JPH06287622A - Blowing method of converter - Google Patents

Blowing method of converter

Info

Publication number
JPH06287622A
JPH06287622A JP7364393A JP7364393A JPH06287622A JP H06287622 A JPH06287622 A JP H06287622A JP 7364393 A JP7364393 A JP 7364393A JP 7364393 A JP7364393 A JP 7364393A JP H06287622 A JPH06287622 A JP H06287622A
Authority
JP
Japan
Prior art keywords
blowing
furnace
slag
blowing nozzle
molten iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7364393A
Other languages
Japanese (ja)
Inventor
Shigeru Inoue
茂 井上
Ichiro Kikuchi
一郎 菊地
Akihiko Inoue
明彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7364393A priority Critical patent/JPH06287622A/en
Publication of JPH06287622A publication Critical patent/JPH06287622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To stabilize (Total.Fe) in slag during oxygen-blowing in a converter to the low content, to enable blowing without slopping and, at the same time, to enable melting of an extra low carbon steel which can not be melted in the conventional converter, by improving stirring in a furnace. CONSTITUTION:In the converter arranged with a side blowing nozzle 3 at the side wall part of the furnace body in contact with molten iron 5 in the converter main body 1 and a bottom blowing nozzle 4 at the furnace bottom part and blowing stirring gas into the molten iron 5 from the side blowing nozzle 3 and the bottom blowing nozzle 4 at the same time, the stirring gas of >=0.1Nm<3>/ min.ton from the side blowing nozzle 3 and >=0.06Nm<3>/min.ton from the bottom blowing nozzle 4 is blown into the molten iron to efficiently stir both of the molten iron 5 and the slag 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は転炉内の溶鉄およびスラ
グの撹拌方法を改良した転炉吹錬方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a converter blowing method which is an improved method for stirring molten iron and slag in a converter.

【0002】[0002]

【従来の技術】純酸素上吹き転炉では、炉内の溶鉄及び
スラグの撹拌は、上吹き酸素ジェットのみの撹拌力によ
りおこなわれ、従って炉内の溶鉄、及びスラグの撹拌は
十分に行なわれず、炭素、燐、硫黄などの不純物除去が
不十分であると同時に、スラグの過熱や、スラグ中の鉄
分の濃度(以下(Total.Fe)と記す)の上昇により炉体損
耗を促進し、同時に鉄や合金鉄の歩留まりを悪化させて
いた。
2. Description of the Related Art In a pure oxygen top-blown converter, the molten iron and slag in the furnace are agitated by the stirring force of only the top-blown oxygen jet, and therefore the molten iron and slag in the furnace are not sufficiently agitated. In addition to insufficient removal of impurities such as carbon, phosphorus, and sulfur, the slag is overheated and the iron concentration in the slag (hereinafter referred to as (Total.Fe)) is increased to promote furnace wear and It was deteriorating the yield of iron and ferroalloy.

【0003】近年は純酸素上吹きと同時に、炉底から
0.15〜0.25Nm3 /min.tonの撹拌用ガスを吹き込
む、いわゆる複合吹錬が行なわれるようになった。この
複合吹錬により、溶鉄とスラグの撹拌が改善され、スラ
グの過熱はほぼ解消した。しかし(Total.Fe)は、上吹き
転炉に比べやや低下してきているものの、通常15〜2
0重量%(以下%と記す)で、十分には低下していな
い。またこの複合吹錬において、送酸吹錬後、炉底のノ
ズルから不活性ガスを導入して撹拌する方法(リンス処
理)により、脱炭精錬がおこなわれるようになった。
In recent years, 0.15 to 0.25 Nm 3 from the bottom of the furnace has been blown at the same time as the top blowing of pure oxygen. The so-called compound blowing was started, in which a stirring gas of /min.ton was blown. By this composite blowing, stirring of molten iron and slag was improved and overheating of slag was almost eliminated. However, although (Total.Fe) is slightly lower than that of the top blowing converter, it is usually 15 to 2
At 0% by weight (hereinafter referred to as "%"), there is not a sufficient decrease. In addition, in this composite blowing, decarburization refining has come to be performed by a method (rinsing treatment) in which an inert gas is introduced from a nozzle at the bottom of the furnace and stirred after acid blowing.

【0004】転炉における積極的な低炭素鋼の製造方法
として、特公昭56−2124に開示された方法があ
る。特公昭56−2124においては脱燐処理後の溶銑
を用い、転炉内で造滓剤を使用することなく吹錬を行
い、吹錬中および吹錬後、またはそのいずれか一方にお
いて、窒素ガスまたは不活性ガスを溶鉄中に導入して撹
拌する方法、すなわち酸化鉄主体で高い酸化力を有する
スラグと溶鉄とを撹拌し、溶鉄中の炭素とスラグ中の酸
化鉄とを反応させ脱炭する方法である。そして撹拌方法
として次の3通りの方法を開示している。それらは
(1)炉底部に円周方向に並べた複数個のノズルからガ
スを導入する、(2)炉底部および側壁部の複数個のノ
ズルから、またはその一方からガスを導入する、(3)
炉口から炉内に垂下した浸漬ノズルからガスを導入する
方法である。(2)に示された方法は、炉底部に複数個
のノズルを円周方向に並べ、かつ側壁部の同一高さの円
周方向に複数個のノズルを並べているのみであり、側壁
部ノズルと炉底部ノズルの必要最低ガス流量、側壁部ノ
ズルと炉底部ノズルの配置方法、側壁部ノズルの設置高
さ及び円周方向配置方法は示されていない。そして、こ
れら3通りの方法に撹拌方法として有意差を認めていな
いばかりか、ここでの到達炭素(以下[C]と記す)レ
ベルは0.009%である。
As a positive method for producing low carbon steel in a converter, there is a method disclosed in Japanese Patent Publication No. 56-2124. In Japanese Examined Patent Publication No. 56-2124, the hot metal after the dephosphorization treatment is used, and the blowing is performed in the converter without using the slag-making agent. During and / or after the blowing, the nitrogen gas is blown. Alternatively, a method of introducing an inert gas into molten iron and stirring it, that is, stirring slag having a high oxidizing power mainly with iron oxide and molten iron, and reacting carbon in molten iron with iron oxide in slag to decarburize Is the way. The following three methods are disclosed as stirring methods. They are (1) introducing gas from a plurality of nozzles arranged in the furnace bottom in the circumferential direction, (2) introducing gas from a plurality of nozzles on the furnace bottom and side walls, or from one of them (3 )
This is a method of introducing gas from an immersion nozzle that hangs down from the furnace opening into the furnace. In the method shown in (2), a plurality of nozzles are arranged in the circumferential direction at the bottom of the furnace, and a plurality of nozzles are arranged in the circumferential direction at the same height of the side wall. The required minimum gas flow rate of the furnace bottom nozzle, the side wall nozzle and furnace bottom nozzle arrangement method, the side wall nozzle installation height and the circumferential arrangement method are not shown. Further, not only is there no significant difference in the stirring methods among these three methods, but the reached carbon (hereinafter referred to as [C]) level here is 0.009%.

【0005】一方、主にステンレス鋼の脱炭精錬に使用
されているAOD法では、炉体の底部近くの側壁に設置
した数本の羽口から、1Nm3 /min.ton以上の酸素ガス、
不活性ガスの混合ガスを炉内の溶鉄中に吹き込む方法を
採っている。極低炭素鋼を溶製した例としては、例えば
日本鉄鋼協会共同研究会の第91回特殊鋼部会での報告
があり、この場合、溶鉄中到達[C]レベルは0.00
1%まで到達しているが、溶鉄中初期[C]が1.3〜
1.4%からでも[C]レベル0.001%までに50
〜60分を要し、脱炭速度が遅いため、所要時間が長く
なっている。
On the other hand, in the AOD method mainly used for decarburization and refining of stainless steel, 1 Nm 3 is obtained from several tuyere installed on the side wall near the bottom of the furnace body. /min.ton or more oxygen gas,
A method of blowing a mixed gas of an inert gas into the molten iron in the furnace is adopted. As an example of melting ultra-low carbon steel, for example, there is a report at the 91st Special Steel Subcommittee of the Japan Iron and Steel Institute Joint Study Group, in which case the [C] level reached in molten iron is 0.00.
Although it has reached 1%, the initial [C] in molten iron is 1.3-
50 from 1.4% to [C] level 0.001%
It takes ~ 60 minutes and the decarburization rate is slow, so the required time is long.

【0006】なお、鉄浴型溶融還元プロセスにおいて、
底吹きノズルのみならず横吹きノズルをも付加した転炉
型精錬容器が提唱されているが、溶融還元プロセスにお
ける横吹きノズルはスラグ浴位置にあり、スラグの撹拌
強化を意図したものであり、本発明とは技術分野が本質
的に異なるものである。
In the iron bath type smelting reduction process,
A converter-type refining vessel with a horizontal blow nozzle as well as a bottom blow nozzle has been proposed, but the horizontal blow nozzle in the smelting reduction process is located at the slag bath position and is intended to strengthen the stirring of the slag. The technical field is essentially different from that of the present invention.

【0007】[0007]

【発明が解決しようとする課題】従来の転炉吹錬は、以
下に述べる二つの問題点を有している。 (1)吹錬終点の(Total.Fe)値が高く、かつ吹錬に不安
定性がある。
The conventional converter blowing has the following two problems. (1) The (Total.Fe) value at the end of blowing is high and the blowing is unstable.

【0008】転炉内での燐、硫黄の不純物除去、および
スラグ組成の調整のため、通常の転炉操業では、石灰系
の造滓剤を使用する。この造滓剤と炉内で生成した酸化
物が溶融してスラグが生成する。溶融状態の不均一、ス
ラグ組成の不均一、あるいは(Total.Fe)の上昇により、
スロッピング(吹錬中溶融スラグが炉口から流出するこ
と)が発生する。吹錬の安定化のためにはスロッピング
を抑制する必要があり、この観点から(Total.Fe)の低減
とスラグ組成の均一化が必須である。
In order to remove phosphorus and sulfur impurities in the converter and to adjust the slag composition, a lime-based slag-forming agent is used in a normal converter operation. This slag-forming agent and the oxide generated in the furnace are melted to generate slag. Due to non-uniform molten state, non-uniform slag composition, or increase in (Total.Fe),
Slopping (melted slag flowing out from furnace opening during blowing) occurs. In order to stabilize the blowing, it is necessary to suppress sloping, and from this viewpoint, it is essential to reduce (Total.Fe) and make the slag composition uniform.

【0009】特公昭56−2124においては、造滓剤
を使用せず、酸化力の強いスラグ、すなわち酸化鉄が5
0%以上である、酸化鉄主体のスラグを生成させること
が問題解決の手段であり、当然(Total.Fe)値は高くな
り、従って石灰系の造滓剤を使用する操業を目的とした
本発明とは、本質的に異なるものである。
In Japanese Examined Patent Publication No. 56-2124, no slag-forming agent is used, and slag having a strong oxidizing power, that is, iron oxide is 5
Generating slag mainly composed of iron oxide, which is 0% or more, is a means for solving the problem, and naturally the (Total.Fe) value becomes high. Therefore, this is a book aimed at the operation using a lime-based slag forming agent. The invention is essentially different.

【0010】また現在の転炉複合吹錬での、一般的な鋼
種の吹き止め溶鉄[C]=0.05%において、(Tota
l.Fe)は図3に示すように15〜20%であり、十分に
低下しているとは言い難い。これは炉内の溶鉄とスラグ
の撹拌力が弱いため、溶鉄とスラグの反応が十分進行せ
ず、その結果(Total.Fe)が高い。また(Total.Fe)が高い
こと、および炉内撹拌力弱小によるスラグ組成の不均一
により、スロッピングも防止できていない。 (2)到達[C]の下限値が高い
[0010] In the current converter composite blowing, blown stop molten iron [C] of general steel type [C] = 0.05%, (Tota
l.Fe) is 15 to 20% as shown in FIG. 3, and it cannot be said that it is sufficiently lowered. This is because the stirring force between the molten iron and the slag in the furnace is weak, the reaction between the molten iron and the slag does not proceed sufficiently, and the result (Total.Fe) is high. In addition, sloping cannot be prevented due to high (Total.Fe) and uneven slag composition due to weak stirring power in the furnace. (2) The lower limit of arrival [C] is high

【0011】低[C]領域における脱炭反応は炭素と酸
素の物質移動に律速されるので、到達[C]を低位に下
げるためには、炉内の溶鉄とスラグを十分に撹拌する必
要がある。特公昭56−2124においては、撹拌ガス
流量0.057Nm3 /min.tonの操業で、到達[C]レベ
ルは0.009%であり、本発明者らの目標レベルより
高い。また複合転炉のリンス処理(底吹きのみ)では、
炉内浴深さが浅いために、ガスの撹拌効率が必ずしも良
くなく、到達[C]は図2に示すように0.006〜
0.01%程度であり、特公昭56−2124のレベル
と同等である。
Since the decarburization reaction in the low [C] region is controlled by the mass transfer of carbon and oxygen, it is necessary to sufficiently stir the molten iron and slag in the furnace in order to lower the reached [C] to a low level. is there. In Japanese Examined Patent Publication No. Sho 56-2124, the stirring gas flow rate is 0.057 Nm 3 At the operation of /min.ton, the reached [C] level is 0.009%, which is higher than the target level of the present inventors. Also, in the rinsing process of the composite converter (bottom blowing only),
Since the bath depth in the furnace is shallow, the gas stirring efficiency is not always good, and the arrival [C] is 0.006 to
It is about 0.01%, which is equivalent to the level of Japanese Patent Publication No. 56-2124.

【0012】これらの方法においては、炉内撹拌力がま
だ不十分で、本発明者らの目標とする極低炭素鋼
([C]≦0.005%)のレベルまで、到達[C]値
が下がっていない。そのため自動車用鋼板として需要が
増大してきた極低炭素鋼を溶製するためには、RHなど
の真空脱ガス処理が必須となり、プロセスの繁雑化や、
二次精錬での温度降下を補償するために転炉終点温度の
上昇の要因になっている。
In these methods, the stirring power in the furnace is still insufficient, and the [C] value reached to the level of the present inventors' target of ultra-low carbon steel ([C] ≦ 0.005%) is reached. Is not lowered. Therefore, vacuum degassing treatment such as RH is indispensable in order to produce ultra-low carbon steel, which has been in increasing demand as a steel sheet for automobiles.
In order to compensate for the temperature drop in the secondary refining, it is a factor of increasing the converter end point temperature.

【0013】ところで、容器内の液体をガス吹き込みに
より撹拌する場合、底吹きより横吹きの方が浴全体の撹
拌には有効であることが、水モデル実験での均一混合時
間の測定結果から、従来より知られている。
By the way, when stirring the liquid in the container by blowing gas, side blowing is more effective for stirring the entire bath than bottom blowing. From the measurement results of the uniform mixing time in the water model experiment, Known from the past.

【0014】しかし本発明者らの実験によれば、横吹き
のみの撹拌では、溶鉄は撹拌されるが、スラグはノズル
の反対方向に押し寄せられるのみで、スラグの撹拌が極
めて不十分になることが観察された。すなわち転炉吹錬
においては、横吹きのみでは溶鉄及びスラグ双方を十分
に撹拌することは不可能であった。
However, according to the experiments conducted by the present inventors, the molten iron is agitated only by the lateral blowing, but the slag is only pushed in the direction opposite to the nozzle, and the agitation of the slag becomes extremely insufficient. Was observed. That is, in the blowing of the converter, it was impossible to sufficiently stir both the molten iron and the slag by only lateral blowing.

【0015】そこで、横吹きに底吹きを付加し、スラグ
の撹拌と溶鉄〜スラグ界面の撹拌を行った。横吹き・底
吹き同時撹拌では横吹きのみに比較し、溶鉄及びスラグ
の撹拌は向上する。しかし、横吹き・底吹きの撹拌ガス
総流量が、特公昭56−2124(ガス総流量:0.0
57Nm3 /min.ton)と同程度の少ない場合では、撹拌エ
ネルギーが弱く、溶鉄とスラグが懸濁するまでの撹拌状
態は得られなかった。溶鉄とスラグが懸濁し、脱炭反応
速度が向上するためには、図5、図6に示すように、横
吹きガス流量で0.1Nm3 /min.ton以上、及び底吹きガ
ス流量で0.06Nm3 /min.ton以上の撹拌ガスが必要で
あったが、これらのガス量は従来のAODでの横吹き、
複合吹錬での底吹きガス量に比べ少量であった。
Therefore, bottom blowing was added to side blowing to stir the slag and the molten iron-slag interface. Simultaneous side-blow and bottom-blow stirring improves the agitation of molten iron and slag compared to side-blow only. However, the total flow rate of the side-blown and bottom-blown stirring gas is
57 Nm 3 /min.ton), the stirring energy was weak and the stirring state until the molten iron and the slag were suspended could not be obtained. In order to improve the decarburization reaction rate by suspending molten iron and slag, as shown in FIG. 5 and FIG. 6, the lateral blowing gas flow rate is 0.1 Nm 3 /min.ton or more, and 0.06 Nm 3 at bottom blowing gas flow rate Although a stirring gas of more than /min.ton was required, the amount of these gases was
It was a small amount compared to the amount of bottom-blown gas in combined blowing.

【0016】また特公昭56−2124と同様のノズル
配置、すなわち炉底部に複数個のノズルを円周方向に並
べ、かつ側壁部の同一高さの円周方向に複数個のノズル
を並べた場合は、複数個の横吹きによる溶鉄の撹拌が干
渉しあい、溶鉄の撹拌が悪化すること、又円周方向に並
べた底吹きにより、溶鉄が炉内の周辺部で盛り上がるた
め、スラグが炉の中心部に集まり、スラグの撹拌が十分
に行えなかった。そこで更にノズル配置を変えて研究を
進めた結果、横吹きノズルを炉の円周方向で特定範囲に
設置したときと、及び底吹きノズルを、炉底中心部と横
吹きノズルに対し炉の円周方向で特定範囲に設置したと
きに、撹拌効率が極めて向上することをみいだした。本
発明は上記の知見にもとずいてなされたもので、その目
的とするところは転炉内の溶鉄及びスラグの双方を効率
的に撹拌する方法を提供するものである。
Further, the same nozzle arrangement as in Japanese Examined Patent Publication No. Sho 56-2124, that is, a case where a plurality of nozzles are arranged in the circumferential direction at the bottom of the furnace and a plurality of nozzles are arranged in the circumferential direction at the same height of the side wall portion. Is that the agitation of molten iron due to multiple horizontal blows interferes with each other, and the agitation of molten iron deteriorates.Because the bottom blows arranged in the circumferential direction cause molten iron to rise up in the peripheral area of the furnace, the slag is at the center of the furnace. Gathered in some parts and could not sufficiently stir the slag. Therefore, as a result of further research by changing the nozzle arrangement, when the horizontal blowing nozzle was installed in a specific range in the circumferential direction of the furnace, and when the bottom blowing nozzle was installed in the center of the furnace bottom and the horizontal blowing nozzle It was found that the agitation efficiency was significantly improved when installed in a specific range in the circumferential direction. The present invention has been made based on the above findings, and an object thereof is to provide a method for efficiently stirring both molten iron and slag in a converter.

【0017】[0017]

【課題を解決するための手段】石灰を含む造滓剤を使用
する転炉精錬で、転炉内の溶鉄に接している炉体側壁部
に横吹きノズルと、炉底部に底吹きノズルを設け、この
横吹きノズル及び底吹きノズルから、同時に撹拌用ガス
を溶鉄中に吹き込み、溶鉄とスラグの双方を効率的に撹
拌し、かつ溶鉄とスラグを懸濁状態にするために、撹拌
用ガス流量を横吹きノズルから0.1Nm3 /min.ton以
上、底吹きノズルから0.06Nm3 /min.ton以上とす
る。この時、撹拌を更に効率的に行うために、横吹きノ
ズル及び底吹きノズルを以下に示す範囲に設置すること
が有効である。
[MEANS FOR SOLVING THE PROBLEMS] In a converter refining using a slag forming agent containing lime, a side-blow nozzle and a bottom-blow nozzle are provided in a side wall of a furnace body in contact with molten iron in a converter and a bottom blow nozzle in a bottom of the furnace. In order to blow the stirring gas into the molten iron at the same time from the side blowing nozzle and the bottom blowing nozzle to efficiently stir both the molten iron and the slag, and to put the molten iron and the slag in a suspended state, the stirring gas flow rate From the side-blow nozzle to 0.1 Nm 3 /min.ton or more, 0.06 Nm 3 from the bottom blowing nozzle /min.ton or more. At this time, in order to carry out the stirring more efficiently, it is effective to install the side-blowing nozzle and the bottom-blowing nozzle in the ranges shown below.

【0018】横吹きノズル設置数は1本とするか、又は
複数本とする場合にも、全ての横吹きノズルを炉の円周
方向に120度の近くの範囲内に設置することである。
この理由は、横吹きの効果は、炉内の溶鉄浴に大きな流
動を引き起こし撹拌を良くすることであり、120度を
越えて設置すると、複数個の流動パターンが生成して、
溶鉄の撹拌が互いに干渉しあい、撹拌が悪化するからで
ある。底吹きノズルは、以下に示す二つの範囲に設置す
ることが有効である。
Even if the number of horizontal blowing nozzles is one or more than one, it is necessary to install all the horizontal blowing nozzles within a range of 120 degrees in the circumferential direction of the furnace.
The reason for this is that the effect of horizontal blowing is that it causes a large flow in the molten iron bath in the furnace to improve stirring, and if it is installed over 120 degrees, a plurality of flow patterns are generated,
This is because stirring of molten iron interferes with each other and the stirring deteriorates. It is effective to install the bottom blowing nozzle in the following two ranges.

【0019】一つの範囲は、炉底中心部を含む、横吹き
ノズル位置から炉の円周方向に120度から240度の
範囲に離れた炉底部である。設置位置を炉の円周方向で
120度から240度の離れた炉底部に限定した理由
は、横吹きノズルによって炉内反対方向に押し寄せられ
ようとするスラグを、底吹きノズルで押し戻して、炉内
に均一に分布させるためである。底吹きノズルを、上記
に示す範囲より、横吹きノズル側に設置した場合は、上
記効果が無く、横吹きノズルの反対側にスラグが押し寄
せられ、集まるからである。また炉中心部に設置したと
きの効果は、炉内周辺部の底吹きノズルでの撹拌によ
り、炉内周辺部の溶鉄が盛り上がり、そのため炉中心部
にスラグが集まることを防ぐことである。
One range is the bottom of the furnace, which includes the center of the bottom of the furnace and is separated from the position of the horizontal blowing nozzle in the range of 120 to 240 degrees in the circumferential direction of the furnace. The reason for limiting the installation position to the bottom of the furnace at a distance of 120 to 240 degrees in the circumferential direction of the furnace is that the slag that is about to be pushed in the opposite direction by the side blowing nozzle is pushed back by the bottom blowing nozzle, This is because it is evenly distributed in the interior. This is because when the bottom blowing nozzle is installed closer to the horizontal blowing nozzle than the above range, the above effect is not obtained and the slag is pushed toward the opposite side of the horizontal blowing nozzle and gathers. Further, the effect when installed in the center of the furnace is to prevent molten iron in the peripheral part of the furnace from rising due to stirring by the bottom blowing nozzle in the peripheral part of the furnace, which prevents slag from gathering in the central part of the furnace.

【0020】もう一つの範囲は、炉底中心部を含む、横
吹きノズル位置から炉の円周方向に±20度の、横吹き
ノズルに近い範囲である。設置位置を炉の円周方向に±
20度の炉底部に限定した理由は、近くに設置すること
で、横吹きガスジェットと底吹きガスジェットの相互作
用により、撹拌ガスの微細化が促進されて、ガス〜溶鉄
間の反応界面積が飛躍的に増大し、そのため、脱ガス反
応速度が向上するためである。±20度を越えれば越え
る程、ガスジェットの相互作用が弱くなり、従って、脱
ガス反応速度の向上が期待できないからである。炉中心
部に設置したときの効果は、上記効果と同様である。
Another range is a range including the center of the bottom of the furnace, which is ± 20 degrees from the position of the side-blow nozzle in the circumferential direction of the furnace and is close to the side-blow nozzle. Install position ± in the circumferential direction of the furnace
The reason for limiting it to the bottom of the furnace at 20 degrees is that it is installed near it, and the interaction between the side-blown gas jet and the bottom-blown gas jet promotes the refinement of the stirring gas, and the reaction interfacial area between the gas and molten iron is increased. Is dramatically increased, and the degassing reaction rate is improved. This is because the interaction of the gas jets becomes weaker as the angle exceeds ± 20 degrees, and hence the degassing reaction rate cannot be expected to improve. The effect when installed in the center of the furnace is similar to the above effect.

【0021】ここで複数の横吹きノズルを設置する場
合、底吹きノズルを円周方向に120度から240度の
範囲に離れた炉底部に設置するという意味は、各底吹き
ノズルを全ての横吹きノズルに対し120度から240
度の範囲に設置することであり、また底吹きノズルを炉
の円周方向に±20度の範囲の炉底部に設置するという
意味は、各々の横吹きノズルに対して±20度の範囲に
底吹きノズルを設置することを意味している。
When a plurality of side-blowing nozzles are installed, the bottom-blowing nozzles are installed on the bottom of the furnace at a distance of 120 to 240 degrees in the circumferential direction. 120 degrees to 240 with respect to the blowing nozzle
Is installed in the range of ± 20 degrees in the circumferential direction of the furnace, meaning that the bottom blowing nozzle is installed in the range of ± 20 degrees in the circumferential direction of the furnace. This means installing a bottom blowing nozzle.

【0022】また、炉内の撹拌状況は、横吹きノズルの
設置高さにも依存し、炉内鉄浴高さをHとすると、横吹
きノズルを1/2H以下の高さに設置することが、効率
的である。これは横吹きノズルを溶鉄中深く設置するこ
とで、溶鉄の撹拌が促進されるためで、浅い設置位置で
は、スラグは良く撹拌されるが、溶鉄の撹拌が不十分な
ためである。
The stirring condition in the furnace also depends on the installation height of the horizontal blowing nozzle. If the height of the iron bath in the furnace is H, the horizontal blowing nozzle should be installed at a height of 1/2 H or less. However, it is efficient. This is because the agitation of the molten iron is promoted by installing the side-blowing nozzle deep in the molten iron, and the slag is well agitated at the shallow installation position, but the agitation of the molten iron is insufficient.

【0023】[0023]

【作用】転炉中では溶鉄中[C]とスラグ中酸化鉄(以
下(FeO)と記す)は(1)式に従い反応する。 FeO+C→Fe+CO ・・・・ (1)
In the converter, [C] in molten iron and iron oxide in slag (hereinafter referred to as (FeO)) react according to the equation (1). FeO + C → Fe + CO (1)

【0024】しかし発明者らの研究によれば、この反応
は溶鉄中[C]とスラグ中(FeO)の物質移動に律速
され、溶鉄とスラグの撹拌が十分でないと反応が進ま
ず、溶鉄中の[C]とスラグ中の(FeO)は濃度の高
い状態で吹錬を終了する。
However, according to the research conducted by the inventors, this reaction is rate-controlled by mass transfer between molten iron [C] and slag (FeO), and if the molten iron and slag are not sufficiently stirred, the reaction does not proceed and the molten iron [C] and (FeO) in the slag complete the blowing with a high concentration.

【0025】本発明では、横吹きノズルと底吹きノズル
からの同時ガス吹き込みによる撹拌方法において、撹拌
ガス流量を、横吹きノズルから0.1Nm3 /min.ton以
上、底吹きノズルから0.06Nm3 /min.ton以上とする
ことで、炉内での溶鉄とスラグ双方の撹拌が飛躍的に向
上して溶鉄とスラグが懸濁状態となり、(1)式の反応
が良く進行して、到達[C]とスラグ中の(FeO)が
主体である(Total.Fe)が、従来に比較して大幅に低下す
る。またスラグ中(FeO)のレベルが低位安定し、か
つスラグの撹拌が十分で、スラグ組成も均一化したた
め、スロッピングのほとんど無い安定操業が得られる。
一方、ガス流量には上限値があり、横吹きの場合は吹き
込みガスの水平方向の気泡到達距離により、底吹きの場
合は吹き抜けで規定される。
In the present invention, the stirring gas flow rate is 0.1 Nm 3 from the side blowing nozzle in the stirring method by simultaneous gas blowing from the side blowing nozzle and the bottom blowing nozzle. /min.ton or more, 0.06 Nm 3 from the bottom blowing nozzle /min.ton or more, the stirring of both molten iron and slag in the furnace is drastically improved, and molten iron and slag become in a suspended state, and the reaction of formula (1) proceeds well and reaches [ C] and (FeO) in the slag are the main components (Total.Fe), but they are significantly lower than in the conventional case. Further, since the level of (FeO) in the slag is stable at a low level, the slag is sufficiently stirred, and the slag composition is made uniform, stable operation with almost no sloping can be obtained.
On the other hand, there is an upper limit value for the gas flow rate, which is defined by the horizontal bubble arrival distance of the blown gas in the case of horizontal blowing and by blow-through in the case of bottom blowing.

【0026】[0026]

【実施例】本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described based on examples.

【0027】図1に本発明による横吹きノズル、および
底吹きノズルの転炉設置位置を示す。脱燐処理を行った
溶銑を、250トン転炉本体1に装入し、まず上吹きラ
ンス2にて送酸して脱炭吹錬し、溶鉄[C]=0.02
〜0.04%になった時点で送酸を終了する。送酸終了
後、本発明によるノズル配置で、ガス導入管7から、横
吹きノズル3、および底吹きノズル4を経て、不活性ガ
スを溶鉄5に吹き込み、10〜15分間のリンス処理を
行ない、極低炭素鋼の溶製を図った。転炉内の浴形状は
H/D(H:浴高さ,D:浴直径)でほぼ0.3とし,
送酸中は送酸流量一定で、酸素原単位は3.5Nm3 /mi
n.tonとした。スラグ6組成調整用に、石灰系造滓剤を
使用して、スラグ量は20〜30kg/tonとし、吹
錬開始の溶銑[C]は、ほぼ4%であった。吹錬中スロ
ッピング現象が発生した場合は、抑制剤を装入した。図
1でケースAは、底吹きノズルを炉底中心部と、横吹き
ノズルから炉の円周方向に±20度範囲の横吹きノズル
に近い炉底部に設置した場合を、ケースBは、底吹きノ
ズルを炉底中心部と、横吹きノズルから炉の円周方向に
120度から240度範囲の離れた炉底部に設置した場
合を、ケースCは、底吹きノズルを炉底中心部と、横吹
きノズルから炉の円周方向に90度と270度の炉底部
に設置した場合を示す。同時に、比較例として、横吹き
ノズルを円周方向に180度離して2本設置し、底吹き
ノズルを炉の円周方向に並べて設置した場合を図1に示
す。ガス流量および横吹きノズルの高さは以下の様に設
定した。
FIG. 1 shows the converter installation positions of the side-blowing nozzle and the bottom-blowing nozzle according to the present invention. The dephosphorized hot metal was charged into a 250 ton converter body 1, and first, acid was fed by an upper blowing lance 2 to decarburize and blow, and molten iron [C] = 0.02.
The acid transfer is terminated when the content reaches ˜0.04%. After the end of the acid feeding, with the nozzle arrangement according to the present invention, the inert gas is blown into the molten iron 5 from the gas introduction pipe 7 through the side blowing nozzle 3 and the bottom blowing nozzle 4, and a rinsing treatment is performed for 10 to 15 minutes. We tried to melt ultra-low carbon steel. The bath shape in the converter is H / D (H: bath height, D: bath diameter) of approximately 0.3,
Oxygen consumption is 3.5 Nm 3 with constant oxygen flow rate during oxygen transfer. / mi
n.ton. For adjusting the composition of slag 6, a lime-based slag-forming agent was used, the amount of slag was 20 to 30 kg / ton, and the hot metal [C] at the start of blowing was about 4%. If a sloping phenomenon occurred during blowing, the inhibitor was charged. In FIG. 1, Case A is a case where the bottom blowing nozzle is installed in the center of the furnace bottom and the furnace bottom near the side blowing nozzle within a range of ± 20 degrees from the side blowing nozzle in the circumferential direction of the furnace. When the blowing nozzle is installed at the center of the bottom of the furnace and the lateral blowing nozzle is installed at the bottom of the furnace in the range of 120 to 240 degrees in the circumferential direction of the furnace, Case C is such that the bottom blowing nozzle is at the center of the bottom of the furnace. It shows the case where the nozzles are installed at the bottom of the furnace at 90 ° and 270 ° in the circumferential direction from the side-blow nozzle. At the same time, as a comparative example, FIG. 1 shows a case where two horizontal blowing nozzles are installed 180 degrees apart in the circumferential direction and two bottom blowing nozzles are installed side by side in the circumferential direction of the furnace. The gas flow rate and the height of the side-blow nozzle were set as follows.

【0028】ガス流量:横吹きノズルは0.7Nm3 /mi
n.tonを標準とし、0〜1Nm3 /min.tonの範囲で、また
底吹きノズルは0.2Nm3 /min.tonを標準とし、0〜
0.5Nm3 /min.tonの範囲で変化させた。 横吹きノズル位置:溶鉄浴高さをHとするとき、1/4
Hを標準とし、1/2H、3/4Hも行った。
Gas flow rate: 0.7 Nm 3 for the horizontal blowing nozzle / mi
n.ton as standard, 0 to 1 Nm 3 /min.ton range, bottom blowing nozzle 0.2 Nm 3 /min.ton as standard, 0-
0.5 Nm 3 It was changed in the range of /min.ton. Side blow nozzle position: 1/4 when the height of molten iron bath is H
Using H as a standard, 1 / 2H and 3 / 4H were also performed.

【0029】図2に、本発明によるノズル配置での横吹
き・底吹き同時撹拌(実施例)、底吹きのみ(通常転
炉,従来例)、および横吹きノズル2本と底吹きノズル
を炉の円周方向に並べて設置した横吹き・底吹き同時撹
拌(比較例)で、リンス処理をしたときの溶鉄[C]推
移を示す。実施例では、溶鉄とスラグが十分に撹拌さ
れ、その結果脱炭速度は大きく、約10分の処理で到達
[C]レベルも0.003%以下となり、極低炭素鋼
([C]≦0.005%)の溶製が可能となった。又こ
の場合、ケースAとBのノズル配置で効果が著しい。従
来例の場合、脱炭速度に及ぼす撹拌ガス流量の影響は小
さく、到達[C]も0.006〜0.01%の範囲であ
って、極低炭素鋼の溶製は不可能であった。比較例で
は、従来例よりも到達[C]は低位ではあるが、安定し
た極低炭素鋼の溶製は不可能であった。
FIG. 2 shows a side-blown and bottom-blown simultaneous stirring with a nozzle arrangement according to the present invention (Example), bottom blowing only (normal converter, conventional example), and two side-blown nozzles and a bottom-blown nozzle in a furnace. Fig. 7 shows the transition of molten iron [C] when the rinse treatment is performed by side-blown / bottom-blown simultaneous stirring (comparative example) installed side by side in the circumferential direction. In the example, the molten iron and the slag were sufficiently stirred, and as a result, the decarburization rate was high, and the [C] level reached in the treatment for about 10 minutes was 0.003% or less, which was extremely low carbon steel ([C] ≦ 0. 0.005%) has become possible. Further, in this case, the nozzle arrangements of the cases A and B are very effective. In the case of the conventional example, the influence of the stirring gas flow rate on the decarburization rate was small, and the reached [C] was also in the range of 0.006 to 0.01%, and it was impossible to melt the ultra-low carbon steel. . In the comparative example, although the reached [C] was lower than in the conventional example, stable melting of the ultra low carbon steel was impossible.

【0030】図3に転炉送酸中の(Total.Fe)に及ぼす各
撹拌方式の影響を示す。実施例では溶鉄とスラグの撹拌
が効率的で、(Total.Fe)値は従来例の約1/2で、低減
効果が顕著である。それに対して比較例では、従来例よ
り低下するものも、改善効果は小さい。
FIG. 3 shows the influence of each stirring method on (Total.Fe) during oxygen transfer in the converter. In the examples, the stirring of molten iron and slag is efficient, and the (Total.Fe) value is about half that of the conventional example, and the reduction effect is remarkable. On the other hand, in the comparative example, the improvement effect is small even though it is lower than the conventional example.

【0031】図4に各撹拌方式における転炉送酸中のス
ロッピング抑制剤投入回数を示す。実施例では、スラグ
中(FeO)のレベルが低位安定し、スラグの撹拌が十
分でスラグ組成も均一化したため、スロッピング抑制剤
投入はほとんど不要となっている。
FIG. 4 shows the number of times the sloping inhibitor was added during the acid transfer in the converter in each stirring system. In the examples, since the level of (FeO) in the slag was stable at a low level, the slag was sufficiently stirred, and the slag composition was made uniform, it was almost unnecessary to add the slopping inhibitor.

【0032】更に本発明法でのリンス処理時における脱
炭速度、溶鉄中到達[C]レベル、及び(Total.Fe)に及
ぼす撹拌用ガス流量とノズル位置の影響について調査し
た。ここでリンス処理時の脱炭速度は(2)式によって
定義されるKcを用いて、リンス処理開始から5分間の
脱炭速度で比較した。 Kc=ln(C0 /Ct )/t ・・・・ (2) Kc:脱炭速度定数(1/min)、C0 :初期炭素濃
度(ppm) Ct :t分後の炭素濃度(ppm)、 t:時間(mi
n)
Further, the effects of the stirring gas flow rate and the nozzle position on the decarburization rate, the reached [C] level in molten iron, and (Total.Fe) during the rinse treatment in the method of the present invention were investigated. Here, the decarburization rate during the rinse treatment was compared using the Kc defined by the equation (2) at the decarburization rate for 5 minutes from the start of the rinse treatment. Kc = ln (C 0 / C t ) / t (2) Kc: decarburization rate constant (1 / min), C 0 : initial carbon concentration (ppm) C t : carbon concentration after t minutes ( ppm), t: time (mi
n)

【0033】図5に横吹きガス流量を0.7Nm3 /min.t
on一定の条件での、底吹きガス流量の依存性について示
す。底吹きガス流量が0.06Nm3 /min.ton以上になる
と、脱炭速度=0.4〜0.6/min、溶鉄中到達
[C]レベル=15〜25ppm、および(Total.Fe)=
6〜9%であり、底吹きガス流量のガス流量に依存性が
ある。
FIG. 5 shows a lateral blowing gas flow rate of 0.7 Nm 3 /min.t
The following shows the dependence of the bottom blown gas flow rate under constant conditions. Bottom blown gas flow rate is 0.06 Nm 3 /min.ton or more, decarburization rate = 0.4 to 0.6 / min, reaching [C] level in molten iron = 15 to 25 ppm, and (Total.Fe) =
It is 6 to 9% and depends on the gas flow rate of the bottom blown gas flow rate.

【0034】図6に底吹きガス流量が0.2Nm3 /min.t
on一定の条件での、横吹きガス流量の依存性について示
す。この場合、横吹きガス流量が0.1Nm3 /min.ton以
上になると、脱炭速度は0.4〜0.6/minに向上
し、溶鉄中到達[C]レベルは30ppm以下となり、
(Total.Fe)も10%以下となり、ガス流量に依存性があ
る。
In FIG. 6, the bottom blowing gas flow rate is 0.2 Nm 3 /min.t
The following shows the dependence of the laterally blown gas flow rate under a constant condition. In this case, the lateral blowing gas flow rate is 0.1 Nm 3 /min.ton or more, the decarburization rate improves to 0.4 to 0.6 / min, and the [C] level reached in molten iron becomes 30 ppm or less,
(Total.Fe) is also 10% or less and depends on the gas flow rate.

【0035】図7に横吹きノズルの設置高さの影響につ
いて示す。この場合、横吹きノズルを1/2H以下に設
置した時、横吹きの撹拌効果が大きくなり、脱炭速度、
溶鉄中到達[C]レベルおよび(Total.Fe)の改善効果が
大きい。
FIG. 7 shows the influence of the installation height of the horizontal blowing nozzle. In this case, when the side-blowing nozzle is set to 1 / 2H or less, the stirring effect of the side-blowing becomes large, and the decarburizing rate,
The effect of improving the [C] level reached in molten iron and (Total.Fe) is large.

【0036】[0036]

【発明の効果】本発明によれば、横吹きノズルと底吹き
ノズルにより、横吹きガス量でAOD法の約1/10、
底吹きガス量で複合吹錬の約1/3、横吹き・底吹きの
総量で複合吹錬と同等の撹拌ガス量で、炉内溶鉄とスラ
グ双方の撹拌が効率良く行なわれ、溶鉄中の[C]とス
ラグ中の(FeO)との反応が推進し、その結果、転炉
送酸中の(Total.Fe)を低位安定させ、かつスロッピング
の無い吹錬を可能とし、安定操業と鉄歩留まりの向上が
実現でき、また従来の転炉では溶製できなかった極低炭
素鋼の溶製も可能となり、RHなどの二次精錬プロセス
を省略することが可能となる。
According to the present invention, the lateral blowing nozzle and the bottom blowing nozzle make the lateral blowing gas amount about 1/10 of the AOD method.
The amount of bottom blown gas is about 1/3 of that of combined blowing, and the total amount of side blowing and bottom blowing is the same amount of stirring gas as combined blowing, and both the molten iron in the furnace and the slag are efficiently stirred, The reaction between [C] and (FeO) in the slag is promoted, and as a result, (Total.Fe) during converter oxygen transfer is stabilized at a low level, and blowing without sloping is possible, and stable operation is achieved. It is possible to improve the iron yield, and it is also possible to melt ultra-low carbon steel that could not be melted in the conventional converter, and it is possible to omit the secondary refining process such as RH.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す横吹きノズルと底吹きノ
ズルの設置位置を比較例の場合とともに示す図。
FIG. 1 is a diagram showing the installation positions of a side-blowing nozzle and a bottom-blowing nozzle showing an embodiment of the present invention together with the case of a comparative example.

【図2】本発明方法におけるリンス脱炭時の脱炭速度と
到達[C]を従来例及び比較例の場合とともに示す図。
FIG. 2 is a diagram showing decarburization rate and arrival [C] during rinse decarburization in the method of the present invention, together with the cases of the conventional example and the comparative example.

【図3】本発明方法における送酸中の(Total.Fe)低減に
及ぼす効果を従来例及び比較例の場合とともに示す図。
FIG. 3 is a diagram showing the effect of the method of the present invention on the reduction of (Total.Fe) during acid transfer, together with the cases of the conventional example and the comparative example.

【図4】本発明方法における送酸中のスロッピング発生
頻度に及ぼす影響を従来例及び比較例の場合とともに示
す図。
FIG. 4 is a view showing the influence of the method of the present invention on the occurrence frequency of sloping during acid transfer, together with the cases of a conventional example and a comparative example.

【図5】本発明方法における横吹き及び底吹きノズル撹
拌での精錬特性に及ぼす底吹きガス流量の影響を示す
図。
FIG. 5 is a diagram showing the influence of a bottom-blowing gas flow rate on refining characteristics in side-blowing and bottom-blowing nozzle agitation in the method of the present invention.

【図6】本発明方法における横吹き及び底吹きノズル撹
拌での精錬特性に及ぼす横吹きガス流量の影響を示す
図。
FIG. 6 is a diagram showing the influence of a side-blowing gas flow rate on refining characteristics in side-blowing and bottom-blowing nozzle agitation in the method of the present invention.

【図7】本発明方法における横吹き及び底吹きノズル撹
拌での精錬特性に及ぼす横吹きノズル高さの影響を示す
図。
FIG. 7 is a diagram showing the influence of the horizontal blowing nozzle height on the refining characteristics of the horizontal blowing and bottom blowing nozzle agitation in the method of the present invention.

【符号の説明】[Explanation of symbols]

1:転炉本体、2:上吹きランス、3:横吹きノズル,
4:底吹きノズル,5:溶鉄、6:スラグ、7:ガス導
入菅。
1: Converter main body, 2: Top blowing lance, 3: Side blowing nozzle,
4: bottom blowing nozzle, 5: molten iron, 6: slag, 7: gas introduction tube.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 石灰を含む造滓剤を使用する精錬で、溶
鉄に接している炉体側壁部に1又は2以上の横吹きノズ
ルと、炉底部に底吹きノズルを設け、この横吹きノズル
及び底吹きノズルから撹拌用ガスを吹き込む転炉吹錬方
法であって、上記横吹きノズルから0.1Nm3 /min.ton
以上、及び上記底吹きノズルから0.06Nm3 /min.ton
以上の撹拌ガスを吹き込むことを特徴とする転炉吹錬方
法。
1. In refining using a slag forming agent containing lime, one or more side blowing nozzles are provided in the side wall of the furnace body in contact with molten iron, and a bottom blowing nozzle is provided in the bottom of the furnace. And a converter blowing method in which a stirring gas is blown from the bottom blowing nozzle, wherein 0.1 Nm 3 is applied from the side blowing nozzle. /min.ton
Above, and 0.06 Nm 3 from the bottom blowing nozzle /min.ton
A converter blowing method characterized by blowing the above stirring gas.
【請求項2】 横吹きノズルの設置数を複数本とする場
合は、全ての横吹きノズルを炉の円周方向に120度の
範囲内に設置することを特徴とする請求項1に記載の方
法。
2. When the number of horizontal blowing nozzles is plural, all the horizontal blowing nozzles are installed within a range of 120 degrees in the circumferential direction of the furnace. Method.
【請求項3】 底吹きノズルを炉底中心を含む横吹きノ
ズル位置から炉の円周方向に120度から240度の範
囲に離れた炉底部にのみ設置することを特徴とする請求
項1に記載の方法。
3. The bottom blowing nozzle is installed only at the bottom of the furnace, which is distant from the position of the horizontal blowing nozzle including the center of the bottom of the furnace in the circumferential direction of the furnace by 120 to 240 degrees. The method described.
【請求項4】 底吹きノズルを炉底中心を含む横吹きノ
ズル位置から炉の円周方向に±20度の範囲の炉底部に
のみ設置することを特徴とする請求項1に記載の方法。
4. The method according to claim 1, wherein the bottom blowing nozzle is installed only at the bottom of the furnace within a range of ± 20 degrees in the circumferential direction of the furnace from the position of the lateral blowing nozzle including the center of the bottom of the furnace.
【請求項5】 炉内鉄浴高さをHとするとき、横吹きノ
ズルを1/2H以下の高さに設置することを特徴とする
請求項1に記載の方法。
5. The method according to claim 1, wherein when the height of the iron bath in the furnace is H, the horizontal blowing nozzle is installed at a height of 1/2 H or less.
JP7364393A 1993-03-31 1993-03-31 Blowing method of converter Pending JPH06287622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7364393A JPH06287622A (en) 1993-03-31 1993-03-31 Blowing method of converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7364393A JPH06287622A (en) 1993-03-31 1993-03-31 Blowing method of converter

Publications (1)

Publication Number Publication Date
JPH06287622A true JPH06287622A (en) 1994-10-11

Family

ID=13524183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7364393A Pending JPH06287622A (en) 1993-03-31 1993-03-31 Blowing method of converter

Country Status (1)

Country Link
JP (1) JPH06287622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009003364A1 (en) * 2007-07-03 2009-01-08 Northeastern University A manufacture process of steel in converter with top, bottom and side lances

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009003364A1 (en) * 2007-07-03 2009-01-08 Northeastern University A manufacture process of steel in converter with top, bottom and side lances

Similar Documents

Publication Publication Date Title
CA2201364C (en) Vacuum refining method for molten steel
JPH0770626A (en) Converter steel making method
JPH06287622A (en) Blowing method of converter
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPH08311519A (en) Steelmaking method using converter
JP4461495B2 (en) Dephosphorization method of hot metal
JP4686880B2 (en) Hot phosphorus dephosphorization method
WO1982001012A1 (en) Method for smelting using top-and bottom-blown converter
JPH0477046B2 (en)
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JPS6358203B2 (en)
JP2005089839A (en) Method for refining molten steel
JPH06248320A (en) Converter and blowing method thereof
JP3309395B2 (en) Converter refining method
JP2002012907A (en) Method for operating metal melting furnace, smelting furnace, refining furnace and vacuum refining furnace
JP2958842B2 (en) Converter refining method
JPH0734113A (en) Converter refining method
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
JPH1112634A (en) Production of molten low nitrogen steel with arc furnace
JP3158895B2 (en) Converter refining method
JPH11140530A (en) Production of ultra-low nitrogen stainless steel
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JP2615728B2 (en) Decarburization method for Cr-containing pig iron
JPH0673426A (en) Method for decarburizing molten chromium-containing iron
JPH02221310A (en) Production of ni-and cr-containing molten metal