polymer A and the polyvinyl alcohol-based polymer B in the same bath with the solvent C and the water D under high temperature and high pressure is used as a spinning solution, which is prepared under autogenous pressure. Alternatively, it is spun into the atmosphere through a spinning hole having a pressure drop chamber under pressure, and immediately after spinning, the solvent is instantaneously vaporized to form a reticulated fiber structure. When a solution is prepared, solvent C and water D are used which are non-solvents for the polymers A and B at room temperature but are good solvents at high temperature. Examples of the solvent C include aromatic hydrocarbons such as benzene and toluene, butane, pentane, hexane, heptane, octane or aliphatic hydrocarbons such as isomers and homologs thereof, and alicyclic compounds such as cyclohexane. Hydrocarbons, methylene chloride, carbon tetrachloride, chloroform, 1,1-dichloro-2,2 difluoroethane, 1,2-dichloro-1,1
Halogenated hydrocarbons such as difluoroethane, methyl chloride, ethyl chloride, fluorocarbons, alcohols, esters, ethers, ketones, nitriles, amides, sulfur dioxide, carbon disulfide, unsaturated hydrocarbons such as nitromethane, or mixtures of the solvents mentioned above. Can be used. In recent years, attention has been paid to the protection of the global environment. From this viewpoint, it is particularly preferable to avoid solvents that destroy the ozone layer. Therefore, methylene chloride, 1,1-dichloro-2,2 difluoroethane, 1,2- Dichlor-1,1
The use of difluoroethane is preferable because it does not harm the global environment as has been observed when conventional freon is used as a solvent. When the nonwoven fabric of the present invention is manufactured, water D is used together with the solvent C. The water D dissolves the polyvinyl alcohol polymer B and has a function as a dispersant in the spinning solution. As the water D, so-called pure water is preferably used.

【0012】前記ポリエチレン系重合体Aとしては,A
STM−D−1238(E)に記載の方法により測定さ
れるメルトインデツクスが0.3g/10分以上30g
/10分以下の高粘度のものを用いることが好ましい。
このメルトインデツクスが0.3g/10分未満である
と,重合体を溶媒と水とに溶解して得た溶液の溶液粘度
が著しく高くなって,極細のフイブリルを得ることが困
難となるため好ましくない。一方,このメルトインデツ
クスが30g/10分を超えると,重合度が低いためフ
イブリル強度すなわち不織布強度が向上せず,さらにメ
ルトインデツクスが高くなって重合度が低くなり過ぎる
と,フラツシユ紡糸時の紡糸速度に追随できず,しかも
紡出された繊維が短繊維状あるいは略粉体状の形態を有
するものとなるため好ましくない。なお,本発明におい
ては,前記ポリエチレン系重合体Aあるいは溶媒に溶解
して作成した紡糸液中には,通常に繊維用として用いら
れる艶消し剤,耐光剤,耐熱剤,顔料,開繊剤,紫外線
吸収剤,畜熱剤,安定剤等を本発明の効果を損なわない
範囲内であれば添加することができる。
As the polyethylene-based polymer A, A
Melt index measured by the method described in STM-D-1238 (E) is 0.3 g / 10 minutes or more and 30 g or more.
It is preferable to use one having a high viscosity of / 10 minutes or less.
If the melt index is less than 0.3 g / 10 minutes, the solution viscosity of the solution obtained by dissolving the polymer in the solvent and water becomes extremely high, and it becomes difficult to obtain ultrafine fibrils. Not preferable. On the other hand, when the melt index exceeds 30 g / 10 min, the degree of polymerization is low and the fibril strength, that is, the strength of the nonwoven fabric is not improved. Further, when the melt index is high and the degree of polymerization is too low, the flash spinning It is not preferable because it cannot follow the spinning speed and the spun fibers have a short fiber shape or a substantially powdery shape. In the present invention, in the spinning solution prepared by dissolving the polyethylene-based polymer A or the solvent, a matting agent, a lightproofing agent, a heatproofing agent, a pigment, a fiber opening agent, which is usually used for fibers, Ultraviolet absorbers, heat storage agents, stabilizers and the like can be added as long as they do not impair the effects of the present invention.

【0013】前記ポリビニルアルコール系重合体Bとし
ては,繊維形成性を有するポリビニルアルコール,ある
いはエチレン,イタコン酸,ビニルピロリドン等の他の
ビニル基が10モル%以下好ましくは2モル%以下共重
合された共重合ポリビニルアルコール等を用いるが,前
述したような不織布強度向上の観点から,平均重合度が
1000以上,好ましくは1500以上,特に好ましく
は1700以上のものを用いるのがよい。また,不織布
の耐熱性向上の観点から,ケン化度87モル%以上,好
ましくは90モル%以上,特に好ましくは95モル%以
上のものを用いるのがよい。
As the polyvinyl alcohol-based polymer B, polyvinyl alcohol having a fiber-forming property or other vinyl group such as ethylene, itaconic acid, vinylpyrrolidone is copolymerized in an amount of 10 mol% or less, preferably 2 mol% or less. Copolymerized polyvinyl alcohol or the like is used, but from the viewpoint of improving the strength of the nonwoven fabric as described above, it is preferable to use one having an average degree of polymerization of 1000 or more, preferably 1500 or more, and particularly preferably 1700 or more. Further, from the viewpoint of improving the heat resistance of the non-woven fabric, it is preferable to use one having a saponification degree of 87 mol% or more, preferably 90 mol% or more, particularly preferably 95 mol% or more.

【0014】また,フラツシユ紡糸するに際しての紡出
性と得られた網状繊維の特性を勘案すると,紡糸液とし
て前記ポリエチレン系重合体A,前記ポリビニルアルコ
ール系重合体B,溶媒C及び水Dがそれぞれ下記式
(2)〜(4)を満足する溶液を用いることが好まし
い。 5≦A(重量%)+B(重量%)≦25 (2) 40≦C(重量%)≦74 (3) 5≦B(重量%)×100/〔B(重量%)+D(重量%)〕≦20 (4) この紡糸液において,紡糸液中の重合体〔A+B〕の濃
度が5重量%未満であると,フラツシユ紡出直後に重合
体と溶媒とが相分離するに際して,重合体の系に占める
領域が少なくかつ点在するため紡出されたフイブリルが
連続した構造を形成せず,しかも強度が向上せず,一
方,重合体〔A+B〕の濃度が25重量%を超えると,
重合体〔A+B〕の濃度が高過ぎて溶解が不均一となる
ため極細のフイブリルを得ることができず,しかも紡出
された繊維はそのフイブリルがその側面で相互に接合
し,かつ内部に空洞を有する中空構造を形成し,しかも
その構造に起因して強度が向上せず,いずれも好ましく
ない。また,紡糸液中の溶媒の濃度が40重量%未満で
あると,重合体を溶解して得た溶液の溶液粘度が高過ぎ
て溶解が不均一となるため極細のフイブリルを得ること
ができず,しかも紡出された繊維は中空構造を形成し,
一方,溶媒の濃度が74重量%を超えると,フイブリル
が連続した構造を形成せず,いずれも好ましくない。さ
らに,〔B(重量%)+D(重量%)〕中の重合体Bの
分率(%)が5%未満であると,紡出された繊維中にお
ける重合体Bの含有率が少なくなるため繊維自体の吸湿
性が不十分となり,一方,〔B(重量%)+D(重量
%)〕中の重合体Bの分率(%)が20%を超えると,
重合体Bがゲル化し粘度が高くなり過ぎるため紡出する
ことが困難となり,いずれも好ましくない。
In consideration of the spinnability in flash-spinning and the properties of the obtained reticulated fiber, the polyethylene-based polymer A, the polyvinyl alcohol-based polymer B, the solvent C and the water D are each used as a spinning solution. It is preferable to use a solution that satisfies the following formulas (2) to (4). 5 ≦ A (wt%) + B (wt%) ≦ 25 (2) 40 ≦ C (wt%) ≦ 74 (3) 5 ≦ B (wt%) × 100 / [B (wt%) + D (wt%) ≦ 20 (4) In this spinning solution, when the concentration of the polymer [A + B] in the spinning solution is less than 5% by weight, when the polymer and the solvent are phase-separated immediately after flash spinning, Since the spun fibrils do not form a continuous structure because the area occupied by the system is small and scattered, and the strength is not improved, on the other hand, when the concentration of the polymer [A + B] exceeds 25% by weight,
Since the concentration of the polymer [A + B] is too high and the dissolution becomes non-uniform, it is not possible to obtain ultrafine fibrils. Moreover, the spun fibers have their fibrils bonded to each other on their side faces and have voids inside. And a strength is not improved due to the structure, which is not preferable. Further, if the concentration of the solvent in the spinning solution is less than 40% by weight, the solution viscosity of the solution obtained by dissolving the polymer is too high and the dissolution becomes nonuniform, so that it is not possible to obtain ultrafine fibrils. Moreover, the spun fibers form a hollow structure,
On the other hand, when the concentration of the solvent exceeds 74% by weight, the structure in which the fibrils are not continuous is not formed, which is not preferable. Furthermore, when the fraction (%) of the polymer B in [B (wt%) + D (wt%)] is less than 5%, the content of the polymer B in the spun fiber is small. If the hygroscopicity of the fiber itself becomes insufficient, while the fraction (%) of the polymer B in [B (wt%) + D (wt%)] exceeds 20%,
Polymer B gels and the viscosity becomes too high, making it difficult to spin it out, which is not preferable.

【0015】また,紡糸液を作成するに際しては,前記
全重合体〔A+B〕を溶質とし,これらを前記溶媒Cと
水Dとともに溶解装置に充填し昇温・混練しながら溶液
を作成し,得られた溶液を紡糸液として用いる。溶解装
置としては,従来から最も広範に用いられているオート
クレーブや,例えばエクストルーダとこれに連続して配
設された混練装置とからなる連続溶解装置等を用いるこ
とができる。溶解装置内でこの紡糸液を昇温・混練を行
うに際しては,その純度が99重量%以上の酸素を含有
しない窒素あるいは二酸化炭素といった不活性気体によ
る加圧下で行うと,紡糸圧力をなお一層高めることがで
きて好ましい。窒素あるいは二酸化炭素の気体はいわゆ
る不活性気体であって,紡糸液中に殆ど溶解せず重合体
に対して悪影響を及ぼさないため,紡糸液に対して実質
的な圧力を印加することができる。また,この不活性気
体の注入を溶解装置内の紡糸液の昇温以前から行うと,
重合体の劣化防止や重合体の溶解性促進,フイブリルの
極細化が可能となり,一層好ましい。
Further, when preparing a spinning solution, all the polymers [A + B] are used as solutes, and these are put together with the solvent C and water D in a dissolution apparatus and the solution is prepared by heating and kneading to obtain a solution. The obtained solution is used as a spinning solution. As the melting device, an autoclave which has been used most widely in the past, or a continuous melting device including, for example, an extruder and a kneading device arranged continuously with the extruder can be used. When the temperature of the spinning solution is increased and kneaded in the dissolving device, the spinning pressure is further increased by pressurizing with an inert gas such as nitrogen or carbon dioxide having a purity of 99% by weight or more and not containing oxygen. It is possible and preferable. The gas of nitrogen or carbon dioxide is a so-called inert gas, which hardly dissolves in the spinning solution and does not adversely affect the polymer, so that a substantial pressure can be applied to the spinning solution. If the inert gas is injected before the temperature of the spinning solution in the dissolving device is raised,
It is more preferable because it can prevent the deterioration of the polymer, promote the solubility of the polymer, and make the fibrils extremely fine.

【0016】溶解装置内で前記全重合体〔A+B〕を溶
媒Cと水Dに溶解するに際しての溶解時間と溶解温度
は,重合体の粘度すなわち重合度に依存し,一概に特定
することは困難である。要するに,全重合体〔A+B〕
が溶媒に十分に溶解しかつ紡糸液をフラツシユ紡糸して
極細のフイブリルが集合し三次元的に網状に広がった構
造を有する繊維を得ることができるような時間と温度で
あれば特に限定されるものではないのであるが,敢えて
特定すれば,時間を45分以上90分以下,温度を16
0℃以上200℃以下とするのが好ましい。この溶解
は,低温溶解の場合には時間を長くし,高温溶解の場合
には時間を短縮する。溶解に際しての時間が45分未満
でかつ温度が160℃未満であると,全重合体〔A+
B〕の溶解が不十分となって均一なフイブリルからなる
繊維を得ることが困難となり,一方,時間が90分を超
えかつ温度が200℃を超えると,紡糸液中の重合体B
の着色や熱分解が生じて繊維の強度が向上せず,仮に強
度は保持していても繊維に着色が生じたりし,いずれも
好ましくない。
The dissolution time and the dissolution temperature for dissolving all the polymers [A + B] in the solvent C and the water D in the dissolution apparatus depend on the viscosity of the polymer, that is, the degree of polymerization, and are difficult to specify unconditionally. Is. In short, all polymers [A + B]
Is particularly limited as long as it is sufficiently dissolved in the solvent and the spinning solution is flash-spun to obtain fibers having a structure in which ultrafine fibrils are aggregated and three-dimensionally reticulately spread. Although it is not a thing, if it is intentionally specified, the time is 45 minutes or more and 90 minutes or less, and the temperature is 16 minutes.
The temperature is preferably 0 ° C. or higher and 200 ° C. or lower. This melting takes longer for low temperature melting and shorter for high temperature melting. When the time for dissolution is less than 45 minutes and the temperature is less than 160 ° C, all the polymers [A +
B] becomes insufficiently dissolved, and it becomes difficult to obtain fibers composed of uniform fibrils. On the other hand, when the time exceeds 90 minutes and the temperature exceeds 200 ° C., the polymer B in the spinning solution is
However, the strength of the fiber is not improved due to the coloring and thermal decomposition of the fiber, and even if the strength is maintained, the fiber is colored, which is not preferable.

【0017】また,作成した紡糸液をフラツシユ紡糸す
るに際しての圧力は,全重合体〔A+B〕の濃度と溶媒
量と水量そして不活性気体の注入量等により左右される
ため一概に特定されないが,通常,40kg/cm2
上160kg/cm2 以下とするのが好ましい。繊維の
強度は重合体の分子鎖自体が十分に延伸・配向されるこ
とにより発現されるのであり,フラツシユ紡糸法すなわ
ち前記紡糸液を圧力降下室を有する紡糸孔を通して紡出
し,紡出直後に溶媒を瞬間的に気化させて網状の繊維構
造を形成する方法においては,この延伸・配向を紡出直
後の瞬間的な溶媒の気化に伴う爆発力によって行う。こ
の爆発力とは,溶媒が瞬間的に気化する際の気化力であ
り,通常,0.1秒以下の時間で溶媒が一気に気化する
ときの力を意味する。したがって,この紡糸圧力は40
kg/cm2 以上とするのが好ましく,紡糸圧力が40
kg/cm2 未満であると,紡糸液を用いてフラツシユ
紡糸するに際しての爆発力が低下しフイブリルの配向が
不十分となってその強度が向上せず,また紡出状態が不
均一なものとなって高度にフイブリル化した網状繊維を
安定して得ることが困難となる。一方,この紡糸圧力は
160kg/cm2以下とするのが好ましく,紡糸圧力
が160kg/cm2 を超えると,紡糸液中の重合体の
粘度が低下してフイブリルの強度が向上せず,好ましく
ない。
The pressure for flash-spinning the prepared spinning solution depends on the concentration of the total polymer [A + B], the amount of solvent, the amount of water, the amount of inert gas injected, etc., but is not generally specified. Usually, it is preferable that the pressure is 40 kg / cm 2 or more and 160 kg / cm 2 or less. The strength of the fiber is expressed by sufficiently stretching and orienting the molecular chains of the polymer. Therefore, the flash spinning method, that is, the spinning solution is spun through a spinning hole having a pressure drop chamber, and immediately after spinning, the solvent is used. In the method of instantaneously evaporating the solvent to form a reticulated fiber structure, this stretching and orientation is performed by the explosive force that accompanies the instantaneous evaporation of the solvent immediately after spinning. The explosive force is the vaporizing force when the solvent is instantly vaporized, and usually means the force when the solvent vaporizes at once in 0.1 second or less. Therefore, this spinning pressure is 40
It is preferable that the pressure is not less than kg / cm 2 and the spinning pressure is 40
If it is less than kg / cm 2 , the explosive force at the time of flash spinning using a spinning solution is reduced, the orientation of the fibrils is insufficient, the strength is not improved, and the spinning state is not uniform. Therefore, it becomes difficult to stably obtain highly fibrillated reticulated fibers. On the other hand, the spinning pressure is preferably 160 kg / cm 2 or less, and when the spinning pressure exceeds 160 kg / cm 2 , the viscosity of the polymer in the spinning solution is lowered and the strength of the fibril is not improved, which is not preferable. .

【0018】次に,得られた網状繊維を用いてウエブを
形成し,このウエブに例えば熱と圧力とを印加すること
により網状繊維同士を部分的に熱圧着する。ウエブに熱
圧着部を形成するに際しては,例えば表面に突起を有し
かつ加熱されたエンボスロールと表面平滑でかつ加熱さ
れた金属ロールとの間にウエブを通すエンボシング法,
あるいは超音波融着装置を用いる方法を採用することが
できる。この熱エンボスロールを用いる場合,熱圧着処
理条件として下記式(5)を満足する処理温度T(℃)
と下記式(6)を満足する線圧P(kg/cm)を選択
するのがよい。下記式(5)における重合体の融点
(℃)とは,繊維を構成する重合体中で最も低い融点を
有する重合体の融点である。なお,ここでいう融点と
は,パーキンエルマ社製示差走査型熱量計DSC−2型
を用い,昇温速度20℃/分で測定した融解吸収熱曲線
の極値を与える温度を意味する。 〔重合体の融点−40〕≦T(℃)≦〔重合体の融点〕 (5) 0.5≦P(kg/cm)≦50 (6) この場合,処理温度T(℃)が〔重合体の融点−40〕
未満であると,網状繊維間が十分に熱圧着されないため
不織布の強力が向上せず,一方,処理温度T(℃)が
〔重合体の融点〕を超えると,網状繊維同士が広く融着
して極細のフイブリル繊維を得た意味が消滅したり,重
合体が熱劣化して不織布が着色したり,あるいは繊維が
溶融してローラに接着して不織布化することが困難とな
り,いずれも好ましくない。また,線圧P(kg/c
m)が0.5未満であると,網状繊維間が十分に熱圧着
されないため不織布の強力が向上せず,一方,線圧P
(kg/cm)が50を超えると,エンボスロールの熱
圧接点領域を超えて不織布が融解してフイルム化し,い
ずれも好ましくない。さらに,単位面積当たりの圧接点
面積の総計の比すなわち圧接面積率を,通常,百分率で
4%以上40%以下とするのが好ましい。圧接面積率が
4%未満であると,得られた不織布の強力が低下するの
みならず腰の低いものとなり,一方,圧接面積率が40
%を超えると,得られた不織布の剛性が高くなり過ぎる
ため,いずれも好ましくない。
Next, a web is formed using the obtained reticulated fibers, and the reticulated fibers are partially thermocompression-bonded to each other by applying heat and pressure to the web. When forming a thermocompression-bonded portion on a web, for example, an embossing method in which the web is passed between a heated embossing roll having protrusions on the surface and a heated metal roll having a smooth surface,
Alternatively, a method using an ultrasonic welding device can be adopted. When this hot embossing roll is used, the processing temperature T (° C) that satisfies the following equation (5) as the thermocompression bonding processing condition
It is preferable to select a linear pressure P (kg / cm) that satisfies the following equation (6). The melting point (° C.) of the polymer in the following formula (5) is the melting point of the polymer having the lowest melting point among the polymers constituting the fiber. The melting point as used herein means the temperature that gives the extreme value of the melting absorption heat curve measured using a differential scanning calorimeter DSC-2 type manufactured by Perkin Elma Co. at a temperature rising rate of 20 ° C / min. [Melting point of polymer −40] ≦ T (° C.) ≦ [melting point of polymer] (5) 0.5 ≦ P (kg / cm) ≦ 50 (6) In this case, the treatment temperature T (° C.) is Melting point of coalescence-40]
If it is less than 1, the strength of the non-woven fabric is not improved because the reticulated fibers are not sufficiently thermocompressed. On the other hand, if the treatment temperature T (° C) exceeds the [melting point of the polymer], the reticulated fibers are widely fused. The meaning of obtaining ultrafine fibril fibers disappears, the polymer is thermally deteriorated to color the nonwoven fabric, or it becomes difficult to melt the fibers and bond them to the roller to make them into a nonwoven fabric, which is not preferable. . Also, the linear pressure P (kg / c
When m) is less than 0.5, the strength of the non-woven fabric is not improved because the interwoven fibers are not sufficiently thermocompression bonded, while the linear pressure P
When (kg / cm) exceeds 50, the non-woven fabric is melted into a film beyond the hot pressing contact region of the embossing roll, which is not preferable. Further, it is preferable that the total ratio of the pressure contact area per unit area, that is, the pressure contact area ratio is usually 4% or more and 40% or less in percentage. When the pressure contact area ratio is less than 4%, not only the strength of the obtained non-woven fabric is lowered but also the rigidity is low, while the pressure contact area ratio is 40%.
%, The rigidity of the obtained nonwoven fabric becomes too high, which is not preferable.

【0019】[0019]

【実施例】次に,実施例に基づいて本発明を具体的に説
明する。なお,実施例における各種特性の測定及び評価
は,次の方法により実施した。 重合体の融点:パーキンエルマ社製示差走査型熱量計D
SC−2型を用い,昇温速度20℃/分で測定した融解
吸収熱曲線の極値を与える温度を融点とした。 メルトインデツクス(g/10分):ASTM D 1
238(E) に記載の方法により測定した。 不織布の厚み(mm):試料長が10cmで試料幅が1
0cmの試料5点を準備し,大栄科学精機製作所製厚さ
測定器を用い,各試料毎に4.5g/cm2 の荷重を印
加し,10秒間静置した後,厚さを測定し,得られた値
の平均値を不織布の厚み(mm)とした。 不織布のKGSM引張強力(kg/5cm):JIS
L−1090に記載のストリツプ法にしたがい,試料長
が10cmで試料幅が5cmの試料10点につき引張速
度10cm/分で測定し,得られた引張強力の平均値を
目付け100g/m2 当たりに換算し,不織布のKGS
M引張強力(kg/5cm)とした。 不織布の引裂強力(kg):JIS K−7311に記
載の方法にしたがい測定した。 不織布の引張伸度(%):JIS L−1090に記載
のストリツプ法にしたがい,前記試料10点につき引張
速度10cm/分で測定し,得られた引張伸度の平均値
を不織布の引張伸度(%)とした。 不織布構成繊維の比表面積(m2 /g):日本ベル株式
会社製窒素吸着装置BELSORP28型を用い,BE
T窒素吸着法によって不織布構成繊維の比表面積(m2
/g)を求めた。 不織布の吸湿率(%):試料5点を準備し,この試料に
熱風乾燥機を用いて処理温度80℃かつ処理時間24時
間の条件で乾燥処理を施し,デシケータ内で冷却した
後,絶乾重量W1 (g)を測定した。,次いで,この試
料を温度20℃かつ湿度65%の恒温恒湿槽内に放置
し,経時の質量変化が飽和値に到達したときの重量W2
(g)を測定し,得られた重量値から下記式(7)によ
り不織布の吸湿率(%)を求めた。 不織布の吸湿率(%)=〔(W2 /W1 )−1〕×100 (7) 不織布の印刷性:水性インクと油性インクを用いて不織
布に印刷を施し,印字の鮮明度と耐久性を下記4段階で
評価した。なお,比較のため,市販のポリエチレン系フ
ラツシユ紡糸不織布「タイベツク,タイプ10(105
6D)」(デユポン社の登録商標)についても合わせて
評価した。 ◎:極めて良好,○:良好,△:若干劣る,×:劣る
EXAMPLES Next, the present invention will be specifically described based on Examples. The measurement and evaluation of various characteristics in the examples were carried out by the following methods. Melting point of polymer: Differential scanning calorimeter D manufactured by Perkin Elmer
The melting point was defined as the temperature at which the exothermic value of the melting and absorption heat curve measured using the SC-2 type at a temperature rising rate of 20 ° C./min. Melt index (g / 10 minutes): ASTM D 1
It was measured by the method described in 238 (E). Nonwoven fabric thickness (mm): sample length 10 cm, sample width 1
Five samples of 0 cm were prepared, a thickness measuring device manufactured by Daiei Kagaku Seiki Seisakusho was used, a load of 4.5 g / cm 2 was applied to each sample, and the sample was allowed to stand for 10 seconds, and then the thickness was measured. The average value of the obtained values was defined as the thickness (mm) of the nonwoven fabric. Nonwoven fabric KGSM tensile strength (kg / 5cm): JIS
According to the strip method described in L-1090, 10 points with a sample length of 10 cm and a sample width of 5 cm were measured at a tensile speed of 10 cm / min, and the average value of the obtained tensile strength was measured per 100 g / m 2 of basis weight. Converted, non-woven KGS
M tensile strength (kg / 5 cm). Tear strength (kg) of non-woven fabric: Measured according to the method described in JIS K-7331. Tensile elongation (%) of the non-woven fabric: According to the strip method described in JIS L-1090, ten samples were measured at a tensile speed of 10 cm / min, and the average value of the obtained tensile elongations was measured. (%). Specific surface area of non-woven fabric fibers (m 2 / g): BE using a nitrogen adsorption device BELSORP28 manufactured by Nippon Bell Co., Ltd.
Specific surface area (m 2
/ G) was determined. Moisture absorption rate (%) of non-woven fabric: 5 samples were prepared, and this sample was dried using a hot air dryer at a treatment temperature of 80 ° C and a treatment time of 24 hours, cooled in a desiccator, and then dried completely. The weight W 1 (g) was measured. Then, this sample was allowed to stand in a thermo-hygrostat at a temperature of 20 ° C. and a humidity of 65%, and the weight W 2 when the change in mass with time reached a saturation value
(G) was measured, and the moisture absorption rate (%) of the nonwoven fabric was determined from the obtained weight value by the following formula (7). Moisture absorption nonwoven (%) = [(W 2 / W 1) -1] × 100 (7) nonwoven printability: by printing the non-woven fabric with an aqueous ink and oil ink, sharpness and durability of the printing Was evaluated according to the following four levels. For comparison, a commercially available polyethylene-based flash-spun nonwoven fabric “Tyvek, Type 10 (105
6D) ”(registered trademark of Dyupon) was also evaluated. ◎: extremely good, ○: good, △: slightly inferior, ×: inferior

【0020】実施例1〜4及び比較例1 融点が132℃でかつメルトインデツクスが0.8g/
10分の高密度ポリエチレン重合体Aと,平均重合度が
1700でケン化度が98.5モル%のポリビニルアル
コール重合体Bの10重量%水溶液と,ドライアイスと
をオートクレーブに充填・閉鎖し,次いで,塩化メチレ
ンCと純水Dとをオートクレーブに注入し,この溶液を
適度な速度で攪拌しながら加熱した。この溶液は,全重
合体〔A+B〕の濃度が15重量%,ポリエチレン重合
体A/ポリビニルアルコール重合体Bの重量比(A/
B)が表1に示したように混合され,塩化メチレンの濃
度が63重量%,水濃度が22重量%である。引き続
き,オートクレーブの内温が170℃で内圧が100k
g/cm2 Gに到達した後,この内圧すなわち紡糸圧力
100kg/cm2 Gで直ちにオートクレーブのバルブ
を開放して圧力降下室を有する孔径0.75mmで孔長
/孔径の比が1の紡出孔より紡糸液を大気中に吐出して
前記ポリエチレン重合体Aとポリビニルアルコール重合
体Bとからなる網状繊維を紡出し,紡出繊維群を紡出孔
より25mm離れた位置に45°傾斜して配設された開
繊板に衝突させてウエブを作成した。次いで,得られた
ウエブに,圧接面積率が17%の熱エンボスロールと加
熱されかつ表面平滑な金属ロールとを用い,表面温度が
125℃でかつ線圧が25kg/cmの条件で部分的熱
圧着処理を施し,目付けが約50g/m2 の網状繊維不
織布を得た。重合体条件と得られた網状繊維不織布の特
性を表1に示す。なお,表1において,PEはポリエチ
レン重合体,PVAはポリビニルアルコール重合体,M
IXはメルトインデツクス,MDは縦方向,CDは横方
向を示す。
Examples 1 to 4 and Comparative Example 1 Melting point is 132 ° C. and melt index is 0.8 g /
The autoclave was filled and closed with 10 minutes of a high-density polyethylene polymer A, a 10 wt% aqueous solution of a polyvinyl alcohol polymer B having an average degree of polymerization of 1700 and a degree of saponification of 98.5 mol%, and dry ice. Then, methylene chloride C and pure water D were injected into the autoclave, and this solution was heated with stirring at an appropriate speed. This solution had a total polymer [A + B] concentration of 15% by weight and a polyethylene polymer A / polyvinyl alcohol polymer B weight ratio (A /
B) are mixed as shown in Table 1 with a methylene chloride concentration of 63% by weight and a water concentration of 22% by weight. Then, the internal temperature of the autoclave was 170 ° C and the internal pressure was 100k.
After reaching g / cm 2 G, the valve of the autoclave was immediately opened at this internal pressure, that is, the spinning pressure of 100 kg / cm 2 G, and the pressure drop chamber was provided. The spinning solution is discharged into the atmosphere through the holes to spun out the reticulated fiber composed of the polyethylene polymer A and the polyvinyl alcohol polymer B, and the spun fiber group is tilted at 45 ° at a position 25 mm away from the spun hole. A web was created by colliding with the provided spread plate. Then, using a hot embossing roll having a pressing area ratio of 17% and a metal roll having a heated and smooth surface, the obtained web was partially heated at a surface temperature of 125 ° C. and a linear pressure of 25 kg / cm. A crimping treatment was performed to obtain a reticulated fiber nonwoven fabric having a basis weight of about 50 g / m 2 . Table 1 shows the polymer conditions and the properties of the obtained reticulated fiber nonwoven fabric. In Table 1, PE is a polyethylene polymer, PVA is a polyvinyl alcohol polymer, M
IX indicates the melt index, MD indicates the vertical direction, and CD indicates the horizontal direction.

【0021】[0021]

【表1】 [Table 1]

【0022】また,実施例2の不織布と前記ポリエチレ
ン系フラツシユ紡糸不織布「タイベツク,タイプ10
(1056D)」とについて印刷性を評価した。その結
果を表2に示す。
The nonwoven fabric of Example 2 and the polyethylene-based flash-spun nonwoven fabric "Tyvek, type 10"
(1056D) "was evaluated for printability. The results are shown in Table 2.

【0023】[0023]

【表2】 [Table 2]

【0024】実施例1〜3の不織布は,表1から明らか
なように実用的な強力と高い繊維の比表面積を有し,吸
湿性と印刷性が優れ,しかも全く着色を有しないもので
あった。また,この不織布を四酸化オスミウムで電子染
色し,次いでエポキシ樹脂で包理しトリミングして面出
しを行い,包理ブロツクのまま四酸化ルテニウムで染色
し,その染色固定後の不織布を超薄型切片に切り出し,
透過型電子顕微鏡を用い6万倍程度の拡大率で構成繊維
の表面を電子顕微鏡で写真撮影しその表面形態を観察し
たところ,この繊維は,略径0.0001〜0.03μ
mのポリビニルアルコール重合体からなる微粒子がポリ
エチレン重合体の中にランダムに散在した構造を有する
ものであった。また,実施例4の不織布は,ポリビニル
アルコール重合体の存在比が高く紡出された繊維はフイ
ブリルがその側面で相互に接合し均一に開繊しないた
め,吸湿性と印刷性は優れるものの,地合いの低いもの
であった。これに対し,比較例1の不織布は,表1から
明らかなように実用的な強力を有し,フイブリルの形成
状態が良好であるため比表面積が高いものの,ポリエチ
レン重合体単独から形成されるため吸湿性を全く有しな
いものであった。
As is clear from Table 1, the non-woven fabrics of Examples 1 to 3 have practical strength and high specific surface area of fibers, excellent hygroscopicity and printability, and have no coloring at all. It was In addition, this non-woven fabric is electron-dyed with osmium tetroxide, then embedded in epoxy resin, trimmed and surfaced, dyed with ruthenium tetroxide in the embedding block, and the non-woven fabric after dyeing and fixing is ultra-thin. Cut into sections,
The surface of the constituent fibers was photographed with an electron microscope at a magnification of about 60,000 using a transmission electron microscope, and the surface morphology was observed.
The fine particles of the polyvinyl alcohol polymer of m had a structure in which they were randomly dispersed in the polyethylene polymer. Further, in the nonwoven fabric of Example 4, since the fibers having a high abundance ratio of the polyvinyl alcohol polymer were spun, the fibers were bonded to each other at their side faces and the fibers were not opened uniformly, the hygroscopicity and printability were excellent, but the texture was good. Was low. On the other hand, the non-woven fabric of Comparative Example 1 has practical strength as is clear from Table 1 and has a high specific surface area due to good fibril formation, but is formed from polyethylene polymer alone. It had no hygroscopicity.

【0025】[0025]

【発明の効果】本発明の網状繊維不織布は,ポリエチレ
ン系重合体Aとポリビニルアルコール系重合体Bとから
なり,ポリエチレン系重合体Aの中にポリビニルアルコ
ール系重合体Bが微細に分散されてなる網状繊維から構
成され,かつ前記網状繊維が部分的に熱圧着されている
ものであり,強力が高く,柔軟性に富み,バクテリアバ
リア性を有し,かつ吸湿性と印刷性が優れ,例えば保温
材,医療衛生分野での保護服,カーペツト等のインテリ
ア用品,各種生活関連材用の素材として好適である。
The reticulated fiber nonwoven fabric of the present invention comprises a polyethylene-based polymer A and a polyvinyl alcohol-based polymer B, and the polyvinyl alcohol-based polymer B is finely dispersed in the polyethylene-based polymer A. It is composed of reticulated fibers, and the reticulated fibers are partially thermocompression bonded, and has high strength, flexibility, bacterial barrier properties, and excellent hygroscopicity and printability, for example, heat retention. Suitable for materials, protective clothing in the medical and hygiene field, interior goods such as carpets, and various life related materials.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年5月13日[Submission date] May 13, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】[0019]

【実施例】次に,実施例に基づいて本発明を具体的に説
明する。なお,実施例における各種特性の測定及び評価
は,次の方法により実施した。 重合体の融点:パーキンエルマ社製示差走査型熱量計D
SC−2型を用い,昇温速度20℃/分で測定した融解
吸収熱曲線の極値を与える温度を融点とした。 メルトインデツクス(g/10分):ASTM D 1
238(E) に記載の方法により測定した。 不織布の厚み(mm):試料長が10cmで試料幅が1
0cmの試料5点を準備し,大栄科学精機製作所製厚さ
測定器を用い,各試料毎に4.5g/cm2 の荷重を印
加し,10秒間静置した後,厚さを測定し,得られた値
の平均値を不織布の厚み(mm)とした。 不織布のKGSM引張強力(kg/5cm):JIS
L−109に記載のストリツプ法にしたがい,試料長
が10cmで試料幅が5cmの試料10点につき引張速
度10cm/分で測定し,得られた引張強力の平均値を
目付け100g/m2 当たりに換算し,不織布のKGS
M引張強力(kg/5cm)とした。 不織布の引裂強力(kg):JIS L−1096に記
載のペンジユラム法にしたがい,エルメンドルフ型引裂
強さ試験機を用いて測定した。 不織布の引張伸度(%):JIS L−109に記載
のストリツプ法にしたがい,前記試料10点につき引張
速度10cm/分で測定し,得られた引張伸度の平均値
を不織布の引張伸度(%)とした。 不織布構成繊維の比表面積(m2 /g):日本ベル株式
会社製窒素吸着装置BELSORP28型を用い,BE
T窒素吸着法によって不織布構成繊維の比表面積(m2
/g)を求めた。 不織布の吸湿率(%):試料5点を準備し,この試料に
熱風乾燥機を用いて処理温度80℃かつ処理時間24時
間の条件で乾燥処理を施し,デシケータ内で冷却した
後,絶乾重量W1 (g)を測定した。,次いで,この試
料を温度20℃かつ湿度65%の恒温恒湿槽内に放置
し,経時の質量変化が飽和値に到達したときの重量W2
(g)を測定し,得られた重量値から下記式(7)によ
り不織布の吸湿率(%)を求めた。 不織布の吸湿率(%)=〔(W2 /W1 )−1〕×100 (7) 不織布の印刷性:水性インクと油性インクを用いて不織
布に印刷を施し,印字の鮮明度と耐久性を下記4段階で
評価した。なお,比較のため,市販のポリエチレン系フ
ラツシユ紡糸不織布「タイベツク,タイプ10(105
6D)」(デユポン社の登録商標)についても合わせて
評価した。 ◎:極めて良好,○:良好,△:若干劣る,×:劣る
EXAMPLES Next, the present invention will be specifically described based on Examples. The measurement and evaluation of various characteristics in the examples were carried out by the following methods. Melting point of polymer: Differential scanning calorimeter D manufactured by Perkin Elmer
The melting point was defined as the temperature at which the exothermic value of the melting and absorption heat curve measured using the SC-2 type at a temperature rising rate of 20 ° C./min. Melt index (g / 10 minutes): ASTM D 1
It was measured by the method described in 238 (E). Nonwoven fabric thickness (mm): sample length 10 cm, sample width 1
Five samples of 0 cm were prepared, a thickness measuring device manufactured by Daiei Kagaku Seiki Seisakusho was used, a load of 4.5 g / cm 2 was applied to each sample, and the sample was allowed to stand for 10 seconds, and then the thickness was measured. The average value of the obtained values was defined as the thickness (mm) of the nonwoven fabric. Nonwoven fabric KGSM tensile strength (kg / 5cm): JIS
According strips method according to L-109 6, sample width at 10cm the sample length was measured at a pulling rate of 10cm / min per 10 sample 5 cm, weight per unit area of the average value of the strong tensile obtained 100 g / m 2 per Converted to, non-woven KGS
M tensile strength (kg / 5 cm). Tear strength (kg) of non-woven fabric: Elmendorf type tear according to the Penzirum method described in JIS L-1096
It measured using the strength tester . Tensile elongation of the nonwoven fabric (%): JIS accordance L-109 6 strips method described, the specimen-stretching was measured at a speed 10 cm / min per 10 points, resulting tensile pulling a mean value of elongation of the nonwoven fabric Shin The degree (%). Specific surface area of non-woven fabric fibers (m 2 / g): BE using a nitrogen adsorption device BELSORP28 manufactured by Nippon Bell Co., Ltd.
Specific surface area (m 2
/ G) was determined. Moisture absorption rate (%) of non-woven fabric: 5 samples were prepared, and this sample was dried using a hot air dryer at a treatment temperature of 80 ° C and a treatment time of 24 hours, cooled in a desiccator, and then dried completely. The weight W 1 (g) was measured. Then, this sample was allowed to stand in a thermo-hygrostat at a temperature of 20 ° C. and a humidity of 65%, and the weight W 2 when the change in mass with time reached a saturation value
(G) was measured, and the moisture absorption rate (%) of the nonwoven fabric was determined from the obtained weight value by the following formula (7). Moisture absorption nonwoven (%) = [(W 2 / W 1) -1] × 100 (7) nonwoven printability: by printing the non-woven fabric with an aqueous ink and oil ink, sharpness and durability of the printing Was evaluated according to the following four levels. For comparison, a commercially available polyethylene-based flash-spun nonwoven fabric “Tyvek, Type 10 (105
6D) ”(registered trademark of Dyupon) was also evaluated. ◎: extremely good, ○: good, △: slightly inferior, ×: inferior

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ポリエチレン系重合体Aとポリビニルア
ルコール系重合体Bとからなり,ポリエチレン系重合体
Aの中にポリビニルアルコール系重合体Bが微細に分散
されてなる網状繊維から構成され,かつ前記網状繊維が
部分的に熱圧着されていることを特徴とする網状繊維不
織布。
1. A polyethylene-based polymer A and a polyvinyl alcohol-based polymer B, which are composed of reticulated fibers in which the polyvinyl alcohol-based polymer B is finely dispersed in the polyethylene-based polymer A. A reticulated fiber non-woven fabric, characterized in that reticulated fibers are partially thermocompression bonded.
【請求項2】 ポリエチレン系重合体Aとポリビニルア
ルコール系重合体Bとが下記式(1)を満足する請求項
1記載の網状繊維不織布。 1≦B(重量%)×100/〔A(重量%)+B(重量%)〕≦25 (1)
2. The reticulated nonwoven fabric according to claim 1, wherein the polyethylene polymer A and the polyvinyl alcohol polymer B satisfy the following formula (1). 1 ≦ B (wt%) × 100 / [A (wt%) + B (wt%)] ≦ 25 (1)
【請求項3】 網状繊維の比表面積が少なくとも10m
2 /gである請求項1又は2記載の網状繊維不織布。
3. The specific surface area of the reticulated fiber is at least 10 m.
The reticulated fiber non-woven fabric according to claim 1 or 2, which is 2 / g.
JP5095230A 1993-03-29 1993-03-29 Netlike fiber nonwoven fabric Pending JPH06287851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5095230A JPH06287851A (en) 1993-03-29 1993-03-29 Netlike fiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5095230A JPH06287851A (en) 1993-03-29 1993-03-29 Netlike fiber nonwoven fabric

Publications (1)

Publication Number Publication Date
JPH06287851A true JPH06287851A (en) 1994-10-11

Family

ID=14131964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5095230A Pending JPH06287851A (en) 1993-03-29 1993-03-29 Netlike fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JPH06287851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113944010A (en) * 2021-11-23 2022-01-18 厦门当盛科技有限公司 Method for preparing regenerated polyethylene non-woven fabric and regenerated polyethylene non-woven fabric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113944010A (en) * 2021-11-23 2022-01-18 厦门当盛科技有限公司 Method for preparing regenerated polyethylene non-woven fabric and regenerated polyethylene non-woven fabric

Similar Documents

Publication Publication Date Title
JP3876004B2 (en) Improved nonwoven material for particle barrier
CA2236324C (en) Low density microfiber nonwoven fabric
US6420024B1 (en) Charged microfibers, microfibrillated articles and use thereof
Yoon et al. Multi-jet electrospinning of polystyrene/polyamide 6 blend: thermal and mechanical properties
US5512357A (en) Polypropylene flexifilamentary fiber containing 0.1 to 10 weight percent of an organic spreading agent and nonwoven fabric made therefrom
JPH11217757A (en) Staple fiber nonwoven fabric and its production
JP3119283B2 (en) Non-woven bonding method
JP2000505154A (en) Plexifilamentary strands of blended polymers
US4482603A (en) Wholly aromatic polyamide fiber non-woven sheet and processes for producing the same
JP2007107143A (en) High strength fusing conjugate fiber
DE69736932T2 (en) Flat material produced by flash spinning
EP1057915A1 (en) Biodegradable filament nonwoven fabric and method of producing the same
JPH06287851A (en) Netlike fiber nonwoven fabric
Ozcan et al. Characterization of solution blow Spun Poly (Lactic) Acid based nanofibers containing sucuk spice Mix essential oils
JPH06287850A (en) Netlike fiber nonwoven fabric
JPH06287805A (en) Production of netty nonwoven fabric
JPH06287852A (en) Production of netlike fiber nonwoven fabric
US8293664B1 (en) Process for producing polyvinyl alcohol articles
JP6446012B2 (en) Artificial leather substrate
JPH07197368A (en) Netty fiber nonwoven fabric and its production
JP4494094B2 (en) High water pressure resistant polyester nonwoven fabric with excellent fuzz resistance
JPH06257011A (en) Polyolefinic grid fiber
US20220258937A1 (en) Use of a composite material as packaging material
JP3565822B2 (en) Nonwoven fabric made of fibers having a network structure and method for producing the same
KR100726581B1 (en) Poly-propylene spun-bond non-woven fabric having excellent prevention against charge and manufacturing method thereof