JPH06287852A - Production of netlike fiber nonwoven fabric - Google Patents

Production of netlike fiber nonwoven fabric

Info

Publication number
JPH06287852A
JPH06287852A JP5096623A JP9662393A JPH06287852A JP H06287852 A JPH06287852 A JP H06287852A JP 5096623 A JP5096623 A JP 5096623A JP 9662393 A JP9662393 A JP 9662393A JP H06287852 A JPH06287852 A JP H06287852A
Authority
JP
Japan
Prior art keywords
polymer
pressure
spinning
solvent
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5096623A
Other languages
Japanese (ja)
Inventor
Hiroshi Nishimura
弘 西村
Shigemitsu Murase
繁満 村瀬
Fumio Matsuoka
文夫 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP5096623A priority Critical patent/JPH06287852A/en
Publication of JPH06287852A publication Critical patent/JPH06287852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain a nonwoven fabric, having high strength and bacterial barrier properties and further hygroscopicity and printability by carrying out the flash spinning of a spinning solution composed of a polyethylenic polymer, a polyvinyl alcoholic polymer, a solvent and water, subsequently forming a web and then partially heat bonding the resultant web. CONSTITUTION:A high-density polyethylene (A), a polyvinyl alcoholic polymer (B), a solvent (C) and water (D) are dissolved and mixed at a high temperature under a high pressure so as to satisfy 1<=BX100/[A+B]<=25, 5<=(A+B)<=25, 40<=C<=74 and 5<=BX100/[B+D]<=20 (A, B, C and D are respectively wt.%) to prepare a spinning solution, which is then passed through a spinning hole having a pressure dropping chamber under an autogenous pressure or a higher pressure and spun into the atmosphere. The solvent is simultaneously instantaneously vaporized to form netlike fiber, which is further formed into a web. The resultant web is then passed through embossing rolls under conditions in which the roll temperature (T deg.C) and the linear pressure (P kg/cm<2>) satisfy [melting point of the polymer-40]<=T<=[melting point of the polymer] and 0.5<=P<=5C to afford the partially heat bonded netlike fiber nonwoven fabric.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,ポリエチレン系重合体
Aとポリビニルアルコール系重合体Bとからなる網状繊
維から構成され,強力が高く,柔軟性に富み,バクテリ
アバリア性を有し,しかも吸湿性と印刷性が優れ,例え
ば保温材,医療衛生分野での保護服,カーペツト等のイ
ンテリア用品,各種生活関連材用の素材として好適な網
状繊維不織布を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a reticulated fiber composed of a polyethylene-based polymer A and a polyvinyl alcohol-based polymer B, has high strength, is highly flexible, has a bacterial barrier property, and has a moisture absorption property. The present invention relates to a method for producing a reticulated fiber non-woven fabric which has excellent heat resistance and printability and is suitable as a material for heat insulating materials, protective clothing in the medical and hygiene field, interior products such as carpets, and various life-related materials.

【0002】[0002]

【従来の技術】従来から,フラツシユ紡糸法により極細
網状繊維不織布を製造する方法が知られている。このフ
ラツシユ紡糸法とは,熱可塑性重合体を特定の溶媒に高
温高圧下で溶解して得た溶液を自生圧以上にさらに加圧
し大気中に紡出する方法であって,例えば,米国特許第
3081519号公報には,このフラツシユ紡糸法によ
り前記網状繊維を得る技術が開示されている。しかしな
がら,この網状繊維を用いて作成した不織布は,構成繊
維自体が疎水性のあるいは少なくとも吸湿性が乏しい熱
可塑性重合体からなるものであるため,不織布製品の用
途が限定される。例えば,ポリエチレンやポリプロピレ
ン等の疎水性のあるいは少なくとも吸湿性が乏しい熱可
塑性重合体を採用した場合,得られた網状繊維不織布は
撥水性と耐水性は優れるものの,当然のことながら吸湿
性が乏しく,したがって,例えば水性インクを用いての
印刷や執筆を行うため吸湿性や印刷性を必要とする合成
紙等の用途分野に適用することができないという問題を
有することになる。
2. Description of the Related Art Conventionally, a method for producing an ultrafine reticulated fiber nonwoven fabric by the flash spinning method has been known. The flash spinning method is a method in which a solution obtained by dissolving a thermoplastic polymer in a specific solvent under high temperature and high pressure is further pressurized to a pressure higher than the autogenous pressure and spun into the atmosphere. Japanese Patent No. 3081519 discloses a technique for obtaining the reticulated fiber by this flash spinning method. However, the non-woven fabric made by using the reticulated fiber is limited in its use as a non-woven fabric product because the constituent fibers themselves are made of a thermoplastic polymer having a hydrophobic property or at least a poor hygroscopic property. For example, when a hydrophobic or at least poorly hygroscopic thermoplastic polymer such as polyethylene or polypropylene is used, the resulting reticulated fiber nonwoven fabric has excellent water repellency and water resistance, but naturally has poor hygroscopicity. Therefore, there is a problem that it cannot be applied to fields of application such as synthetic paper, which requires hygroscopicity and printability, for example, because printing or writing is performed using water-based ink.

【0003】[0003]

【発明が解決しようとする課題】本発明は,前記問題を
解決し,ポリエチレン系重合体Aとポリビニルアルコー
ル系重合体Bとからなる網状繊維から構成され,強力が
高く,柔軟性に富み,バクテリアバリア性を有し,しか
も吸湿性と印刷性が優れ,例えば保温材,医療衛生分野
での保護服,カーペツト等のインテリア用品,各種生活
関連材用の素材として好適な網状繊維不織布を効率良く
製造する方法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and is composed of a reticulated fiber composed of a polyethylene-based polymer A and a polyvinyl alcohol-based polymer B, and has high strength, high flexibility, and bacteria. Efficiently manufacture reticulated non-woven fabrics that have barrier properties and excellent hygroscopicity and printability, and are suitable as materials for heat insulation materials, protective clothing in the medical and hygiene field, interior goods such as carpets, and various life-related materials. It is intended to provide a way to do.

【0004】[0004]

【課題を解決するための手段】本発明者らは,前記問題
を解決すべく鋭意検討の結果,本発明に到達した。すな
わち,本発明は,ポリエチレン系重合体Aとポリビニル
アルコール系重合体Bとを同一浴で溶媒と水とを用い高
温高圧下で溶解混合して作成した溶液を紡糸液とし,こ
れを自生圧下で又は加圧下で圧力降下室を有する紡糸孔
を通して大気中に紡出し,紡出直後に溶媒を瞬間的に気
化させて網状繊維を形成し,引き続き網状繊維からウエ
ブを形成した後,前記ウエブに部分的熱圧着処理を施す
ことを特徴とする網状繊維不織布の製造方法を要旨とす
るものである。
The present inventors have arrived at the present invention as a result of extensive studies to solve the above problems. That is, according to the present invention, a solution prepared by dissolving and mixing a polyethylene-based polymer A and a polyvinyl alcohol-based polymer B in the same bath with a solvent and water under high temperature and high pressure is used as a spinning solution, which is prepared under autogenous pressure. Alternatively, it is spun into the atmosphere through a spinning hole having a pressure drop chamber under pressure, and immediately after spinning, the solvent is instantaneously vaporized to form a reticulated fiber, and then a web is formed from the reticulated fiber. The gist of the present invention is a method for producing a reticulated fiber nonwoven fabric, which is characterized in that a thermal thermocompression treatment is performed.

【0005】次に,本発明の製造方法を詳細に説明す
る。本発明の製造方法で用いるポリエチレン系重合体A
とは,繊維形成性を有する低密度ポリエチレン,線状低
密度ポリエチレン,中密度ポリエチレン,高密度ポリエ
チレン,あるいはエチレンを主体としこれに他の成分が
共重合された共重合ポリエチレン等であり,かつその融
点が100℃以上のものである。これらの重合体は,そ
の融点が100℃未満であると沸騰水によっても融解し
てしまうことになり,網状繊維を用いて不織布としたと
きにその実用性が低下する。このポリエチレン系重合体
Aとしては,ASTM−D−1238(E)に記載の方
法により測定されるメルトインデツクスが0.3g/1
0分以上30g/10分以下の高粘度のものを用いるこ
とが好ましい。このメルトインデツクスが0.3g/1
0分未満であると,重合体を溶媒と水とに溶解して得た
溶液の溶液粘度が著しく高くなって,極細のフイブリル
を得ることが困難となるため好ましくない。一方,この
メルトインデツクスが30g/10分を超えると,重合
度が低いためフイブリル強度すなわち不織布強度が向上
せず,さらにメルトインデツクスが高くなって重合度が
低くなり過ぎると,フラツシユ紡糸時の紡糸速度に追随
できず,しかも紡出された繊維が短繊維状あるいは略粉
体状の形態を有するものとなるため好ましくない。な
お,本発明においては,前記ポリエチレン系重合体Aあ
るいはこれを溶媒に溶解して作成した紡糸液中には,通
常に繊維用として用いられる艶消し剤,耐光剤,耐熱
剤,顔料,開繊剤,紫外線吸収剤,畜熱剤,安定剤等を
本発明の効果を損なわない範囲内であれば添加すること
ができる。
Next, the manufacturing method of the present invention will be described in detail. Polyethylene polymer A used in the production method of the present invention
The term “fiber-forming low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, or copolymerized polyethylene in which ethylene is the main component and other components are copolymerized, and It has a melting point of 100 ° C. or higher. If the melting point of these polymers is less than 100 ° C., they will be melted even by boiling water, and the practicability of the polymers will be reduced when they are used as a nonwoven fabric using reticulated fibers. The polyethylene polymer A has a melt index of 0.3 g / 1 measured by the method described in ASTM-D-1238 (E).
It is preferable to use one having a high viscosity of 0 minutes or more and 30 g / 10 minutes or less. This melt index is 0.3 g / 1
If it is less than 0 minutes, the solution viscosity of the solution obtained by dissolving the polymer in the solvent and water becomes extremely high, and it becomes difficult to obtain ultrafine fibrils, which is not preferable. On the other hand, when the melt index exceeds 30 g / 10 min, the degree of polymerization is low and the fibril strength, that is, the strength of the nonwoven fabric is not improved. Further, when the melt index is high and the degree of polymerization is too low, the flash spinning It is not preferable because it cannot follow the spinning speed and the spun fibers have a short fiber shape or a substantially powdery shape. In the present invention, the polyethylene-based polymer A or a spinning solution prepared by dissolving the polyethylene-based polymer A in a solvent contains a matting agent, a light-resistant agent, a heat-resistant agent, a pigment, a fiber-spreading agent, which are commonly used for fibers. Agents, ultraviolet absorbers, heat storage agents, stabilizers and the like can be added as long as the effects of the present invention are not impaired.

【0006】本発明の製造方法で用いるポリビニルアル
コール系重合体Bとは,繊維形成性を有するポリビニル
アルコール,あるいはエチレン,イタコン酸,ビニルピ
ロリドン等の他のビニル基が10モル%以下好ましくは
2モル%以下共重合された共重合ポリビニルアルコール
等である。また,この重合体Bの重合度は特に限定され
ないが,網状繊維を用いて得た不織布の強度を向上させ
たいときには,この重合体の水溶液を粘度法により温度
30℃で測定したときの平均重合度を1000以上,好
ましくは1500以上,特に好ましくは1700以上と
するのがよい。さらに,この重合体Bのケン化度も特に
限定されないが,不織布の耐熱性を向上させたいときに
は,重合体のケン化度を87モル%以上,好ましくは9
0モル%以上,特に好ましくは95モル%以上とするの
がよい。
The polyvinyl alcohol-based polymer B used in the production method of the present invention is a fiber-forming polyvinyl alcohol or other vinyl groups such as ethylene, itaconic acid and vinylpyrrolidone which are 10 mol% or less, preferably 2 mol. % Copolymerized polyvinyl alcohol and the like. The degree of polymerization of the polymer B is not particularly limited, but when it is desired to improve the strength of the non-woven fabric obtained by using the reticulated fibers, the average polymerization of the aqueous solution of the polymer measured at a temperature of 30 ° C. by a viscosity method. The degree is 1000 or more, preferably 1500 or more, and particularly preferably 1700 or more. Further, the saponification degree of the polymer B is not particularly limited, but when it is desired to improve the heat resistance of the nonwoven fabric, the saponification degree of the polymer is 87 mol% or more, preferably 9 mol% or more.
It is preferably 0 mol% or more, particularly preferably 95 mol% or more.

【0007】本発明の製造方法では,まず,いわゆるフ
ラツシユ紡糸法により網状繊維を形成する。すなわち,
前記ポリエチレン系重合体Aと前記ポリビニルアルコー
ル系重合体Bとを同一浴で溶媒Cと水Dとを用い高温高
圧下で溶解混合して作成した溶液を紡糸液とし,これを
自生圧下で又は加圧下で圧力降下室を有する紡糸孔を通
して大気中に紡出し,紡出直後に溶媒を瞬間的に気化さ
せて網状構造の繊維を形成する。溶液を作成するに際し
ては,常温では前記重合体A及びBに対して非溶媒であ
るが,高温下では良溶媒であるような溶媒Cと水Dとを
用いる。そして,この溶媒Cとしては,例えばベンゼ
ン,トルエン等の芳香族炭化水素,ブタン,ぺンタン,
ヘキサン,ヘプタン,オクタン又はこれらの異性体や同
族体等の脂肪族炭化水素,シクロヘキサン等の脂環族炭
化水素,塩化メチレン,四塩化炭素,クロロホルム,
1,1−ジクロル−2,2ジフルオロエタン,1,2−
ジクロル−1,1ジフルオロエタン,塩化メチル,塩化
エチル,フルオロカーボン等のハロゲン化炭化水素,ア
ルコール,エステル,エーテル,ケトン,ニトリル,ア
ミド,二酸化硫黄,二硫化炭素,ニトロメタン等の不飽
和炭化水素,あるいは上述した溶媒の混合物を用いるこ
とができる。近年,地球環境の保護が注目されており,
この観点から特にオゾン層を破壊する溶媒は避けること
が好ましく,したがって溶媒Cとして塩化メチレン,
1,1−ジクロル−2,2ジフルオロエタン,1,2−
ジクロル−1,1ジフルオロエタンを用いると,従来の
フロンを溶媒として用いる場合にみられたような地球環
境を害するということがなくて好ましい。本発明の不織
布を製造するに際しては,前記溶媒Cと共に水Dを用い
るが,この水Dは前記ポリビニルアルコール系重合体B
を溶解するとともに紡糸液中での分散剤としての機能を
有する。なお,この水Dとしては,いわゆる純水を用い
るのがよい。
In the manufacturing method of the present invention, first, reticulated fibers are formed by the so-called flash spinning method. That is,
A solution prepared by dissolving and mixing the polyethylene polymer A and the polyvinyl alcohol polymer B in the same bath with the solvent C and water D under high temperature and high pressure was used as a spinning solution, which was added under autogenous pressure or under autogenous pressure. Under the pressure, it is spun into the atmosphere through a spinning hole having a pressure drop chamber, and immediately after spinning, the solvent is instantaneously vaporized to form a reticulated fiber. When a solution is prepared, solvent C and water D are used which are non-solvents for the polymers A and B at room temperature but are good solvents at high temperature. Examples of the solvent C include aromatic hydrocarbons such as benzene and toluene, butane, pentane,
Hexane, heptane, octane or aliphatic hydrocarbons such as isomers or homologs thereof, alicyclic hydrocarbons such as cyclohexane, methylene chloride, carbon tetrachloride, chloroform,
1,1-dichloro-2,2 difluoroethane, 1,2-
Halogenated hydrocarbons such as dichloro-1,1 difluoroethane, methyl chloride, ethyl chloride and fluorocarbon, alcohols, esters, ethers, ketones, nitriles, amides, sulfur dioxide, carbon disulfide, unsaturated hydrocarbons such as nitromethane, or the above Mixtures of the solvents mentioned can be used. In recent years, attention has been paid to the protection of the global environment,
From this point of view, it is particularly preferable to avoid a solvent that destroys the ozone layer, and therefore methylene chloride as the solvent C,
1,1-dichloro-2,2 difluoroethane, 1,2-
The use of dichloro-1,1 difluoroethane is preferable because it does not harm the global environment as seen when conventional freon is used as a solvent. When the nonwoven fabric of the present invention is produced, water D is used together with the solvent C. The water D is the polyvinyl alcohol polymer B.
And has a function as a dispersant in the spinning solution. As the water D, so-called pure water is preferably used.

【0008】本発明の製造方法では,溶液中の前記ポリ
エチレン系重合体Aと前記ポリビニルアルコール系重合
体Bとが前記式(1)を満足することが好ましい。この
溶液において,ポリビニルアルコール系重合体Bの存在
比〔B×100/(A+B)〕が1未満であると,網状
繊維自体の吸湿性や印刷性が低下するため好ましくな
い。一方,この存在比が25を超えると,繊維の粘着性
や接着性が増大し,しかも紡出された繊維はそのフイブ
リルがその側面で相互に接合して良好に開繊しないた
め,得られた不織布の地合いが著しく低下し,特に10
0g/m2 以下の低目付けの場合にその品位が大幅に低
下するため好ましくない。したがって,本発明では,こ
の存在比を1〜25とし,好ましくは2〜20,特に好
ましくは3〜10とする。
In the production method of the present invention, it is preferable that the polyethylene polymer A and the polyvinyl alcohol polymer B in the solution satisfy the formula (1). If the abundance ratio [B × 100 / (A + B)] of the polyvinyl alcohol-based polymer B in this solution is less than 1, the hygroscopicity and printability of the reticulated fibers themselves are reduced, which is not preferable. On the other hand, when the abundance ratio exceeds 25, the tackiness and adhesiveness of the fibers are increased, and the spun fibers are obtained because the fibrils are bonded to each other at their side faces and the fibers are not well opened. The texture of the non-woven fabric is significantly reduced, especially 10
In the case of a low basis weight of 0 g / m 2 or less, the quality is significantly lowered, which is not preferable. Therefore, in the present invention, the abundance ratio is set to 1 to 25, preferably 2 to 20, and particularly preferably 3 to 10.

【0009】本発明の製造方法では,フラツシユ紡糸す
るに際しての紡出性と得られた網状繊維の特性を勘案す
ると,紡糸液として前記ポリエチレン系重合体A,前記
ポリビニルアルコール系重合体B,溶媒C及び水Dがそ
れぞれ前記式(2)〜(4)を満足する溶液を用いるこ
とが好ましい。この紡糸液において,紡糸液中の重合体
〔A+B〕の濃度が5重量%未満であると,フラツシユ
紡出直後に重合体と溶媒とが相分離するに際して,重合
体の系に占める領域が少なくかつ点在するため紡出され
たフイブリルが連続した構造を形成せず,しかも強度が
向上しないため好ましくない。一方,重合体〔A+B〕
の濃度が25重量%を超えると,重合体〔A+B〕の濃
度が高過ぎて溶解が不均一となるため極細のフイブリル
を得ることができず,また,紡出された繊維はそのフイ
ブリルがその側面で相互に接合し,かつ内部に空洞を有
する中空構造を形成することになり,しかもその構造に
起因して強度が向上しないため好ましくない。また,紡
糸液中の溶媒の濃度が40重量%未満であると,重合体
を溶解して得た溶液の溶液粘度が高過ぎて溶解が不均一
となるため極細のフイブリルを得ることができず,しか
も紡出された繊維は中空構造を形成し,一方,溶媒の濃
度が74重量%を超えると,フイブリルが連続した構造
を形成せず,いずれも好ましくない。さらに,〔B(重
量%)+D(重量%)〕中の重合体Bの分率(%)が5
%未満であると,紡出された繊維中における重合体Bの
含有率が少なくなるため繊維自体の吸湿性が不十分とな
り,一方,〔B(重量%)+D(重量%)〕中の重合体
Bの分率(%)が20%を超えると,重合体Bがゲル化
し粘度が高くなり過ぎるため紡出することが困難とな
り,いずれも好ましくない。
In the production method of the present invention, considering the spinnability during flash spinning and the characteristics of the obtained reticulated fiber, the polyethylene polymer A, the polyvinyl alcohol polymer B and the solvent C are used as the spinning solution. It is preferable to use a solution in which the water and the water D satisfy the above formulas (2) to (4), respectively. In this spinning solution, when the concentration of the polymer [A + B] in the spinning solution is less than 5% by weight, the area occupied by the polymer in the system is small when the polymer and the solvent are phase-separated immediately after flash spinning. Moreover, the spun fibers do not form a continuous structure because they are scattered, and the strength is not improved, which is not preferable. On the other hand, polymer [A + B]
When the concentration of the polymer exceeds 25% by weight, the concentration of the polymer [A + B] becomes too high and the dissolution becomes non-uniform, so that it is not possible to obtain ultrafine fibrils, and the spun fiber is This results in the formation of a hollow structure having side surfaces bonded to each other and having a cavity inside, and the strength is not improved due to the structure, which is not preferable. Further, if the concentration of the solvent in the spinning solution is less than 40% by weight, the solution viscosity of the solution obtained by dissolving the polymer is too high and the dissolution becomes nonuniform, so that it is not possible to obtain ultrafine fibrils. Moreover, the spun fibers form a hollow structure. On the other hand, when the concentration of the solvent exceeds 74% by weight, a continuous structure of fibrils does not form, which is not preferable. Further, the fraction (%) of the polymer B in [B (wt%) + D (wt%)] is 5
If it is less than%, the content of the polymer B in the spun fiber becomes small and the hygroscopicity of the fiber itself becomes insufficient. On the other hand, the weight of [B (wt%) + D (wt%)] If the fraction (%) of the polymer B exceeds 20%, the polymer B gels and the viscosity becomes too high, making spinning difficult, which is not preferable.

【0010】本発明の製造方法では,紡糸液を作成する
に際して,前記全重合体〔A+B〕を溶質とし,これら
を前記溶媒Cと水Dとともに溶解装置に充填し昇温・混
練しながら溶液を作成し,得られた溶液を紡糸液として
用いる。溶解装置としては,従来から最も広範に用いら
れているオートクレーブや,例えばエクストルーダとこ
れに連続して配設された混練装置とからなる連続溶解装
置等を用いることができる。溶解装置内でこの紡糸液を
昇温・混練を行うに際しては,その純度が99重量%以
上の酸素を含有しない窒素あるいは二酸化炭素といった
不活性気体による加圧下で行うと,紡糸圧力をなお一層
高めることができて好ましい。窒素あるいは二酸化炭素
の気体はいわゆる不活性気体であって,紡糸液中に殆ど
溶解せず重合体に対して悪影響を及ぼさないため,紡糸
液に対して実質的な圧力を印加することができる。ま
た,この不活性気体の注入を溶解装置内の紡糸液の昇温
以前から行うと,重合体の劣化防止や重合体の溶解性促
進,フイブリルの極細化が可能となり,一層好ましい。
According to the production method of the present invention, when a spinning solution is prepared, all the polymers [A + B] are used as solutes, and these solutions are charged together with the solvent C and water D in a dissolution apparatus and the solution is heated and kneaded. The prepared solution is used as a spinning solution. As the melting device, an autoclave which has been used most widely in the past, or a continuous melting device including, for example, an extruder and a kneading device arranged continuously with the extruder can be used. When the temperature of the spinning solution is increased and kneaded in the dissolving device, the spinning pressure is further increased by pressurizing with an inert gas such as nitrogen or carbon dioxide having a purity of 99% by weight or more and not containing oxygen. It is possible and preferable. The gas of nitrogen or carbon dioxide is a so-called inert gas, which hardly dissolves in the spinning solution and does not adversely affect the polymer, so that a substantial pressure can be applied to the spinning solution. Further, if the inert gas is injected before the temperature of the spinning solution in the dissolution apparatus is raised, it is possible to prevent the deterioration of the polymer, promote the solubility of the polymer, and make the fibrils extremely fine.

【0011】溶解装置内で前記全重合体〔A+B〕を溶
媒Cと水Dに溶解するに際しての溶解時間と溶解温度
は,重合体の粘度すなわち重合度に依存し,一概に特定
することは困難である。要するに,全重合体〔A+B〕
が溶媒に十分に溶解しかつ紡糸液をフラツシユ紡糸して
極細のフイブリルが集合し三次元的に網状に広がった構
造を有する繊維を得ることができるような時間と温度で
あれば特に限定されるものではないのであるが,敢えて
特定すれば,時間を45分以上90分以下,温度を16
0℃以上200℃以下とするのが好ましい。この溶解
は,低温溶解の場合には時間を長くし,高温溶解の場合
には時間を短縮する。溶解に際しての時間が45分未満
でかつ温度が160℃未満であると,全重合体〔A+
B〕の溶解が不十分となって均一なフイブリルからなる
繊維を得ることが困難となり,一方,時間が90分を超
えかつ温度が200℃を超えると,紡糸液中の重合体B
の着色や熱分解が生じて繊維の強度が向上せず,仮に強
度は保持していても繊維に着色が生じたりし,いずれも
好ましくない。
The dissolution time and the dissolution temperature for dissolving all the polymers [A + B] in the solvent C and water D in the dissolution apparatus depend on the viscosity of the polymer, that is, the degree of polymerization, and it is difficult to unconditionally specify. Is. In short, all polymers [A + B]
Is particularly limited as long as it is sufficiently dissolved in the solvent and the spinning solution is flash-spun to obtain fibers having a structure in which ultrafine fibrils are aggregated and three-dimensionally reticulately spread. Although it is not a thing, if it is intentionally specified, the time is 45 minutes or more and 90 minutes or less, and the temperature is 16 minutes.
The temperature is preferably 0 ° C. or higher and 200 ° C. or lower. This melting takes longer for low temperature melting and shorter for high temperature melting. When the time for dissolution is less than 45 minutes and the temperature is less than 160 ° C, all the polymers [A +
B] becomes insufficiently dissolved, and it becomes difficult to obtain fibers composed of uniform fibrils. On the other hand, when the time exceeds 90 minutes and the temperature exceeds 200 ° C., the polymer B in the spinning solution is
However, the strength of the fiber is not improved due to the coloring and thermal decomposition of the fiber, and even if the strength is maintained, the fiber is colored, which is not preferable.

【0012】作成した紡糸液をフラツシユ紡糸するに際
しての圧力は,全重合体〔A+B〕の濃度と溶媒量と水
量そして不活性気体の注入量等により左右されるため一
概に特定されないが,通常,40kg/cm2 以上16
0kg/cm2 以下とするのが好ましい。繊維の強度は
重合体の分子鎖自体が十分に延伸・配向されることによ
り発現されるのであり,フラツシユ紡糸法すなわち前記
紡糸液を圧力降下室を有する紡糸孔を通して紡出し,紡
出直後に溶媒を瞬間的に気化させて網状の繊維構造を形
成する方法においては,この延伸・配向を紡出直後の瞬
間的な溶媒の気化に伴う爆発力によって行う。この爆発
力とは,溶媒が瞬間的に気化する際の気化力であり,通
常,0.1秒以下の時間で溶媒が一気に気化するときの
力を意味する。したがって,この紡糸圧力は40kg/
cm2 以上とするのが好ましく,紡糸圧力が40kg/
cm2 未満であると,紡糸液を用いてフラツシユ紡糸す
るに際しての爆発力が低下しフイブリルの配向が不十分
となってその強度が向上せず,また紡出状態が不均一な
ものとなって高度にフイブリル化した網状繊維を安定し
て得ることが困難となる。一方,この紡糸圧力は160
kg/cm2 以下とするのが好ましく,紡糸圧力が16
0kg/cm2 を超えると,紡糸液中の重合体の粘度が
低下してフイブリルの強度が向上せず,好ましくない。
The pressure for flash-spinning the prepared spinning solution depends on the concentration of the total polymer [A + B], the amount of solvent, the amount of water, the amount of inert gas injected, etc., but is not generally specified. 40 kg / cm 2 or more 16
It is preferably 0 kg / cm 2 or less. The strength of the fiber is expressed by sufficiently stretching and orienting the molecular chains of the polymer. Therefore, the flash spinning method, that is, the spinning solution is spun through a spinning hole having a pressure drop chamber, and immediately after spinning, the solvent is used. In the method of instantaneously evaporating the solvent to form a reticulated fiber structure, this stretching and orientation is performed by the explosive force that accompanies the instantaneous evaporation of the solvent immediately after spinning. The explosive force is the vaporizing force when the solvent is instantly vaporized, and usually means the force when the solvent vaporizes at once in 0.1 second or less. Therefore, this spinning pressure is 40 kg /
cm 2 or more is preferable, and the spinning pressure is 40 kg /
If it is less than cm 2 , the explosive force at the time of flash spinning using a spinning solution is reduced, the orientation of the fibrils is insufficient, the strength is not improved, and the spinning state becomes non-uniform. It becomes difficult to stably obtain highly fibrillated reticulated fibers. On the other hand, this spinning pressure is 160
It is preferable that the pressure is not more than kg / cm 2 and the spinning pressure is 16
When it exceeds 0 kg / cm 2 , the viscosity of the polymer in the spinning solution is lowered and the strength of the fibril is not improved, which is not preferable.

【0013】本発明の製造方法では,次に,紡出された
前記網状繊維群を紡糸孔先端部より25mm程度離れた
位置に約45°傾斜して配設された開繊板に衝突させ,
連続してスクリーンコンベア等の移動堆積手段上に堆積
させてウエブを作成し,引き続きこのウエブに例えば熱
と圧力とを印加することにより部分的熱圧着処理を施
し,部分的に網状繊維同士を熱接合させる。ウエブに部
分的熱圧着処理を施すに際しては,熱圧着処理装置とし
て例えば表面に突起を有しかつ加熱されたエンボスロー
ルと表面平滑でかつ加熱された金属ロールとの間にウエ
ブを通すエンボシング法,あるいは超音波融着装置を用
いる方法を採用することができるが,前者の方法による
のが生産性の点で好ましい。エンボスロールの突起部形
態すなわち圧着点の形態は特に限定されるものではな
く,例えば丸型,楕円型,菱型,三角型,T型,−型,
井型あるいは格子型等のいかなる形態であってもよい。
この熱エンボスロールを用いて前記ウエブに部分的熱圧
着処理を施すに際しては,ロール温度T(℃)と線圧P
(kg/cm)とがそれぞれ前記式(5)及び(6)を
満足する条件で行うのが好ましい。前記式(5)におけ
る重合体の融点(℃)とは,繊維を構成する重合体中で
最も低い融点を有する重合体の融点である。なお,ここ
でいう重合体の融点とは,パーキンエルマ社製示差走査
型熱量計DSC−2型を用い,昇温速度20℃/分で測
定した融解吸収熱曲線の極値を与える温度を意味する。
そして,ロール温度T(℃)が〔重合体の融点−40〕
未満であると,網状繊維間が十分に熱圧着されないため
不織布の強力が向上せず,一方,ロール温度T(℃)が
〔重合体の融点〕を超えると,網状繊維同士が広く融着
して極細のフイブリル繊維を得た意味が消滅したり,重
合体が熱劣化して不織布が着色したり,あるいは繊維が
溶融してローラに接着して不織布化することが困難とな
り,いずれも好ましくない。また,線圧P(kg/c
m)が0.5未満であると,網状繊維間が十分に熱圧着
されないため不織布の強力が向上せず,一方,線圧P
(kg/cm)が50を超えると,エンボスロールの熱
圧接点領域を超えて不織布が融解してフイルム化し,い
ずれも好ましくない。さらに,単位面積当たりの圧接点
面積の総計の比すなわち圧接面積率を,通常,百分率で
4%以上40%以下とするのが好ましい。圧接面積率が
4%未満であると,得られた不織布の強力が低下するの
みならず腰の低いものとなり,一方,圧接面積率が40
%を超えると,得られた不織布の剛性が高くなり過ぎる
ため,いずれも好ましくない。
In the manufacturing method of the present invention, next, the spun reticulated fiber group is made to collide with an opening plate which is inclined by about 45 ° at a position about 25 mm away from the tip of the spinning hole,
A web is prepared by continuously depositing it on a moving and depositing means such as a screen conveyor, and then a partial thermocompression treatment is performed by applying heat and pressure to this web to partially heat the reticulated fibers partially. Join. When the web is subjected to the partial thermocompression bonding treatment, for example, an embossing method in which a web is passed between a heated embossing roll having protrusions on the surface and a heated metal roll having a smooth surface, Alternatively, a method using an ultrasonic fusing device can be adopted, but the former method is preferable in terms of productivity. The shape of the protrusions of the embossing roll, that is, the shape of the crimping point is not particularly limited, and examples thereof include a round shape, an elliptical shape, a rhombus shape, a triangular shape, a T shape, a − shape,
Any form such as a well type or a lattice type may be used.
When the hot embossing roll is used to partially thermocompress the web, the roll temperature T (° C.) and the linear pressure P are applied.
It is preferable to carry out under the conditions that (kg / cm) and the above formulas (5) and (6) are satisfied. The melting point (° C.) of the polymer in the above formula (5) is the melting point of the polymer having the lowest melting point among the polymers constituting the fiber. The term "melting point of the polymer" as used herein means a temperature which gives an extreme value of a melting absorption heat curve measured by using a differential scanning calorimeter DSC-2 type manufactured by Perkin Elma Co. at a temperature rising rate of 20 ° C / min. To do.
The roll temperature T (° C) is [melting point of polymer -40].
If it is less than 1, the strength of the non-woven fabric is not improved because the space between the reticulated fibers is not sufficiently thermocompressed. On the other hand, if the roll temperature T (° C) exceeds the [melting point of the polymer], the reticulated fibers are widely fused. The meaning of obtaining ultrafine fibril fibers disappears, the polymer is thermally deteriorated to color the nonwoven fabric, or it becomes difficult to melt the fibers and bond them to the roller to make them into a nonwoven fabric, which is not preferable. . Also, the linear pressure P (kg / c
When m) is less than 0.5, the strength of the non-woven fabric is not improved because the interwoven fibers are not sufficiently thermocompression bonded, while the linear pressure P
When (kg / cm) exceeds 50, the non-woven fabric is melted into a film beyond the hot pressing contact region of the embossing roll, which is not preferable. Further, it is preferable that the total ratio of the pressure contact area per unit area, that is, the pressure contact area ratio is usually 4% or more and 40% or less in percentage. When the pressure contact area ratio is less than 4%, not only the strength of the obtained non-woven fabric is lowered but also the rigidity is low, while the pressure contact area ratio is 40%.
%, The rigidity of the obtained nonwoven fabric becomes too high, which is not preferable.

【0014】本発明の製造方法により得られる不織布
は,前記ポリエチレン系重合体Aの中に前記ポリビニル
アルコール系重合体Bが微細に分散されてなり,0.1
〜10μm相当径でかつ比表面積が少なくとも10m2
/gのフイブリルが連続しながら集合し,三次元的な網
状構造を呈するごとく網状に広がった構造を有する網状
繊維から構成され,かつ前記網状繊維が全体にわたって
熱接着されているものである。なお,ここでいう微細に
分散されてなるとは,ポリビニルアルコール系重合体B
が直径0.0001〜0.1μm程度の微粒子状態ある
いはフイブリル状態で繊維中にランダムに散在している
ことを意味する。このポリビニルアルコール系重合体B
の散在状態は,例えば,繊維を四酸化オスミウムで電子
染色し,次いでエポキシ樹脂で包理し,トリミングして
面出しを行い,包理ブロツクのまま四酸化ルテニウムで
染色し,その染色固定後の繊維を超薄型切片に切り出
し,透過型電子顕微鏡を用い6万倍程度の拡大率で観察
することにより知ることができる。また,ここでいう網
状繊維における比表面積(m2 /g)とは,BET窒素
吸着法によって測定されるもので,試料繊維1g当りの
窒素の単分子容量すなわち試料繊維の全表面が単分子層
で被覆されたときの吸着窒素量をいう。この不織布は,
前記ポリエチレン系重合体Aの中に前記ポリビニルアル
コール系重合体Bが前述したように極めて微細な微粒子
状態あるいはフイブリル状態でランダムに散在している
前記網状繊維から構成されるため,ほぼ永久的な吸湿性
を具備することになる。しかも,この不織布では,網状
繊維における比表面積が少なくとも10m2 /gと繊維
の表面積が大きく,すなわち網状繊維の網状化が十分に
進行しており,不織布の地合いが向上する。また,前記
網状繊維が部分的に熱圧着されているため強力が高く,
しかも柔軟性に富み,例えば従来のパルプを原料とした
紙より一層柔軟でかつ耐久性も優れるものとなる。
The non-woven fabric obtained by the production method of the present invention is obtained by finely dispersing the polyvinyl alcohol polymer B in the polyethylene polymer A.
-10 μm equivalent diameter and specific surface area of at least 10 m 2
/ G of fibrils are continuously aggregated, and are composed of reticulated fibers having a three-dimensional reticulated structure and spread in a reticulated structure, and the reticulated fibers are heat-bonded throughout. The term “finely dispersed” as used herein means that the polyvinyl alcohol-based polymer B
Mean that they are randomly dispersed in the fibers in the form of fine particles or fibrils having a diameter of about 0.0001 to 0.1 μm. This polyvinyl alcohol polymer B
As for the scattered state of, for example, the fiber is electron-stained with osmium tetroxide, then embedded with epoxy resin, trimmed and surfaced, stained with ruthenium tetroxide in the embedding block, and then stained and fixed. It can be known by cutting out the fiber into an ultrathin section and observing it with a transmission electron microscope at a magnification of about 60,000 times. The specific surface area (m 2 / g) of the reticulated fiber as used herein is measured by the BET nitrogen adsorption method, and the monomolecular volume of nitrogen per 1 g of sample fiber, that is, the entire surface of the sample fiber is a monolayer. The amount of adsorbed nitrogen when coated with. This non-woven fabric is
Since the polyvinyl alcohol-based polymer B is composed of the reticulated fibers randomly dispersed in the extremely fine particle state or fibril state in the polyethylene-based polymer A as described above, the moisture absorption is almost permanent. It will be equipped with nature. Moreover, in this non-woven fabric, the specific surface area of the reticulated fibers is at least 10 m 2 / g and the surface area of the fibers is large, that is, the reticulated fibers are sufficiently reticulated and the texture of the non-woven fabric is improved. In addition, since the reticulated fibers are partially thermocompressed, the strength is high,
Moreover, it is highly flexible, for example, more flexible and more durable than conventional pulp-based paper.

【0015】[0015]

【実施例】次に,実施例に基づいて本発明を具体的に説
明する。なお,実施例における各種特性の測定及び評価
は,次の方法により実施した。 重合体の融点:パーキンエルマ社製示差走査型熱量計D
SC−2型を用い,昇温速度20℃/分で測定した融解
吸収熱曲線の極値を与える温度を融点とした。 メルトインデツクス(g/10分):ASTM D 1
238(E) に記載の方法により測定した。 不織布の厚み(mm):試料長が10cmで試料幅が1
0cmの試料5点を準備し,大栄科学精機制作所製厚さ
測定器を用い,各試料毎に4.5g/cm2 の荷重を印
加し,10秒間静置した後,厚さを測定し,得られた値
の平均値を不織布の厚み(mm)とした。 不織布のKGSM引張強力(kg/5cm):JIS
L−1090に記載のストリツプ法にしたがい,試料長
が10cmで試料幅が5cmの試料10点につき引張速
度10cm/分で測定し,得られた引張強力の平均値を
目付け100g/m2 当たりに換算し,不織布のKGS
M引張強力(kg/5cm)とした。 不織布の引裂強力(kg):JIS K−7311に記
載の方法にしたがい測定した。 不織布の引張伸度(%):JIS L−1090に記載
のストリツプ法にしたがい,前記試料10点につき引張
速度10cm/分で測定し,得られた引張伸度の平均値
を不織布の引張伸度(%)とした。 不織布構成繊維の比表面積(m2 /g):日本ベル株式
会社製窒素吸着装置BELSORP28型を用い,BE
T窒素吸着法によって不織布構成繊維の比表面積(m2
/g)を求めた。 不織布の吸湿率(%):試料5点を準備し,この試料に
熱風乾燥機を用いて処理温度80℃かつ処理時間24時
間の条件で乾燥処理を施し,デシケータ内で冷却した
後,絶乾重量W1 (g)を測定した。,次いで,この試
料を温度20℃かつ湿度65%の恒温恒湿槽内に放置
し,経時の質量変化が飽和値に到達したときの重量W2
(g)を測定し,得られた重量値から下記式(7)によ
り不織布の吸湿率(%)を求めた。 不織布の吸湿率(%)=〔(W2 /W1 )−1〕×100 (7)
EXAMPLES Next, the present invention will be specifically described based on Examples. The measurement and evaluation of various characteristics in the examples were carried out by the following methods. Melting point of polymer: Differential scanning calorimeter D manufactured by Perkin Elmer
The melting point was defined as the temperature at which the exothermic value of the melting and absorption heat curve measured using the SC-2 type at a temperature rising rate of 20 ° C./min. Melt index (g / 10 minutes): ASTM D 1
It was measured by the method described in 238 (E). Nonwoven fabric thickness (mm): sample length 10 cm, sample width 1
5 samples of 0 cm were prepared, and a load of 4.5 g / cm 2 was applied to each sample using a thickness measuring instrument manufactured by Daiei Kagaku Seiki Seisakusho. After standing for 10 seconds, the thickness was measured. The average value of the obtained values was used as the thickness (mm) of the nonwoven fabric. Nonwoven fabric KGSM tensile strength (kg / 5cm): JIS
According to the strip method described in L-1090, 10 points with a sample length of 10 cm and a sample width of 5 cm were measured at a tensile speed of 10 cm / min, and the average value of the obtained tensile strength was measured per 100 g / m 2 of basis weight. Converted, non-woven KGS
M tensile strength (kg / 5 cm). Tear strength (kg) of non-woven fabric: Measured according to the method described in JIS K-7331. Tensile elongation (%) of the non-woven fabric: According to the strip method described in JIS L-1090, ten samples were measured at a tensile speed of 10 cm / min, and the average value of the obtained tensile elongations was measured. (%). Specific surface area of non-woven fabric fibers (m 2 / g): BE using a nitrogen adsorption device BELSORP28 manufactured by Nippon Bell Co., Ltd.
Specific surface area (m 2
/ G) was determined. Moisture absorption rate (%) of non-woven fabric: 5 samples were prepared, and this sample was dried using a hot air dryer at a treatment temperature of 80 ° C and a treatment time of 24 hours, cooled in a desiccator, and then dried completely. The weight W 1 (g) was measured. Then, this sample was allowed to stand in a thermo-hygrostat at a temperature of 20 ° C. and a humidity of 65%, and the weight W 2 when the change in mass with time reached a saturation value
(G) was measured, and the moisture absorption rate (%) of the nonwoven fabric was determined from the obtained weight value by the following formula (7). Moisture absorption nonwoven (%) = [(W 2 / W 1) -1] × 100 (7)

【0016】実施例1〜4及び比較例1 融点が132℃でかつメルトインデツクスが0.8g/
10分の高密度ポリエチレン重合体Aと,平均重合度が
1700でケン化度が98.5モル%のポリビニルアル
コール重合体Bの10重量%水溶液と,ドライアイスと
をオートクレーブに充填・閉鎖し,次いで,塩化メチレ
ンCと純水Dとをオートクレーブに注入し,この溶液を
適度な速度で60分間攪拌しながら加熱した。この溶液
は,全重合体〔A+B〕の濃度が15重量%,ポリエチ
レン重合体A/ポリビニルアルコール重合体Bの重量比
(A/B)が表1に示したように混合され,塩化メチレ
ンCの濃度が63重量%,純水Dの濃度が22重量%で
ある。引き続き,オートクレーブの内温が170℃で内
圧が100kg/cm2 Gに到達した後,この内圧すな
わち紡糸圧力100kg/cm2 Gで直ちにオートクレ
ーブのバルブを開放して圧力降下室を有する孔径0.7
5mmで孔長/孔径の比が1の紡出孔より紡糸液を大気
中に吐出して前記ポリエチレン重合体Aとポリビニルア
ルコール重合体Bとからなる網状繊維を紡出し,紡出繊
維群を紡出孔より25mm離れた位置に45°傾斜して
配設された開繊板に衝突させ,連続して移動式スクリー
ンコンベア上に堆積させてウエブを作成した。次いで,
得られたウエブに,圧接面積率が17%の熱エンボスロ
ールと加熱されかつ表面平滑な金属ロールとを用い,表
面温度が125℃でかつ線圧が25kg/cmの条件で
部分的熱圧着処理を施し,目付けが約50g/m2 の網
状繊維不織布を得た。重合体条件と得られた網状繊維不
織布の特性を表1に示す。なお,表1において,PEは
ポリエチレン重合体,PVAはポリビニルアルコール重
合体,MIXはメルトインデツクス,MDは縦方向,C
Dは横方向を示す。
Examples 1 to 4 and Comparative Example 1 Melting point is 132 ° C. and melt index is 0.8 g /
The autoclave was filled and closed with 10 minutes of a high-density polyethylene polymer A, a 10 wt% aqueous solution of a polyvinyl alcohol polymer B having an average degree of polymerization of 1700 and a degree of saponification of 98.5 mol%, and dry ice. Then, methylene chloride C and pure water D were injected into the autoclave, and this solution was heated at an appropriate speed for 60 minutes while stirring. This solution had a total polymer [A + B] concentration of 15% by weight, a polyethylene polymer A / polyvinyl alcohol polymer B weight ratio (A / B) was mixed as shown in Table 1, and methylene chloride C was added. The concentration is 63% by weight, and the concentration of pure water D is 22% by weight. Subsequently, after the internal pressure at 170 ° C. internal temperature of the autoclave reaches 100 kg / cm 2 G, pore size has a pressure drop chamber internal pressure that is immediately opened autoclave valve at a spinning pressure of 100kg / cm 2 G 0.7
The spinning solution was discharged into the atmosphere through a spinning hole having a hole length / pore diameter ratio of 5 and a ratio of pore length / pore diameter of 1 to spun out a reticulated fiber composed of the polyethylene polymer A and the polyvinyl alcohol polymer B, and spun a spun fiber group. A web was prepared by colliding with a fiber-spreading plate arranged at an angle of 45 ° at a position 25 mm away from the exit hole and continuously accumulating on a movable screen conveyor. Then,
The obtained web is subjected to a partial thermocompression bonding treatment under the conditions of a surface temperature of 125 ° C. and a linear pressure of 25 kg / cm, using a hot embossing roll having a pressing area ratio of 17% and a metal roll having a heated and smooth surface. Then, a reticulated fiber nonwoven fabric having a basis weight of about 50 g / m 2 was obtained. Table 1 shows the polymer conditions and the properties of the obtained reticulated fiber nonwoven fabric. In Table 1, PE is a polyethylene polymer, PVA is a polyvinyl alcohol polymer, MIX is a melt index, MD is the longitudinal direction, and C is
D indicates the lateral direction.

【0017】[0017]

【表1】 [Table 1]

【0018】実施例1〜3では,表1から明らかなよう
に実用的な強力と高い繊維の比表面積とを有し,吸湿性
が優れ,しかも全く着色を有しない不織布を得ることが
できた。また,この不織布を四酸化オスミウムで電子染
色し,次いでエポキシ樹脂で包理しトリミングして面出
しを行い,包理ブロツクのまま四酸化ルテニウムで染色
し,その染色固定後の不織布を超薄型切片に切り出し,
透過型電子顕微鏡を用い6万倍程度の拡大率で構成繊維
の表面を電子顕微鏡で写真撮影しその表面形態を観察し
たところ,この繊維は,略径0.0001〜0.03μ
mのポリビニルアルコール重合体からなる微粒子がポリ
エチレン重合体の中にランダムに散在した構造を有する
ものであった。また,実施例4では,実用的な強力,高
い繊維の比表面積,そして優れた吸湿性を有する不織布
を得ることができたものの,この不織布は,ポリビニル
アルコール重合体の存在比が高く紡出された繊維はフイ
ブリルがその側面で相互に接合し均一に開繊しないた
め,地合いの低いものであった。これに対し,比較例1
では,表1から明らかなように実用的な強力を有し,フ
イブリルの形成状態が良好であるため比表面積の高い不
織布が得られたものの,この不織布は,ポリエチレン重
合体単独から形成されるため吸湿性を全く有しないもの
であった。
In Examples 1 to 3, as is apparent from Table 1, nonwoven fabrics having practical strength and high specific surface area of fibers, excellent hygroscopicity and no coloring at all could be obtained. . In addition, this non-woven fabric is electron-dyed with osmium tetroxide, then embedded in epoxy resin, trimmed and surfaced, dyed with ruthenium tetroxide in the embedding block, and the non-woven fabric after dyeing and fixing is ultra-thin. Cut into sections,
The surface of the constituent fibers was photographed with an electron microscope at a magnification of about 60,000 using a transmission electron microscope, and the surface morphology was observed.
The fine particles of the polyvinyl alcohol polymer of m had a structure in which they were randomly dispersed in the polyethylene polymer. In addition, in Example 4, although a nonwoven fabric having practical strength, high fiber specific surface area, and excellent hygroscopicity could be obtained, this nonwoven fabric was spun with a high abundance ratio of polyvinyl alcohol polymer. The fibers had low texture because the fibrils joined to each other on their sides and did not open uniformly. On the other hand, Comparative Example 1
Then, as is clear from Table 1, although a nonwoven fabric having a high specific surface area was obtained because it has practical strength and the fibril formation is good, this nonwoven fabric is formed from polyethylene polymer alone. It had no hygroscopicity.

【0019】実施例5〜13 実施例2で得られたウエブに,熱エンボスロールの温
度,線圧及び圧接面積率を表2に示したように変更した
以外は実施例2と同様にして部分的熱圧着処理を施し,
目付けが約50g/m2 の網状繊維不織布を得た。熱接
着処理条件と得られた網状繊維不織布の特性を表2に示
す。なお,表2において,MDは縦方向,CDは横方向
を示す。
Examples 5 to 13 Part of the web obtained in Example 2 was changed in the same manner as in Example 2 except that the temperature, the linear pressure and the pressure contact area ratio of the hot embossing roll were changed as shown in Table 2. Subjected to dynamic thermocompression treatment,
A reticulated fiber nonwoven fabric having a basis weight of about 50 g / m 2 was obtained. Table 2 shows the heat-bonding treatment conditions and the properties of the obtained reticulated fiber nonwoven fabric. In Table 2, MD indicates the vertical direction and CD indicates the horizontal direction.

【0020】[0020]

【表2】 [Table 2]

【0021】実施例5〜8と13では,表2から明らか
なように実用的な強力を有し,吸湿性が優れ,しかも全
く着色を有しない不織布を得ることができた。また,実
施例9では,熱エンボスロールの温度(℃)が〔ポリエ
チレン重合体の融点−40〕未満であるため強力がやや
低いものの,吸湿性が優れた不織布を得ることができ
た。さらに,実施例10では,熱エンボスロールの温度
(℃)が〔ポリエチレン重合体の融点〕を若干超えてい
るため表面がやや融解してフイルム化しているものの,
実施例11では,熱エンボスロールの線圧が高いため表
面がやや融解してフイルム化しているものの,いずれも
強力と吸湿性の優れた不織布を得ることができた。さら
に,実施例12では,熱エンボスロールの圧接面積率が
若干低いため表面にやや毛羽の発生が認められたもの
の,強力と吸湿性の優れた不織布を得ることができた。
In Examples 5 to 8 and 13, as is apparent from Table 2, nonwoven fabrics having practical strength, excellent hygroscopicity and no coloring at all could be obtained. Further, in Example 9, since the temperature (° C.) of the hot embossing roll was less than [melting point of polyethylene polymer −40], although the strength was slightly low, a nonwoven fabric excellent in hygroscopicity could be obtained. Further, in Example 10, although the temperature (° C.) of the hot embossing roll was slightly above the [melting point of the polyethylene polymer], the surface was slightly melted to form a film,
In Example 11, although the surface of the hot embossing roll was slightly melted to form a film due to the high linear pressure of the hot embossing roll, a nonwoven fabric having excellent strength and hygroscopicity could be obtained. Furthermore, in Example 12, although a slight fluff was observed on the surface because the press contact area ratio of the hot embossing roll was slightly low, a nonwoven fabric having excellent strength and hygroscopicity could be obtained.

【0022】[0022]

【発明の効果】本発明の網状繊維不織布の製造方法は,
ポリエチレン系重合体Aとポリビニルアルコール系重合
体Bとを同一浴で溶媒と水とを用い高温高圧下で溶解混
合して作成した溶液を紡糸液とし,これを自生圧下で又
は加圧下で圧力降下室を有する紡糸孔を通して大気中に
紡出し,紡出直後に溶媒を瞬間的に気化させて網状繊維
を形成し,引き続き網状繊維からウエブを形成した後,
前記ウエブに部分的熱圧着処理を施すものであり,この
方法によれば,強力が高く,柔軟性に富み,バクテリア
バリア性を有し,しかも吸湿性と印刷性が優れ,例えば
保温材,医療衛生分野での保護服,カーペツト等のイン
テリア用品,各種生活関連材用の素材として好適な網状
繊維不織布を効率良く製造することができる。
The method for producing a reticulated fiber nonwoven fabric according to the present invention comprises:
A solution prepared by dissolving and mixing the polyethylene-based polymer A and the polyvinyl alcohol-based polymer B in the same bath at a high temperature and a high pressure using a solvent and water is used as a spinning solution, and the solution is reduced under autogenous pressure or under pressure. After spinning into the atmosphere through a spinning hole with a chamber, the solvent is instantaneously vaporized immediately after spinning to form a reticulated fiber, and then a web is formed from the reticulated fiber,
According to this method, the web is subjected to a partial thermocompression bonding process. According to this method, the web has high strength, is highly flexible, has a bacterial barrier property, and has excellent hygroscopicity and printability. It is possible to efficiently manufacture a net-like non-woven fabric suitable as a material for protective clothing in the hygiene field, interior goods such as carpets, and various life-related materials.

【手続補正書】[Procedure amendment]

【提出日】平成6年5月13日[Submission date] May 13, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】[0015]

【実施例】次に,実施例に基づいて本発明を具体的に説
明する。なお,実施例における各種特性の測定及び評価
は,次の方法により実施した。 重合体の融点:パーキンエルマ社製示差走査型熱量計D
SC−2型を用い,昇温速度20℃/分で測定した融解
吸収熱曲線の極値を与える温度を融点とした。 メルトインデツクス(g/10分):ASTM D 1
238(E) に記載の方法により測定した。 不織布の厚み(mm):試料長が10cmで試料幅が1
0cmの試料5点を準備し,大栄科学精機制作所製厚さ
測定器を用い,各試料毎に4.5g/cm2 の荷重を印
加し,10秒間静置した後,厚さを測定し,得られた値
の平均値を不織布の厚み(mm)とした。 不織布のKGSM引張強力(kg/5cm):JIS
L−109に記載のストリツプ法にしたがい,試料長
が10cmで試料幅が5cmの試料10点につき引張速
度10cm/分で測定し,得られた引張強力の平均値を
目付け100g/m2 当たりに換算し,不織布のKGS
M引張強力(kg/5cm)とした。 不織布の引裂強力(kg):JIS L−1096に記
載のペンジユラム法にしたがい,エルメンドルフ型引裂
強さ試験機を用いて測定した。 不織布の引張伸度(%):JIS L−109に記載
のストリツプ法にしたがい,前記試料10点につき引張
速度10cm/分で測定し,得られた引張伸度の平均値
を不織布の引張伸度(%)とした。 不織布構成繊維の比表面積(m2 /g):日本ベル株式
会社製窒素吸着装置BELSORP28型を用い,BE
T窒素吸着法によって不織布構成繊維の比表面積(m2
/g)を求めた。 不織布の吸湿率(%):試料5点を準備し,この試料に
熱風乾燥機を用いて処理温度80℃かつ処理時間24時
間の条件で乾燥処理を施し,デシケータ内で冷却した
後,絶乾重量W1 (g)を測定した。,次いで,この試
料を温度20℃かつ湿度65%の恒温恒湿槽内に放置
し,経時の質量変化が飽和値に到達したときの重量W2
(g)を測定し,得られた重量値から下記式(7)によ
り不織布の吸湿率(%)を求めた。 不織布の吸湿率(%)=〔(W2 /W1 )−1〕×100 (7)
EXAMPLES Next, the present invention will be specifically described based on Examples. The measurement and evaluation of various characteristics in the examples were carried out by the following methods. Melting point of polymer: Differential scanning calorimeter D manufactured by Perkin Elmer
The melting point was defined as the temperature at which the exothermic value of the melting and absorption heat curve measured using the SC-2 type at a temperature rising rate of 20 ° C./min. Melt index (g / 10 minutes): ASTM D 1
It was measured by the method described in 238 (E). Nonwoven fabric thickness (mm): sample length 10 cm, sample width 1
5 samples of 0 cm were prepared, and a load of 4.5 g / cm 2 was applied to each sample using a thickness measuring instrument manufactured by Daiei Kagaku Seiki Seisakusho. After standing for 10 seconds, the thickness was measured. The average value of the obtained values was used as the thickness (mm) of the nonwoven fabric. Nonwoven fabric KGSM tensile strength (kg / 5cm): JIS
According strips method according to L-109 6, sample width at 10cm the sample length was measured at a pulling rate of 10cm / min per 10 sample 5 cm, weight per unit area of the average value of the strong tensile obtained 100 g / m 2 per Converted to, non-woven KGS
M tensile strength (kg / 5 cm). Tear strength (kg) of non-woven fabric: Elmendorf type tear according to the Penzirum method described in JIS L-1096
It measured using the strength tester . Tensile elongation of the nonwoven fabric (%): JIS accordance L-109 6 strips method described, the specimen-stretching was measured at a speed 10 cm / min per 10 points, resulting tensile pulling a mean value of elongation of the nonwoven fabric Shin The degree (%). Specific surface area of non-woven fabric fibers (m 2 / g): BE using a nitrogen adsorption device BELSORP28 manufactured by Nippon Bell Co., Ltd.
Specific surface area (m 2
/ G) was determined. Moisture absorption rate (%) of non-woven fabric: 5 samples were prepared, and this sample was dried using a hot air dryer at a treatment temperature of 80 ° C and a treatment time of 24 hours, cooled in a desiccator, and then dried completely. The weight W 1 (g) was measured. Then, this sample was allowed to stand in a thermo-hygrostat at a temperature of 20 ° C. and a humidity of 65%, and the weight W 2 when the change in mass with time reached a saturation value
(G) was measured, and the moisture absorption rate (%) of the nonwoven fabric was determined from the obtained weight value by the following formula (7). Moisture absorption nonwoven (%) = [(W 2 / W 1) -1] × 100 (7)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリエチレン系重合体Aとポリビニルア
ルコール系重合体Bとを同一浴で溶媒と水とを用い高温
高圧下で溶解混合して作成した溶液を紡糸液とし,これ
を自生圧下で又は加圧下で圧力降下室を有する紡糸孔を
通して大気中に紡出し,紡出直後に溶媒を瞬間的に気化
させて網状繊維を形成し,引き続き網状繊維からウエブ
を形成した後,前記ウエブに部分的熱圧着処理を施すこ
とを特徴とする網状繊維不織布の製造方法。
1. A solution prepared by dissolving and mixing a polyethylene-based polymer A and a polyvinyl alcohol-based polymer B in the same bath at high temperature and high pressure using a solvent and water as a spinning solution, which is prepared under autogenous pressure or After being spun into the atmosphere through a spinning hole having a pressure drop chamber under pressure, the solvent is instantaneously vaporized immediately after spinning to form a reticulated fiber, and then a web is formed from the reticulated fiber. A method for producing a reticulated fiber non-woven fabric, which comprises performing a thermocompression bonding treatment.
【請求項2】 ポリエチレン系重合体Aとポリビニルア
ルコール系重合体Bとが下記式(1)を満足する請求項
1記載の網状繊維不織布の製造方法。 1≦B(重量%)×100/〔A(重量%)+B(重量%)〕≦25 (1)
2. The method for producing a reticulated fiber nonwoven fabric according to claim 1, wherein the polyethylene polymer A and the polyvinyl alcohol polymer B satisfy the following formula (1). 1 ≦ B (wt%) × 100 / [A (wt%) + B (wt%)] ≦ 25 (1)
【請求項3】 ポリエチレン系重合体Aと,ポリビニル
アルコール系重合体Bと,溶媒Cと水Dとがそれぞれ下
記式(2)〜(4)を満足する溶液を紡糸液として用い
る請求項1又は2記載の網状繊維不織布の製造方法。 5≦A(重量%)+B(重量%)≦25 (2) 40≦C(重量%)≦74 (3) 5≦B(重量%)×100/〔B(重量%)+D(重量%)〕≦20 (4)
3. A solution in which the polyethylene-based polymer A, the polyvinyl alcohol-based polymer B, the solvent C and the water D respectively satisfy the following formulas (2) to (4) are used as a spinning solution. 2. The method for producing a reticulated fiber nonwoven fabric according to 2. 5 ≦ A (wt%) + B (wt%) ≦ 25 (2) 40 ≦ C (wt%) ≦ 74 (3) 5 ≦ B (wt%) × 100 / [B (wt%) + D (wt%) ] ≤ 20 (4)
【請求項4】 ウエブに部分的熱圧着処理を施すに際し
て熱エンボスロールを用い,かつロール温度T(℃)と
線圧P(kg/cm)とがそれぞれ下記式(5)及び
(6)を満足する条件で部分的熱圧着処理を施す請求項
1,2又は3記載の網状繊維不織布の製造方法。 〔重合体の融点−40〕≦T(℃)≦〔重合体の融点〕 (5) 0.5≦P(kg/cm)≦50 (6)
4. A hot embossing roll is used when the web is partially thermocompression-bonded, and the roll temperature T (° C.) and the linear pressure P (kg / cm) are expressed by the following equations (5) and (6), respectively. The method for producing a reticulated fiber non-woven fabric according to claim 1, 2 or 3, wherein the partial thermocompression treatment is performed under a condition satisfying the conditions. [Melting point of polymer −40] ≦ T (° C.) ≦ [melting point of polymer] (5) 0.5 ≦ P (kg / cm) ≦ 50 (6)
JP5096623A 1993-03-30 1993-03-30 Production of netlike fiber nonwoven fabric Pending JPH06287852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5096623A JPH06287852A (en) 1993-03-30 1993-03-30 Production of netlike fiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5096623A JPH06287852A (en) 1993-03-30 1993-03-30 Production of netlike fiber nonwoven fabric

Publications (1)

Publication Number Publication Date
JPH06287852A true JPH06287852A (en) 1994-10-11

Family

ID=14169972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5096623A Pending JPH06287852A (en) 1993-03-30 1993-03-30 Production of netlike fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JPH06287852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657701A (en) * 2022-03-28 2022-06-24 厦门当盛新材料有限公司 Microwave heat-seal flash spinning non-woven fabric process method, microwave heat-seal device and non-woven fabric preparation equipment
CN115874352A (en) * 2021-09-28 2023-03-31 江苏青昀新材料有限公司 Processing method of polyethylene non-woven paper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115874352A (en) * 2021-09-28 2023-03-31 江苏青昀新材料有限公司 Processing method of polyethylene non-woven paper
CN114657701A (en) * 2022-03-28 2022-06-24 厦门当盛新材料有限公司 Microwave heat-seal flash spinning non-woven fabric process method, microwave heat-seal device and non-woven fabric preparation equipment
WO2023185669A1 (en) * 2022-03-28 2023-10-05 厦门当盛新材料有限公司 Process method for microwave heat sealing of flashspun nonwoven fabric, microwave heat sealing apparatus, and nonwoven fabric preparation device

Similar Documents

Publication Publication Date Title
Tarus et al. Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats
AU2014279792B2 (en) Polyolefin film for use in packaging
CA2236324C (en) Low density microfiber nonwoven fabric
JP3876004B2 (en) Improved nonwoven material for particle barrier
US5512357A (en) Polypropylene flexifilamentary fiber containing 0.1 to 10 weight percent of an organic spreading agent and nonwoven fabric made therefrom
CZ2006470A3 (en) Polyethylene-based, soft nonwoven fabrics
CN105358107A (en) Absorbent article containing a nonwoven web formed from porous polyolefin fibers
JP3377813B2 (en) Thermoplastic compositions and nonwoven webs prepared therefrom
JP2008524462A (en) Flash spun web containing submicron filaments and method of forming the same
KR100937804B1 (en) Breathable laminate with a high abrasion resistance and method of manufacturing the same
US4482603A (en) Wholly aromatic polyamide fiber non-woven sheet and processes for producing the same
WO1994024347A1 (en) Fiber with network structure, nonwoven fabric constituted thereof, and process for producing the fiber and the fabric
Illangakoon et al. Tailoring the surface of polymeric nanofibres generated by pressurised gyration
JPH06287852A (en) Production of netlike fiber nonwoven fabric
EP3901346B1 (en) Spunbonded non-woven fabric, sanitary material, and method of manufacturing spunbonded non-woven fabric
JPH06287805A (en) Production of netty nonwoven fabric
JPH06287851A (en) Netlike fiber nonwoven fabric
Blanes et al. Influence of glyoxal in the physical characterization of PVA nanofibers
CA3228979A1 (en) Biodegradable nonwoven fabric and use of same
JPH06287850A (en) Netlike fiber nonwoven fabric
JPH09248883A (en) Antibacterial polypropylene film
WO2020170311A1 (en) Method for producing spun-bonded nonwoven fabric and spun-bonded nonwoven fabric
JPH11131354A (en) Nonwoven fabric, its production and production of base paper for heat-sensitive stencil printing plate
JPH07197368A (en) Netty fiber nonwoven fabric and its production
JPH06257011A (en) Polyolefinic grid fiber