JPH06287688A - Bearing steel excellent in heat treating productivity and delaying property in change of microstructure caused by repeated stress load - Google Patents

Bearing steel excellent in heat treating productivity and delaying property in change of microstructure caused by repeated stress load

Info

Publication number
JPH06287688A
JPH06287688A JP5095544A JP9554493A JPH06287688A JP H06287688 A JPH06287688 A JP H06287688A JP 5095544 A JP5095544 A JP 5095544A JP 9554493 A JP9554493 A JP 9554493A JP H06287688 A JPH06287688 A JP H06287688A
Authority
JP
Japan
Prior art keywords
steel
bearing
productivity
repeated stress
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5095544A
Other languages
Japanese (ja)
Other versions
JP3383345B2 (en
Inventor
Satoshi Yasumoto
聡 安本
Toshiyuki Hoshino
俊幸 星野
Akihiro Matsuzaki
明博 松崎
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP09554493A priority Critical patent/JP3383345B2/en
Publication of JPH06287688A publication Critical patent/JPH06287688A/en
Application granted granted Critical
Publication of JP3383345B2 publication Critical patent/JP3383345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce bearing steel high in heat treating productivity and small in the change of the microstructure casued by repeated stress loads under severe using conditions. CONSTITUTION:The bearing steel contg., by weight, 0.001 to 0.015% Sb for improving heat treating productivity and contg., particularly, >1.0 to 3.0% Ni and one or two kinds selected from >0.5 to 2.5% Si, 0.02 to 0.5% Zr, 0.02 to 0.5% Ta, 0.02 to 0.5% Hf, 0.05 to 1.5% Co and >0.012 to 0.050% N as B50 high load rolling fatigue life improving components for promoting the delay in the change of the microstructure caused by repeated stress loads is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼に関し、とくに熱処理時に起こる脱炭層の生成を抑制
する効果ならびに軸受使用環境の過酷化に伴って生ずる
特有の劣化, すなわち繰り返し応力負荷によって転動接
触面下に発生するミクロ組織変化(劣化)に対する遅延
特性とに優れた軸受鋼についての提案である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and particularly with the effect of suppressing the formation of a decarburized layer during heat treatment and the severer environment of bearing use. This is a proposal for a bearing steel that is excellent in the characteristic deterioration that occurs as a result, that is, the delay characteristics for the microstructural change (deterioration) that occurs under the rolling contact surface due to repeated stress loading.

【0002】[0002]

【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されている。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要な性質の1つ
であるが、この転動疲労寿命に与える要因としては、鋼
中非金属介在物の影響が最も大きいと考えられていた。
そのため、最近の研究の主流は、鋼中酸素量の低減を通
じて非金属介在物の量, 大きさを制御することによって
軸受寿命を向上させる方策がとられてきた。例えば、軸
受の転動疲労寿命の一層の向上を目指して開発されたも
のとしては、特開平1−306542号公報や特開平3−1268
39号公報などの提案があり、これらは、鋼中の酸化物系
非金属介在物の組成, 形状あるいは分布状態をコントロ
ールする技術である。しかしながら、非金属介在物の少
ない軸受鋼を製造するには、高価な溶製設備の設置ある
いは従来設備の大幅な改良が必要であり、経済的な負担
が大きいという問題があった。
2. Description of the Related Art Conventionally, high-carbon chromium bearing steel (JI
S: SUJ 2) is most often used. In general, bearing steel is one of the important properties that long rolling fatigue life is important, but it is considered that the influence of non-metallic inclusions in steel is the most significant factor affecting rolling fatigue life. Was there.
Therefore, the mainstream of recent research has been to take measures to improve the bearing life by controlling the amount and size of non-metallic inclusions by reducing the amount of oxygen in steel. For example, as those developed with the aim of further improving the rolling contact fatigue life of bearings, there are Japanese Patent Laid-Open Nos. 1-306542 and 3-1268.
There are proposals such as Japanese Patent No. 39, which are technologies for controlling the composition, shape, or distribution state of oxide-based nonmetallic inclusions in steel. However, in order to manufacture a bearing steel with a small amount of non-metallic inclusions, it is necessary to install expensive melting equipment or drastically improve conventional equipment, and there is a problem that the economical burden is large.

【0003】また、上記高炭素軸受鋼(JIS-SUJ 2)の特
性改善を図るためのもう1つの動きは、加工性、特に熱
処理時の脱炭層の生成を抑制することの研究である。一
般に、上記JIS-SUJ 2 に規定された軸受鋼は、0.95〜1.
10wt%のCを含むことから、非常に硬質であり、それ故
に、球状化焼なましを行って加工性を向上させた後に成
形加工し、その後焼入れ, 焼もどし処理を施すことによ
って、転がり軸受に必要な強度と靱性を得ていた。とこ
ろが、このような特性改善のための熱処理が何回もかさ
なると、素材表面には、Cと雰囲気ガスとの反応によっ
て、脱炭層と呼ばれる“低C濃度領域”が発生すること
が知られている。この脱炭層は、転がり軸受の硬さ低下
のみならず転動疲労寿命劣化の原因となることから、切
削または研削加工により除去するのが普通であった。そ
のために材料歩留り、さらには生産性の低下を余儀なく
されていたのである。これに対して従来、上記脱炭層の
生成を防止する手段として、熱処理時における炉内の雰
囲気ガス中のカーボンポテンシャルをコントロールする
方法や、特開平2−54717 号公報に開示されている, 球
状化焼なましの初期段階に浸炭処理を施す方法などが提
案されている。しかし、上記の各方法はいずれも、熱処
理あるいはその前処理時の雰囲気清浄によるものである
ことから、熱処理コストが嵩むのみならず、材料の組成
や熱処理時間等に応じた適切なガス組成の設定といった
煩雑な操作を必要とするところに問題があった。
Another move to improve the characteristics of the above-mentioned high carbon bearing steel (JIS-SUJ 2) is a study on workability, especially suppressing formation of a decarburized layer during heat treatment. In general, the bearing steel specified in JIS-SUJ 2 above is 0.95 to 1.
Since it contains 10 wt% of C, it is very hard. Therefore, rolling bearings can be obtained by performing spheroidizing annealing to improve workability, then forming, and then quenching and tempering. Had the necessary strength and toughness. However, it is known that when the heat treatment for improving the characteristics is repeated many times, a "low C concentration region" called a decarburized layer is generated on the surface of the material due to the reaction between C and the atmosphere gas. There is. This decarburized layer not only lowers the hardness of the rolling bearing but also causes the deterioration of rolling contact fatigue life, and therefore it is usually removed by cutting or grinding. For this reason, the material yield and the productivity have been unavoidably reduced. On the other hand, heretofore, as a means for preventing the formation of the decarburized layer, a method of controlling the carbon potential in the atmosphere gas in the furnace during the heat treatment and the spheroidizing method disclosed in JP-A-2-54717 have been disclosed. A method of carburizing at the initial stage of annealing has been proposed. However, since each of the above methods is performed by cleaning the atmosphere during the heat treatment or the pretreatment thereof, not only the heat treatment cost increases but also the setting of an appropriate gas composition according to the composition of the material, the heat treatment time, etc. There was a problem in that a complicated operation was required.

【0004】[0004]

【発明が解決しようとする課題】上述した従来技術につ
いて発明者らは最近、種々の研究を行った。その結果、
意外にも転動寿命を決めている要因としては、従来から
一般に論じられてきた上述した現象;すなわち、上述し
た“非金属介在物”の存在や熱処理時に生じる“脱炭
層”(低C濃度領域)の生成以外の要因があるというこ
とを突き止めた。というのは、従来技術の下で単に非金
属介在物や脱炭層を減少させても、軸受の転動疲労寿
命、特に、高負荷あるいは高温といった過酷な条件下で
の軸受寿命の向上に対しては大きな効果が得られないと
いうケースを多く経験したからである。このことから、
軸受寿命を律する他の要因の存在を確信したのである。
DISCLOSURE OF THE INVENTION The inventors have recently conducted various studies on the above-mentioned conventional technique. as a result,
Unexpectedly, the factors that determine the rolling life are the above-mentioned phenomena that have been generally discussed in the past; namely, the presence of the above-mentioned "non-metallic inclusions" and the "decarburization layer" (low C concentration region) that occurs during heat treatment. ). This is because even if the non-metallic inclusions and decarburized layer are simply reduced under the conventional technology, it is possible to improve the rolling contact fatigue life of the bearing, especially the improvement of the bearing life under severe conditions such as high load or high temperature. Because I experienced many cases where I could not get a big effect. From this,
He was convinced that there were other factors that govern bearing life.

【0005】そこで、本発明者らは、最近の軸受使用環
境を考慮した上での軸受寿命、とくに転がり軸受の剥離
の発生原因についての調査を行った。その結果、軸受使
用環境の激化に伴って、軸受の内・外輪と転動体と転動
体との接触転動時に発生する剪断応力により、転動接触
面の下層部分(表層部)に、図1(a) の写真に示すよう
な、帯状の白色生成物と棒状の析出物からなるミクロ組
織変化層が発生することが判った。そして、このミクロ
組織変化層は転動回数を増すにつれて次第に成長し、終
いには、図1(b)に示すような, このミクロ組織変化部か
ら疲労剥離が生じて軸受寿命につながることがわかっ
た。さらに、軸受使用環境の過酷化すなわち, 高面圧化
(小型化), 使用温度の上昇は、これらミクロ組織変化
が発生するまでの時間を縮め、著しい軸受寿命の低下を
招くことになるということを突き止めた。すなわち、使
用環境の過酷化に伴う軸受寿命というのは、従来技術の
ような、単に脱炭層や非金属介在物を制御するだけでは
不十分である。例えば、単に非金属介在物を低減させた
だけでは、上述した転動接触面下で発生するミクロ組織
変化が発生するまでの時間を遅延させることはできな
い。その結果として、軸受寿命の今まで以上の向上は図
り得ないということを知見したのである。
Therefore, the present inventors have investigated the bearing life in consideration of the recent bearing usage environment, in particular, the cause of separation of rolling bearings. As a result, due to the shearing stress generated at the time of contact rolling between the inner and outer races of the bearing, the rolling elements, and the rolling elements due to the intensifying environment in which the bearings are used, the lower layer portion (surface layer portion) of the rolling contact surface has As shown in the photograph of (a), it was found that a microstructure change layer composed of a white strip-shaped product and a rod-shaped precipitate was generated. This microstructure-changed layer gradually grows as the number of rolling increases, and finally, as shown in Fig. 1 (b), fatigue delamination occurs from this microstructure-changed part, which may lead to bearing life. all right. In addition, the harsh bearing operating environment, that is, higher surface pressure (miniaturization) and higher operating temperature, will shorten the time until these microstructural changes occur, resulting in a marked reduction in bearing life. I found out. That is, the life of the bearing due to the severer usage environment is not enough to control the decarburized layer and the non-metallic inclusions as in the prior art. For example, simply reducing the amount of non-metallic inclusions cannot delay the time until the above-described microstructure change occurring under the rolling contact surface occurs. As a result, they have found that the bearing life cannot be further improved.

【0006】そこで、本発明の目的は、過酷な使用条件
の下での軸受使用中に発生が予想されるミクロ組織変化
を遅延させて軸受寿命の著しい向上をもたらすと共に、
熱処理時の脱炭層の形成を抑えて熱処理生産性( 加工除
去量を減少させることによる効果)の向上が得られる軸
受鋼を提供することにある。
Therefore, an object of the present invention is to delay the microstructural change that is expected to occur during the use of the bearing under harsh service conditions and to significantly improve the bearing life.
It is an object of the present invention to provide a bearing steel that can suppress the formation of a decarburized layer during heat treatment and improve heat treatment productivity (the effect of reducing the amount of work removed).

【0007】[0007]

【課題を解決するための手段】さて、本発明者らは、上
述した知見に基づき軸受寿命として新たに“ミクロ組織
変化遅延特性”というものに着目し、これの向上を図る
には、当然そのための新たな合金設計(成分組成)が必
要であり、このことの実現なくして軸受のより一層の寿
命向上は図れないという認識に立ち、さらに、脱炭層の
形成を抑制することを併せ達成する種々の実験と検討と
を行った。その結果、意外にも、NiおよびSbを適正量複
合添加すれば、繰り返し応力負荷による転動接触面下に
生成する上述したミクロ組織変化を著しく遅延できると
同時に、熱処理時の脱炭層の発生抑制もできることを見
い出し、本発明軸受鋼を開発した。
Based on the above-mentioned findings, the inventors of the present invention pay attention to a new "microstructure change delay characteristic" as the bearing life, and to improve this, of course, It is necessary to design a new alloy (compositional composition), and it is not possible to further improve the life of the bearing without realizing this. Furthermore, various achievements are also made to suppress the formation of decarburized layer. Experiments and examinations were performed. As a result, surprisingly, if Ni and Sb are added in appropriate amounts in combination, the above-mentioned microstructural change generated under the rolling contact surface due to repeated stress loading can be significantly delayed, and at the same time the decarburization layer during heat treatment is suppressed The inventors have found that it is also possible to develop the bearing steel of the present invention.

【0008】すなわち、本発明軸受鋼は、以下の如き要
旨構成を有するものである。 (1) C: 0.5〜1.5 wt%, Ni:1.0 超〜3.0 wt%,Sb:
0.001 〜0.015 wt%, O:0.0020wt%以下を含有し、残
部がFe および不可避的不純物からなる熱処理生産性な
らびに繰り返し応力負荷によるミクロ組織変化の遅延特
性に優れた軸受鋼(第1発明)。 (2) C: 0.5〜1.5 wt%, Ni:1.0 超〜3.0 wt%,S
b:0.001 〜0.015 wt%, O:0.0020wt%以下を含有
し、さらにSi:0.05〜0.5 wt%, Mn:0.05〜2.0 wt
%,Cr:0.05〜2.5 wt%, Mo:0.05〜0.5 wt%,Cu:0.
05〜1.0 wt%, B:0.0005〜0.01wt% Al:0.005 〜0.07wt%及びN:0.0005〜0.012 wt%、の
うちから選ばれるいずれか1種または2種以上を含み、
残部がFeおよび不可避的不純物からなる、熱処理生産性
ならびに繰り返し応力負荷によるミクロ組織変化の遅延
特性に優れた軸受鋼(第2発明)。 (3) C: 0.5〜1.5 wt%, Ni:1.0 超〜3.0 wt%,S
b:0.001 〜0.015 wt%, O:0.0020wt%以下を含有
し、さらにSi:0.5 超〜2.5 wt%, Zr:0.02〜0.5 wt
%,Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%,Co:0.
05〜1.5 wt%及びN:0.012 超〜0.050 wt%のうちから
選ばれるいずれか1種または2種以上を含み、残部がFe
および不可避的不純物からなる、熱処理生産性ならびに
繰り返し応力負荷によるミクロ組織変化の遅延特性に優
れた軸受鋼(第3発明)。 (4) C: 0.5〜1.5 wt%, Ni:1.0 超〜3.0 wt%,S
b:0.001 〜0.015 wt%, O:0.0020wt%以下を含有
し、さらにSi:0.05〜0.5 wt%, Mn:0.05〜2.0 wt
%,Cr:0.05〜2.5 wt%, Mo:0.05〜0.5 wt%,Cu:0.
05〜1.0 wt%, B:0.0005〜0.01wt% Al:0.005 〜0.07wt%及びN:0.0005〜0.012 wt%、の
うちから選ばれるいずれか1種または2種以上を含み、
さらにまた、Si:0.5 超〜2.5 wt%, Zr:0.02〜0.5 wt
%,Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%,Co:0.
05〜1.5 wt%及びN:0.012 超〜0.050 wt%のうちから
選ばれるいずれか1種または2種以上を含み、残部がFe
および不可避的不純物からなる、熱処理生産性ならびに
繰り返し応力負荷によるミクロ組織変化の遅延特性に優
れた軸受鋼(第4発明)。
That is, the bearing steel of the present invention has the following essential constitution. (1) C: 0.5 to 1.5 wt%, Ni: over 1.0 to 3.0 wt%, Sb:
A bearing steel containing 0.001 to 0.015 wt% and O: 0.0020 wt% or less, the balance being Fe and inevitable impurities, and excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress load (first invention). (2) C: 0.5 to 1.5 wt%, Ni: over 1.0 to 3.0 wt%, S
b: 0.001 to 0.015 wt%, O: 0.0020 wt% or less, Si: 0.05 to 0.5 wt%, Mn: 0.05 to 2.0 wt
%, Cr: 0.05 to 2.5 wt%, Mo: 0.05 to 0.5 wt%, Cu: 0.
05-1.0 wt%, B: 0.0005-0.01 wt% Al: 0.005-0.07 wt% and N: 0.0005-0.012 wt%, including any one or more selected from the group consisting of:
A bearing steel comprising the balance of Fe and unavoidable impurities, which is excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress load (second invention). (3) C: 0.5 to 1.5 wt%, Ni: over 1.0 to 3.0 wt%, S
b: 0.001 to 0.015 wt%, O: 0.0020 wt% or less, Si: more than 0.5 to 2.5 wt%, Zr: 0.02 to 0.5 wt%
%, Ta: 0.02-0.5 wt%, Hf: 0.02-0.5 wt%, Co: 0.
05 to 1.5 wt% and N: more than 0.012 to 0.050 wt%, containing one or more selected from the rest, with the balance being Fe
A bearing steel comprising unavoidable impurities and excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress load (third invention). (4) C: 0.5 to 1.5 wt%, Ni: over 1.0 to 3.0 wt%, S
b: 0.001 to 0.015 wt%, O: 0.0020 wt% or less, Si: 0.05 to 0.5 wt%, Mn: 0.05 to 2.0 wt
%, Cr: 0.05 to 2.5 wt%, Mo: 0.05 to 0.5 wt%, Cu: 0.
05-1.0 wt%, B: 0.0005-0.01 wt% Al: 0.005-0.07 wt% and N: 0.0005-0.012 wt%, including any one or more selected from the group consisting of:
Furthermore, Si: more than 0.5 to 2.5 wt%, Zr: 0.02 to 0.5 wt%
%, Ta: 0.02-0.5 wt%, Hf: 0.02-0.5 wt%, Co: 0.
05 to 1.5 wt% and N: more than 0.012 to 0.050 wt%, containing one or more selected from the rest, with the balance being Fe
A bearing steel which is excellent in heat treatment productivity and delay characteristics of microstructural change due to repeated stress load (4th invention).

【0009】[0009]

【作用】以下に、上記合金設計になる本発明軸受鋼に想
到した背景につき、本発明者らが行った実験結果に基づ
いて説明する。まず、実験に当たり、 SUJ 2 ( C:1.02wt%, Si:0.25wt%, Mn:0.45wt
%, Cr:1.35wt%, Ni:0.0040wt%, O:0.0012wt%)
と、NiとSbとを添加した2種の材料 (C:1.00wt%, , Si:0.23wt%, Mn:0.40wt%,
Cr:1.33wt%, Ni:1.2wt%, O:0.0009wt%, Sb:0.0
032wt%, N:0.0042wt%) (C:1.00wt%, , Si:0.20wt%, Mn:0.38wt%,
Cr:1.30wt%, Ni:2.5wt%, O:0.0008wt%, Sb:0.0
078wt%, N:0.0032wt%) についての供試鋼材を作製した。ついで、これらの供試
材を焼ならし、球状化焼ならし、焼入れ焼もどしの各処
理を施したのち、それぞれの供試材から15mmφ×22mmの
円筒型の試験片と、12mmφ×22mmの転動疲労試験用試験
片とを作製した。
The background to the idea of the bearing steel of the present invention having the above alloy design will be described below based on the results of experiments conducted by the present inventors. First, in the experiment, SUJ 2 (C: 1.02 wt%, Si: 0.25 wt%, Mn: 0.45 wt
%, Cr: 1.35wt%, Ni: 0.0040wt%, O: 0.0012wt%)
And two materials containing Ni and Sb (C: 1.00 wt%, Si: 0.23 wt%, Mn: 0.40 wt%,
Cr: 1.33wt%, Ni: 1.2wt%, O: 0.0009wt%, Sb: 0.0
032wt%, N: 0.0042wt%) (C: 1.00wt%, Si: 0.20wt%, Mn: 0.38wt%,
Cr: 1.30wt%, Ni: 2.5wt%, O: 0.0008wt%, Sb: 0.0
078 wt%, N: 0.0032 wt%) was prepared. Then, after normalizing these test materials, spheroidizing normalizing, after performing each treatment of quenching and tempering, a cylindrical test piece of 15 mm φ × 22 mm and 12 mm φ × 22 mm of each test material A test piece for rolling fatigue test was prepared.

【0010】なお、転動疲労寿命試験は、上記転動疲労
用試験片をラジアルタイプ型の転動疲労寿命試験機を用
い、ヘルツ最大接触応力:660kgf/mm2 ,繰り返し応力数
46500 cpmの負荷条件の下で試験したものである。試験
の結果は、ワイブル分布確立紙上にプロットし, 材料強
度の上昇による転動疲労寿命の向上を示す数値と見られ
るB10(10%累積破損確率) と高負荷転動時の繰り返し
応力負荷によるミクロ組織変化発生を遅延させることに
よる転動疲労寿命の向上を示す数値と見られるB50(50
%累積破損確率)とを求めた。また、脱炭層の試験につ
いては、上記の円筒状試験片を10mmの位置で高さ方向に
垂直に切断後、ナイタールにて腐食し、ミクロ組織変化
による円周上の全脱炭層の最大値( 以後、「最大脱炭
層」という)で評価した。
The rolling fatigue life test was carried out by using a radial type rolling fatigue life tester for the rolling fatigue test piece, and Hertz maximum contact stress: 660 kgf / mm 2 , cyclic stress number.
Tested under a load condition of 46500 cpm. The results of the test are plotted on the Weibull distribution establishment paper, which is considered to be a numerical value showing the improvement of the rolling fatigue life due to the increase of the material strength, B 10 (10% cumulative failure probability) and the cyclic stress load during high load rolling. B 50 (50) which is considered to be a numerical value showing the improvement of rolling fatigue life by delaying the occurrence of microstructure change.
% Cumulative damage probability) was calculated. Further, for the test of the decarburized layer, after cutting the above cylindrical test piece vertically in the height direction at a position of 10 mm, it is corroded by Nital and the maximum value of the total decarburized layer on the circumference due to the microstructure change ( Hereinafter, it was evaluated by "the maximum decarburized layer".

【0011】その結果を表1に示す。この表1に示す結
果から判るように、高NiとSbの複合添加材については、
前記B10値についての改善はそれほど大きくないが、B
50値については著しく高い数値を示し、軸受平均寿命は
SUJ 2 に比べてB10値で3.5倍、B50値で約22.6倍もの
改善を示すことが認められた。とくに、多量のNiとSbと
の複合添加は高負荷転動中に生成するミクロ組織変化の
遅延特性に対して顕著な効果を示し、その分破損(寿
命)を遅延させることが期待できる。また、最大脱炭層
に関しては、SUJ 2が0.10mmであったが、Sb:0.0032wt
%含むものでは0.02mm、Sb:0.0078wt%含むものでは0.
01mmと、適当なSbの含有が脱炭層の発生抑制に効果のあ
ることも判った。
The results are shown in Table 1. As can be seen from the results shown in Table 1, for the high Ni and Sb composite additive,
Although the improvement in the B 10 value is not so great,
The 50 value is extremely high, and the average bearing life is
It was confirmed that the B 10 value was 3.5 times that of SUJ 2 and that the B 50 value was about 22.6 times that of SUJ 2. In particular, a large amount of composite addition of Ni and Sb has a remarkable effect on the delaying property of the microstructure change generated during high load rolling, and it can be expected that the damage (life) is delayed by that amount. Regarding the maximum decarburized layer, SUJ 2 was 0.10 mm, but Sb: 0.0032 wt
% Containing 0.02mm, Sb: 0.0078wt% containing 0.
It was also found that an appropriate Sb content of 01 mm is effective in suppressing the generation of the decarburized layer.

【0012】[0012]

【表1】 [Table 1]

【0013】また、図2は、上記軸受転動疲労寿命の実
験結果をまとめたものであって、非金属介在物に起因す
る軸受寿命とミクロ組織変化に起因する寿命の変化との
関係を示す模式図である。この図に明らかなように、累
積破損確率10%のB10値で示される軸受寿命(以下、こ
れを「B10転動疲労寿命」という)は、単にNiを多量に
添加しただけでは向上しないが、B50値でみると、この
Ni多量添加の効果は極めて顕著なものとなっている。そ
こで発明者らは、こうした知見をもとに、累積破損確率
50%のB50値で示される軸受寿命(以下、これを「B50
高負荷転動疲労寿命」という)を向上させ、かつ熱処理
時の脱炭層の成長の抑制を図るには、どのような合金設
計が有効であるかという観点から、以下に説明するよう
な成分組成の範囲を決定した。
FIG. 2 is a summary of the results of the above-mentioned bearing rolling fatigue life, showing the relationship between the bearing life due to non-metallic inclusions and the life change due to microstructural changes. It is a schematic diagram. As is clear from this figure, the bearing life indicated by the B 10 value with a cumulative failure probability of 10% (hereinafter referred to as “B 10 rolling contact fatigue life”) is not improved by simply adding a large amount of Ni. However, in terms of B 50 value, this
The effect of adding a large amount of Ni is extremely remarkable. Therefore, based on these findings, the inventors have accumulated cumulative damage probability.
Bearing life indicated by a B 50 value of 50% (hereinafter referred to as “B 50
In order to improve the "high load rolling contact fatigue life") and to suppress the growth of the decarburized layer during heat treatment, the composition of the components described below is effective from the viewpoint of what alloy design is effective. The range has been determined.

【0014】C: 0.5〜1.5 wt% Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保とそれ
による転動疲労寿命を向上させるために含有させる。そ
の含有量が0.5 wt%未満ではこうした効果が得られな
い。一方、 1.5wt%超では非削性, 鍛造性が低下するの
で、 0.5〜1.5 wt%の範囲に限定した。
C: 0.5 to 1.5 wt% C is an element which forms a solid solution in the matrix and effectively acts on the strengthening of martensite, and in order to secure the strength after quenching and tempering and thereby improve the rolling fatigue life. Contained in. If the content is less than 0.5 wt%, such effects cannot be obtained. On the other hand, if it exceeds 1.5 wt%, the machinability and the forgeability will deteriorate, so the range was limited to 0.5 to 1.5 wt%.

【0015】Si:0.05〜0.5 wt%, 0.5 超〜2.5 wt%以
下 Siは、鋼の溶製時の脱酸剤として用いられる他、基地に
固溶して焼もどし軟化抵抗の増大により焼入れ, 焼もど
し後の強度を高めて転動疲労寿命を向上させる元素とし
て有効である。こうした目的の下に添加されるSiの含有
量は、0.05〜0.5 wt%の範囲とする。さらに、このSi
は、0.5 %wt%超を添加すると、繰り返し応力負荷の下
でのミクロ組織変化の遅延をもたらして転動疲労寿命を
向上させる効果がある。しかし、その含有量が 2.5wt%
を超えると、その効果が飽和する一方で加工性や靱性を
低下させるので、ミクロ組織変化遅延特性のより一層の
向上のためには、 0.5超〜2.5 wt%を添加することが有
効である。
Si: 0.05 to 0.5 wt%, more than 0.5 to 2.5 wt% or less Si is used as a deoxidizer during the melting of steel, and is also solid-dissolved in the matrix to increase the resistance to tempering and quenching, It is effective as an element that increases the strength after tempering and improves the rolling fatigue life. The content of Si added for this purpose is in the range of 0.05 to 0.5 wt%. Furthermore, this Si
Has the effect of delaying the microstructural change under cyclic stress loading and improving the rolling fatigue life by adding more than 0.5% by weight. However, its content is 2.5 wt%
If it exceeds 0.1%, the effect is saturated while the workability and toughness are lowered. Therefore, in order to further improve the microstructure change retardation property, it is effective to add more than 0.5 to 2.5 wt%.

【0016】Al:0.005 〜0.07wt% Alは、鋼の溶製時の脱酸剤として用いられると同時に、
鋼中Nと結合して結晶粒を微細化して鋼の靱性向上に寄
与する。また、焼入れ焼もどし後の強度を高めることに
よる転動疲労寿命の向上にも有効に作用する。これらの
効果は、0.005wt%未満では得られない。一方、0.07wt
%を超える添加は、上記の作用・効果については飽和す
る。従って、Alは0.005 〜0.07wt%添加する。
Al: 0.005 to 0.07 wt% Al is used as a deoxidizer during the melting of steel, and at the same time,
Combines with N in the steel to refine the crystal grains and contribute to the improvement of the toughness of the steel. Further, it effectively acts to improve the rolling contact fatigue life by increasing the strength after quenching and tempering. These effects cannot be obtained below 0.005 wt%. On the other hand, 0.07wt
Addition in excess of 5% saturates the above-mentioned effects. Therefore, 0.005 to 0.07 wt% of Al is added.

【0017】O:0.0020wt%以下 Oは、硬質な非金属介在物を形成するので、たとえ他の
成分の制御によって繰り返し応力負荷によるミクロ組織
変化の遅延が得られたとしても、転動疲労寿命の低下を
招くことがあるから、可能なかぎり低いことが望まし
い。しかし、0.0020wt%以下の含有量であれば許容でき
る。
O: 0.0020 wt% or less O forms a hard non-metallic inclusion, so even if a delay in microstructure change due to repeated stress loading is obtained by controlling other components, rolling fatigue life Therefore, it is desirable to be as low as possible. However, a content of 0.0020 wt% or less is acceptable.

【0018】Mn:0.05〜2.0 wt% Mnは、鋼の溶製時に脱酸剤として作用し、鋼の低酸素化
に有効な元素である。また、鋼の焼入れ性を向上させる
ことにより基地マルテンサイトの靱性, 硬度を向上させ
て転動疲労寿命の向上に有効に作用する。これらの効果
は少なくとも0.05wt%の添加が必要であり、一方、2.0
wt%を超える添加は効果が飽和するので、Mnは0.05〜2.
0nwt%の範囲で添加する。
Mn: 0.05 to 2.0 wt% Mn is an element which acts as a deoxidizer during the melting of steel and is effective in reducing oxygen in steel. Also, by improving the hardenability of steel, it improves the toughness and hardness of the base martensite and effectively acts to improve the rolling contact fatigue life. These effects require the addition of at least 0.05 wt%, while 2.0
The effect is saturated when added in excess of wt%, so Mn is 0.05 to 2.
Add in the range of 0nwt%.

【0019】Cr:0.05〜2.5 wt% Crは、焼入れ性の向上と安定な炭化物の形成を通じて、
強度の向上ならびに耐摩耗性を向上させて、このことに
よる転動疲労寿命の向上に有効に作用する成分である。
これらの効果を得るには、0.05wt%の添加を必要とし、
一方、2.5 wt%を超える添加は効果が飽和するので、Cr
は0.05〜2.5 wt%の範囲で添加する。
Cr: 0.05 to 2.5 wt% Cr improves the hardenability and forms stable carbides.
It is a component that improves strength and wear resistance, and thereby effectively acts to improve rolling fatigue life.
To obtain these effects, addition of 0.05 wt% is required,
On the other hand, addition of more than 2.5 wt% saturates the effect.
Is added in the range of 0.05 to 2.5 wt%.

【0020】Mo:0.05〜0.5 wt% Moは、残留炭化物の安定化により耐摩耗性を向上させる
元素である。とくに0.05〜0.5 wt%を添加すると、焼入
れ性を増大して焼入れ焼もどし後の強度向上に寄与する
と共に、安定炭化物の析出により、耐摩耗性と転動疲労
寿命とを向上させる。
Mo: 0.05 to 0.5 wt% Mo is an element that improves wear resistance by stabilizing residual carbides. In particular, the addition of 0.05 to 0.5 wt% increases the hardenability and contributes to the improvement of the strength after quenching and tempering, and the precipitation of stable carbide improves the wear resistance and rolling fatigue life.

【0021】Ni: 1.0超〜3.0 wt% このNiは、本発明において重要な役割を担う元素であ
り、これを 1.0wt%を超えて添加した場合には、上述し
たミクロ組織変化を遅らせ、それによる転動疲労寿命を
向上させる。しかし、この場合でも3wt%を超えて添加
すると、多量の残留γを析出して強度の低下ならびに寸
法安性を害することになる他、コストアップになるた
め、この作用効果を期待する場合には、1.0 超〜3.0 wt
%の範囲内で添加することが必要である。
Ni: more than 1.0 to 3.0 wt% This Ni is an element that plays an important role in the present invention, and when it is added in an amount of more than 1.0 wt%, it delays the above-mentioned microstructural change, Improves rolling contact fatigue life. However, even in this case, if it is added in excess of 3 wt%, a large amount of residual γ will be precipitated, resulting in reduced strength and impaired dimensional stability, as well as cost increase. , Over 1.0 ~ 3.0 wt
It is necessary to add it within the range of%.

【0022】Cu:0.05〜1.0 wt% Cuは、焼入れの増大により焼入れ焼もどし後の強度を高
め、転動疲労寿命を向上させるために添加する。この目
的のために添加するときは、0.05〜1.0 wt%の範囲で十
分である。
Cu: 0.05 to 1.0 wt% Cu is added in order to enhance the strength after quenching and tempering due to the increase in quenching and to improve the rolling contact fatigue life. When added for this purpose, a range of 0.05-1.0 wt% is sufficient.

【0023】B:0.0005〜0.01wt% Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、転動疲労寿命を向上させるので、0.0005wt%以上
を添加する。しかしながら、0.01wt%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01wt%の範囲に
限定する。
B: 0.0005 to 0.01 wt% B is added in an amount of 0.0005 wt% or more because it increases the hardenability and thereby enhances the strength after quenching and tempering and improves the rolling contact fatigue life. However, if added in excess of 0.01 wt%, the workability deteriorates, so the range is limited to 0.0005 to 0.01 wt%.

【0024】Sb:0.001 〜0.015 wt% このSbは、この発明においてNiとともに重要な役割を担
っている元素である。とくに、このSbは、熱処理時にお
いて、鋼材表層部のCと雰囲気ガスとの反応を抑制して
脱炭層の発生を阻止することによって、熱処理生産性向
上に寄与する。しかも、Niとの複合添加により、該脱炭
層の抑制にあわせてミクロ組織変化の遅延に対しても効
果を示すことから、積極的に添加する。このような2つ
の作用は、このSb含有量が0.001 wt%以上で顕著なもの
となるが、0.015 wt%を超えて添加してもその効果は飽
和することに加え、却って熱間加工性および靱性の劣化
を招くようになる。従って、Sbは 0.001〜0.015 wt%の
範囲で含有させることとした。
Sb: 0.001 to 0.015 wt% This Sb is an element that plays an important role together with Ni in the present invention. In particular, this Sb contributes to the improvement of the heat treatment productivity by suppressing the reaction between C in the surface layer portion of the steel material and the atmospheric gas during the heat treatment to prevent the generation of the decarburized layer. Moreover, the composite addition with Ni has an effect on the delay of the microstructure change in addition to the suppression of the decarburized layer, so that it is positively added. These two effects become remarkable when the Sb content is 0.001 wt% or more, but even if the Sb content exceeds 0.015 wt%, the effect saturates, and conversely, hot workability and It causes deterioration of toughness. Therefore, Sb was included in the range of 0.001 to 0.015 wt%.

【0025】N:0.0005〜0.012 wt%, 0.012 超〜0.05
wt% Nは、窒化物形成元素と結合して結晶粒を微細化すると
共に、基地に固溶して焼入れ焼もどし後の強度を高め、
転動疲労寿命を向上させる。この目的のためには0.0005
〜0.012 wt%の範囲内で添加する。また、このNは、0.
012 wt%を超えて添加した場合には、繰り返し応力によ
るミクロ組織変化を遅らせることにより転動疲労寿命を
向上させる。ただし、その量が0.05wt%を超えると、加
工性が低下するため、この目的のためには0.012 超〜0.
05wt%を添加する。
N: 0.0005 to 0.012 wt%, more than 0.012 to 0.05
wt% N combines with the nitride-forming element to refine the crystal grains and to form a solid solution in the matrix to enhance the strength after quenching and tempering.
Improves rolling fatigue life. 0.0005 for this purpose
Add within 0.012 wt%. Also, this N is 0.
When added in excess of 012 wt%, rolling fatigue life is improved by delaying microstructural change due to repeated stress. However, if the amount exceeds 0.05 wt%, the workability decreases, so for this purpose it exceeds 0.012 to 0.
Add 05wt%.

【0026】P≦0.025 wt% Pは、鋼の靱性ならびに転動疲労寿命を低下させること
から可能なかぎり低いことが望ましく、その許容上限は
0.025 wt%である。
P ≦ 0.025 wt% P is desired to be as low as possible because it lowers the toughness and rolling contact fatigue life of the steel, and the upper limit of its allowable limit is
It is 0.025 wt%.

【0027】S≦0.025 wt% Sは、Mnと結合してMnSを形成し、被削性を向上させ
る。しかし、多量に含有させると転動疲労寿命を低下さ
せることから、0.025 wt%を上限としなければならな
い。
S ≦ 0.025 wt% S combines with Mn to form MnS and improves the machinability. However, if it is contained in a large amount, the rolling contact fatigue life will be reduced, so 0.025 wt% must be the upper limit.

【0028】以上、繰り返し応力負荷によるミクロ組織
変化を遅延させることによる転動疲労寿命を改善する成
分、強度の上昇を通じて転動疲労寿命を改善するための
成分、および脱炭層の生成を抑えて軸受の加工性と生産
性を向上させるための成分限定の理由について説明し
た。ところで、本発明ではさらに、Zr, Ta, HfおよびCo
のうちから選ばれるいずれか1種または2種以上を添加
して軸受寿命をさらに改善するようにしてもよい。上記
各元素の好適添加範囲と添加の目的、上限値、下限値限
定の理由につき、表2にまとめて示す。
As described above, a component for improving rolling contact fatigue life by delaying microstructure change due to repeated stress loading, a component for improving rolling contact fatigue life by increasing strength, and a bearing for suppressing generation of a decarburized layer The reason for limiting the components for improving the processability and productivity of was explained. By the way, in the present invention, further, Zr, Ta, Hf and Co
One or two or more selected from the above may be added to further improve the bearing life. Table 2 shows the preferable addition range of each of the above elements, the purpose of addition, and the reasons for limiting the upper limit value and the lower limit value.

【0029】[0029]

【表2】 [Table 2]

【0030】なお、本発明においては、被削性を改善す
るために、S,Se, Te, REM, Pb,Bi, Ca, Ti, Mg, P,
Sn, As等を添加しても、上述した本発明の目的である繰
り返し応力負荷によるミクロ組織変化による遅延特性を
阻害することはなく、容易に被削性を改善することがで
きるので、必要に応じて添加してもよい。
In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, Mg, P,
The addition of Sn, As, etc. does not hinder the retardation property due to the change in microstructure due to the repeated stress load, which is the object of the present invention, and the machinability can be easily improved. You may add according to it.

【0031】[0031]

【実施例】表3, 4に示す化学組成を有する鋼材を転炉
で溶製したのち連続鋳造し、得られた鋼材を1240℃で30
h の拡散焼鈍の後に65mmφの棒鋼に圧延した。次いで、
切削加工により棒鋼D/4部から15mmφ×20mmの円筒状
試験片ならびに転動疲労用試験片を採取した。その後、
これらの試験片について、雰囲気制御なしに( 大気雰囲
気中で) 、焼ならし・球状化焼なまし・焼入れ・焼もど
しの順で試験を行った。さらに、転動疲労用試験片は、
脱炭層を完全に除去する目的で1mm以上の研磨およびラ
ッピング仕上を行い、試験片寸法を12mmφ×22mmとし
た。熱処理後の脱炭層深さは、15mmφ×20mmの円筒状試
験片を10mmの位置で高さ方向と垂直に切断し、ナイター
ルにて腐食後、ミクロ組織観察による円周上の全脱炭層
の最大値 (以下、「最大脱炭層」と称する) で評価し
た。転動疲労寿命試験は、ラジアルタイプの転動疲労寿
命試験機によりヘルツ最大接触応力:600 kgf/mm2 , 繰
り返し応力数:約46500 cpm の条件で行ったものであ
る。試験結果は、ワイブル分布に従うものとして確率紙
上にまとめ、鋼材No.1の平均寿命 (累積破損確率:50%
における、剥離発生までの総負荷回数) を1として評価
した。その評価結果を、表3, 4にあわせて示す。
[Examples] Steels having the chemical compositions shown in Tables 3 and 4 were melted in a converter and then continuously cast.
After diffusion annealing of h, it was rolled into a steel bar of 65 mmφ. Then
A cylindrical test piece of 15 mmφ × 20 mm and a test piece for rolling fatigue were sampled from the D / 4 part of the steel bar by cutting. afterwards,
These test pieces were tested in the order of normalizing, spheroidizing annealing, quenching, and tempering without controlling the atmosphere (in the air atmosphere). Furthermore, the test piece for rolling fatigue is
For the purpose of completely removing the decarburized layer, polishing and lapping of 1 mm or more were performed, and the size of the test piece was 12 mmφ × 22 mm. The depth of the decarburized layer after heat treatment is the maximum of the total decarburized layer on the circumference measured by microstructure observation after cutting a 15 mmφ × 20 mm cylindrical test piece at a position of 10 mm perpendicular to the height direction and corroding with Nital. The value (hereinafter referred to as "maximum decarburized layer") was evaluated. The rolling fatigue life test was performed by a radial type rolling fatigue life tester under the conditions of Hertz maximum contact stress: 600 kgf / mm 2 and cyclic stress number: about 46500 cpm. The test results are summarized on the probability paper assuming that they follow the Weibull distribution, and the average life of steel material No. 1 (cumulative failure probability: 50%
Was evaluated as 1. The evaluation results are also shown in Tables 3 and 4.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】表3, 4に示す結果から明らかなように、
鋼中C量が本発明範囲外である鋼材No.3, 鋼中Ni量が本
発明鋼の範囲外である鋼材No. 4 ならびに鋼中O量が本
発明鋼範囲外である鋼材No.5は、最大脱炭層が0.01〜0.
10mmとNo.1従来鋼の0.12mmに比べて改善されているもの
の、平均寿命は、いずれも従来鋼(鋼材No.1)に比べて
低い。一方、鋼中Sb量が本発明鋼範囲外である鋼材No.2
のB50平均寿命は、従来鋼 (鋼材No.1) の4倍も優れて
いるものの、最大脱炭層は0.11mmと従来例(SUJ 2) と比
較してそれほど改善されていない。また、本発明鋼であ
る鋼材No. 6のB50値で示す平均寿命は、従来鋼(鋼材
No.1) に比較して約4倍も優れており、Niの添加がミク
ロ組織変化を著しく遅延し、その結果転動疲労寿命の向
上に有効に作用したことが窺える。しかも、最大脱炭層
深さも0.01mmであり、従来鋼No.1に比べてはるかに少な
く、Sbが本発明適正範囲を外れている鋼No. 2 と比べて
も約1/10と改善効果が顕著である。
As is clear from the results shown in Tables 3 and 4,
Steel No. 3 in which the amount of C in the steel is outside the range of the present invention, Steel No. 4 in which the amount of Ni in the steel is outside the range of the present invention, and Steel No. 5 in which the amount of O in the steel is outside the range of the present invention The maximum decarburized layer is 0.01 to 0.
Although 10 mm is improved compared to 0.12 mm of No. 1 conventional steel, the average life is lower than that of conventional steel (steel material No. 1). On the other hand, the steel material No. 2 whose Sb content in the steel is out of the steel range of the present invention
Although the B 50 average life of the steel is 4 times better than that of the conventional steel (steel material No. 1), the maximum decarburized layer is 0.11 mm, which is not so much improved as compared with the conventional example (SUJ 2). In addition, the average life indicated by the B 50 value of the steel material No. 6 of the present invention is
It is about 4 times better than No. 1), and it can be seen that the addition of Ni significantly delayed the microstructural change, and as a result, effectively acted to improve the rolling fatigue life. Moreover, the maximum decarburized layer depth is 0.01 mm, which is much smaller than that of the conventional steel No. 1, and the improvement effect is about 1/10 compared with the steel No. 2 in which Sb is outside the proper range of the present invention. It is remarkable.

【0035】また、Si, Mn, Mo, Cr, Cu, Al, Bおよび
Nのいずれか少なくとも1種以上を添加してなる鋼No.
7〜17は、平均寿命を決めるB50転動疲労寿命特性の改
善のみならず、最大脱炭層深さも0.02mm以下と著しく改
善されていることが判った。
Steel No. No. 1 containing at least one of Si, Mn, Mo, Cr, Cu, Al, B and N is added.
It was found that Nos. 7 to 17 not only improved the B 50 rolling contact fatigue life characteristics that determine the average life, but also significantly improved the maximum decarburized layer depth to 0.02 mm or less.

【0036】さらに、Si, Zr, Ta, Hf, CoおよびNを所
定の量以上を積極的に加えた鋼No.18〜24の場合には、
熱処理生産性の向上にあわせ上記平均寿命 (B50転動疲
労寿命) もより一層向上することが確かめられた。これ
は、本発明で推奨する上記各改善成分のすべてを選択的
に添加してなる鋼No. 25〜36の場合も同様であって、軸
受鋼寿命および熱処理生産性の両方の改善に効果のある
ことが判った。
Further, in the case of steel Nos. 18 to 24 in which Si, Zr, Ta, Hf, Co and N are positively added in a predetermined amount or more,
It was confirmed that the above average life (B 50 rolling contact fatigue life) is further improved in accordance with the improvement in heat treatment productivity. This is the same in the case of steel No. 25 ~ 36 obtained by selectively adding all of the above-mentioned improvement components recommended in the present invention, effective in improving both the bearing steel life and heat treatment productivity. I knew it was.

【0037】[0037]

【発明の効果】以上説明したとおり、本発明によれば、
基本的にはSbの添加と1.0 wt%超の高Ni複合添加軸受鋼
とすることにより、熱処理時の加工負荷を軽減でき (Sb
の添加効果) 、しかも、高負荷転動疲労寿命時の繰り返
し応力負荷に伴うミクロ組織変化の遅延をもたらし (高
Al含有効果) 、所謂B50高負荷転動疲労寿命の向上を達
成して、高寿命の熱処理生産性の高い軸受用の鋼を提供
することができる。従って、従来技術の下では不可欠と
されていた、より一層の鋼中酸素量の低減あるいは鋼中
に存在する酸化物系非金属介在物の組成, 形状, ならび
にその分布状態をコントロールするために必要となる製
鋼設備の改良あるいは建設が不必要である。また、本発
明にかかる軸受鋼の開発によって、転がり軸受の小型化
ならびに軸受使用温度のより以上の上昇が可能となる。
As described above, according to the present invention,
Basically, the processing load during heat treatment can be reduced by adding Sb and high Ni composite bearing steel with more than 1.0 wt% (Sb
(Addition effect), and also causes a delay in microstructural change due to repeated stress loading during high-load rolling fatigue life (high
It is possible to achieve the so-called B 50 high load rolling contact fatigue life improvement and to provide a steel for bearings having a long life and high heat treatment productivity with high productivity. Therefore, it is necessary to further reduce the oxygen content in steel or control the composition, shape, and distribution state of oxide-based nonmetallic inclusions present in steel, which was indispensable under the conventional technology. It is not necessary to improve or construct steelmaking equipment. Further, the development of the bearing steel according to the present invention enables downsizing of the rolling bearing and further increase of the bearing operating temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は、繰り返し応力負荷の下に発
生するミクロ組織変化のようすを示す金属組織の顕微鏡
写真。
1 (a) and 1 (b) are micrographs of a metal structure showing a microstructure change occurring under repeated stress loading.

【図2】非金属介在物に起因する軸受寿命とミクロ組織
変化に起因する軸受寿命とに及ぼすNi添加の影響を示す
説明図。
FIG. 2 is an explanatory diagram showing the effect of Ni addition on the bearing life due to non-metallic inclusions and the bearing life due to microstructural changes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松崎 明博 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akihiro Matsuzaki, 1st Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Shinichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba Address: Kawasaki Steel Corporation Technical Research Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C: 0.5〜1.5 wt%, Ni:1.0 超〜3.0
wt%,Sb:0.001 〜0.015 wt%, O:0.0020wt%以下を
含有し、残部がFe および不可避的不純物からなる、熱
処理生産性ならびに繰り返し応力負荷によるミクロ組織
変化の遅延特性に優れた軸受鋼。
1. C: 0.5 to 1.5 wt%, Ni: over 1.0 to 3.0
wt%, Sb: 0.001 to 0.015 wt%, O: 0.0020 wt% or less, the balance consisting of Fe and unavoidable impurities and excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress load .
【請求項2】C: 0.5〜1.5 wt%, Ni:1.0 超〜3.0
wt%,Sb:0.001 〜0.015 wt%, O:0.0020wt%以下を
含有し、さらにSi:0.05〜0.5 wt%, Mn:0.05〜2.0
wt%,Cr:0.05〜2.5 wt%, Mo:0.05〜0.5 wt%,Cu:
0.05〜1.0 wt%, B:0.0005〜0.01wt%Al:0.005 〜
0.07wt%及びN:0.0005〜0.012 wt%、のうちから選ば
れるいずれか1種または2種以上を含み、残部がFeおよ
び不可避的不純物からなる、熱処理生産性ならびに繰り
返し応力負荷によるミクロ組織変化の遅延特性に優れた
軸受鋼。
2. C: 0.5 to 1.5 wt%, Ni: over 1.0 to 3.0
wt%, Sb: 0.001 to 0.015 wt%, O: 0.0020 wt% or less, Si: 0.05 to 0.5 wt%, Mn: 0.05 to 2.0
wt%, Cr: 0.05 to 2.5 wt%, Mo: 0.05 to 0.5 wt%, Cu:
0.05 to 1.0 wt%, B: 0.0005 to 0.01 wt% Al: 0.005 to
0.07 wt% and N: 0.0005 to 0.012 wt%, containing one or more selected from the group consisting of Fe and unavoidable impurities, and the balance of heat treatment productivity and microstructural change due to repeated stress loading. Bearing steel with excellent delay characteristics.
【請求項3】C: 0.5〜1.5 wt%, Ni:1.0 超〜3.0
wt%,Sb:0.001 〜0.015 wt%, O:0.0020wt%以下を
含有し、さらにSi:0.5 超〜2.5 wt%, Zr:0.02〜0.5
wt%,Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%,Co:
0.05〜1.5 wt%及びN:0.012 超〜0.050 wt%のうちか
ら選ばれるいずれか1種または2種以上を含み、残部が
Feおよび不可避的不純物からなる、熱処理生産性ならび
に繰り返し応力負荷によるミクロ組織変化の遅延特性に
優れた軸受鋼。
3. C: 0.5 to 1.5 wt%, Ni: over 1.0 to 3.0
wt%, Sb: 0.001 to 0.015 wt%, O: 0.0020 wt% or less, Si: more than 0.5 to 2.5 wt%, Zr: 0.02 to 0.5
wt%, Ta: 0.02-0.5 wt%, Hf: 0.02-0.5 wt%, Co:
0.05 to 1.5 wt% and N: more than 0.012 to 0.050 wt% Any one or two or more selected from the rest, the balance
Bearing steel consisting of Fe and unavoidable impurities, which has excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading.
【請求項4】C: 0.5〜1.5 wt%, Ni:1.0 超〜3.0
wt%,Sb:0.001 〜0.015 wt%, O:0.0020wt%以下を
含有し、さらにSi:0.05〜0.5 wt%, Mn:0.05〜2.0
wt%,Cr:0.05〜2.5 wt%, Mo:0.05〜0.5 wt%,Cu:
0.05〜1.0 wt%, B:0.0005〜0.01wt% Al:0.005 〜0.07wt%及びN:0.0005〜0.012 wt%、の
うちから選ばれるいずれか1種または2種以上を含み、
さらにまたSi:0.5 超〜2.5 wt%, Zr:0.02〜0.5 wt
%,Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%,Co:0.
05〜1.5 wt%及びN:0.012 超〜0.050 wt%のうちから
選ばれるいずれか1種または2種以上を含み、残部がFe
および不可避的不純物からなる、熱処理生産性ならびに
繰り返し応力負荷によるミクロ組織変化の遅延特性に優
れた軸受鋼。
4. C: 0.5 to 1.5 wt%, Ni: over 1.0 to 3.0
wt%, Sb: 0.001 to 0.015 wt%, O: 0.0020 wt% or less, Si: 0.05 to 0.5 wt%, Mn: 0.05 to 2.0
wt%, Cr: 0.05 to 2.5 wt%, Mo: 0.05 to 0.5 wt%, Cu:
0.05 to 1.0 wt%, B: 0.0005 to 0.01 wt% Al: 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt%, including one or more selected from the group consisting of:
Furthermore, Si: more than 0.5 to 2.5 wt%, Zr: 0.02 to 0.5 wt%
%, Ta: 0.02-0.5 wt%, Hf: 0.02-0.5 wt%, Co: 0.
05 to 1.5 wt% and N: more than 0.012 to 0.050 wt%, containing one or more selected from the rest, with the balance being Fe
A bearing steel consisting of unavoidable impurities and excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading.
JP09554493A 1993-03-30 1993-03-30 Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading Expired - Fee Related JP3383345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09554493A JP3383345B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09554493A JP3383345B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading

Publications (2)

Publication Number Publication Date
JPH06287688A true JPH06287688A (en) 1994-10-11
JP3383345B2 JP3383345B2 (en) 2003-03-04

Family

ID=14140517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09554493A Expired - Fee Related JP3383345B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading

Country Status (1)

Country Link
JP (1) JP3383345B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107043892A (en) * 2017-05-27 2017-08-15 太仓源壬金属科技有限公司 A kind of auto parts and components steel

Also Published As

Publication number Publication date
JP3383345B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
JP3383347B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3383345B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3379786B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3233726B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading
JP3411388B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3383346B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3379785B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3233729B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JPH06287710A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JP3379787B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3233728B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading
JP3233792B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JP3243330B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JP3243329B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JPH07316726A (en) Bearing member excellent in characteristic of retarding microstructural change due to repeated stress load as well as heat treatment productivity
JPH06279932A (en) Bearing steel excellent in property of retarding change in microstructure due to repetitive stress load and heat treatment productivity
JP3411090B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3411389B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JPH06271981A (en) Bearing steel excellent in heat treatment productivity and property of retarding change in microstructure due to repeated stress load
JPH06287695A (en) Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load and heat treating productivity
JPH06287709A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JPH06287707A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JPH06287705A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JPH07316718A (en) Bearing member excellent in characteristic of retarding microstructural change due to repeated stress load and also in heat treatment productivity
JPH06287701A (en) Bearing steel excellent in property of retarding microstructural change due to repeated stress load

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees