JPH1112634A - Production of molten low nitrogen steel with arc furnace - Google Patents

Production of molten low nitrogen steel with arc furnace

Info

Publication number
JPH1112634A
JPH1112634A JP16478297A JP16478297A JPH1112634A JP H1112634 A JPH1112634 A JP H1112634A JP 16478297 A JP16478297 A JP 16478297A JP 16478297 A JP16478297 A JP 16478297A JP H1112634 A JPH1112634 A JP H1112634A
Authority
JP
Japan
Prior art keywords
carbon
molten steel
refining
molten
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16478297A
Other languages
Japanese (ja)
Inventor
Ryuji Yamaguchi
隆二 山口
Hideaki Mizukami
秀昭 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16478297A priority Critical patent/JPH1112634A/en
Publication of JPH1112634A publication Critical patent/JPH1112634A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Details (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing technique of a molten low nitrogen steel only with an arc furnace equipment which secures denitrificating reaction speed in the molten steel and clarifies the supplying condition of carbon and oxygen to be supplied into the molten steel and an N concn. limitation in carrier gas at the time of adding the carbon into the molten steel in order to obtain the molten low nitrogen steel by restraining the nitrogen absorption. SOLUTION: After melting down raw material of scrap, etc., O2 and C are supplied into molten iron. The purity of O2 is limited to >=99.5 vol.% and oxygen supplying speed Q02 and oxygen supplying time t* are limited to 0.55<=Q02 <=1.35 (Nm3 /min/ton) and t*>=-7.2Q02 +15 (min). In the case a value in the right side of the inequality: Cadd >=(12/112)Q02 .t*.W-CMD (kg) is the positive value, the C adding quantity Cadd satisfying the inequality is supplied into the molten iron. At this time, the N concn. in the carrier gas for C is regulated to <=3 vol.%. Wherein, W is molten quantity (ton) at the time of completing the melting of the raw material and CMD is the carbon weight (kg) contained in the molten iron at the completing the melting of the raw material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、スクラップ、還
元鉄及び銑鉄等の鉄源原料をアーク炉で溶解・精錬して
鋼を製造する工程において、精錬期に溶鉄に高純度酸素
ガス及び炭素を供給して低窒素溶鋼を製造する方法に関
するものである。
BACKGROUND OF THE INVENTION The present invention relates to a process for producing steel by melting and refining iron source materials such as scrap, reduced iron and pig iron in an arc furnace, wherein high purity oxygen gas and carbon are added to the molten iron during the refining period. The present invention relates to a method for producing low nitrogen molten steel by supplying.

【0002】[0002]

【従来の技術】従来、アーク炉でスクラップを溶解し精
錬した溶鋼から、冷延鋼板や表面処理鋼板等の薄鋼板を
製造することは、スクラップ中に多量に含まれるCuや
Sn等の不純物元素が鋼材に残留し、材質に悪影響を及
ぼすという問題があるため不可能であった。しかしなが
ら、近年、スクラップ以外に還元鉄や溶銑の配合比率を
高めることにより、装入原料中のCuやSn等の不純物
元素の混入量を低減させることが可能となったので、ア
ーク炉製鋼法によっても従来の高炉−転炉製鋼法によっ
てしか製造できなかった深絞り用冷延鋼板を製造しよう
とする動きがある。
2. Description of the Related Art Conventionally, the production of thin steel sheets, such as cold-rolled steel sheets and surface-treated steel sheets, from molten steel obtained by melting and refining scraps in an electric arc furnace is based on impurities such as Cu and Sn contained in a large amount in the scraps. Is not possible due to the problem that the steel remains on the steel material and adversely affects the material. However, in recent years, by increasing the mixing ratio of reduced iron or hot metal other than scrap, it has become possible to reduce the amount of impurity elements such as Cu and Sn in the charged raw material, so that the arc furnace steelmaking method There is also a movement to manufacture cold-rolled steel sheets for deep drawing, which could only be manufactured by the conventional blast furnace-converter steelmaking method.

【0003】一方、深絞り用冷延鋼板は鋼中窒素に起因
する時効現象を抑制するために、窒素濃度を通常40p
pm以下に低減することが要求される。上記状況に対し
て、従来のアーク炉製鋼法による低窒素鋼製造技術とし
て、例えば、「最近のアーク炉製鋼法の進歩」(平成5
年10月7日、日本鉄鋼協会発行、第121頁)や「普
通鋼電気炉操業のストラテジー」(平成6年11月14
日、日本鉄鋼協会発行、第112頁)(以上2件を「先
行技術1」という)は、アーク炉での溶落ち時の溶湯C
濃度を高めにし、精錬期の脱炭反応に伴なうCOボイリ
ングを活発に行なわせたり、Arガス等による溶鋼のガ
ス撹拌により脱窒(脱N)を促進する方法を開示してい
るが、現状では溶鋼のN濃度を50〜60ppmまで減
少させるのが限界である。また、装入鉄源原料の75w
t.%以上を直接還元鉄とする高還元鉄配合操業により窒
素濃度が40ppm以下の溶鋼が得られるとの記載が
「5th European Electric St
eelCongress発表論文集」(1995年6月
19日開催、French Steel Federa
tion主催、Les Editions de la
Revue de Metallurgie発行、p.
41)(「先行技術2」という)にあるが、これには詳
細な製造方法は記載されていない。
On the other hand, in cold-rolled steel sheets for deep drawing, the nitrogen concentration is usually set at 40 p.
pm or less. In response to the above-mentioned situation, as a low-nitrogen steel manufacturing technique by a conventional arc furnace steelmaking method, for example, “Recent progress in arc furnace steelmaking” (Heisei 5
Published by the Iron and Steel Institute of Japan on October 7, 2006, p. 121) and “Strategy for Electric Steel Furnace Operation” (November 14, 1994)
Published by the Iron and Steel Institute of Japan, p. 112) (the above two cases are referred to as “prior art 1”).
A method is disclosed in which the concentration is increased to actively perform CO boiling accompanying the decarburization reaction in the refining period, or to promote denitrification (deN) by stirring the molten steel with Ar gas or the like. At present, the limit is to reduce the N concentration of molten steel to 50 to 60 ppm. Also, 75w of charged iron source material
The statement that molten steel having a nitrogen concentration of 40 ppm or less can be obtained by a high-reduction iron compounding operation in which at least t.% is directly reduced iron is described in “5th European Electric St.”
EelCongress Papers "(June 19, 1995, French Steel Federa)
sponsored by Tion, Les Editions de la
Revue de Metallurgie, p.
41) (referred to as “prior art 2”), but does not describe a detailed manufacturing method.

【0004】このように現在のところ、アーク炉による
低窒素鋼の溶製、例えば、窒素濃度40ppm以下の低
窒素鋼の溶製方法については明確な方法は提案されてい
ない。
As described above, at present, no specific method has been proposed for melting low nitrogen steel using an arc furnace, for example, melting low nitrogen steel having a nitrogen concentration of 40 ppm or less.

【0005】[0005]

【発明が解決しようとする課題】上述した先行技術1の
ように、アーク炉操業方法の改善により、N濃度50〜
60ppmレベルの低窒素鋼材を製造することは可能で
あり、熱延鋼板レベルの加工性を有する薄鋼板を製造す
ることはできるが、N濃度40ppm以下が要求される
深絞り用の冷延鋼板や表面処理鋼板を、特別に設備を付
加したり原料供給体制を付加したりせずにアーク炉操業
方法の改善により製造する技術は確立されていない。
As described in Prior Art 1 described above, by improving the operation method of the arc furnace, the N concentration becomes 50 to 50%.
It is possible to produce a low-nitrogen steel material at a level of 60 ppm, and it is possible to produce a thin steel sheet having workability at the level of a hot-rolled steel sheet. The technology for manufacturing surface-treated steel sheets by improving the operation method of the arc furnace without adding special equipment or a raw material supply system has not been established.

【0006】一方、上述した先行技術2によれば、アー
ク炉を用いてN濃度が40ppm以下の溶鋼を得ること
ができる。この方法は、直接還元鉄の供給が十分になさ
れ得る条件下においては低窒素鋼の製造に有効である。
しかしながら、配合率75wt.%以上という大量の直接還
元鉄を安定して供給し得るという特殊な条件を備えなけ
ればならないという問題がある。
On the other hand, according to the above-described prior art 2, molten steel having an N concentration of 40 ppm or less can be obtained using an arc furnace. This method is effective for producing low-nitrogen steel under conditions where the supply of direct reduced iron can be sufficiently provided.
However, there is a problem that special conditions must be provided such that a large amount of directly reduced iron having a mixing ratio of 75 wt.% Or more can be stably supplied.

【0007】この発明の課題は、上述した問題を解決す
るために、アーク炉における溶鋼の精錬において、溶鋼
からの脱N反応速度を大きく確保すると共に、溶鋼への
吸Nを抑止して低N溶鋼を得るための条件として、溶鋼
に供給すべき炭素及び酸素の供給条件、並びに炭素を溶
鋼に添加するときのキャリアーガス中のN濃度制限を明
らかにすることにあり、この発明の目的は、大量の直接
還元鉄を用いることなく、また真空脱ガス精錬プロセス
を付加することなく、アーク炉操業方法の改善のみによ
り窒素濃度25ppm以下の溶鋼を得るためのアーク炉
による低窒素溶鋼の製造方法を提供することにある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, it is an object of the present invention to ensure a high de-N reaction rate from molten steel in refining molten steel in an arc furnace and to suppress N absorption into molten steel by suppressing N absorption into molten steel. As conditions for obtaining molten steel, it is to clarify supply conditions of carbon and oxygen to be supplied to molten steel, and to limit N concentration in a carrier gas when carbon is added to molten steel. Without using a large amount of direct reduced iron and without adding a vacuum degassing refining process, a method for producing low-nitrogen molten steel using an arc furnace to obtain molten steel with a nitrogen concentration of 25 ppm or less only by improving the arc furnace operation method. To provide.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上記観点
からアーク炉操業方法を改善すべく鋭意研究を重ねた。
一般に、アーク炉精錬終了時における溶鋼の窒素濃度
〔N〕Tap は、精錬開始時の溶鋼の窒素濃度、即ち、炉
内に装入されたスクラップが溶解し終った時(溶落ち
時)の窒素濃度〔N〕MD、精錬期に炉内に吹き込まれた
酸素ガスと溶鋼中Cとの反応により生成したCO気泡へ
溶鋼中Nが離脱する量(脱N量)Δ〔N〕de、及び精錬
期に炉内へ侵入した窒素が溶鋼へ吸収された量(吸N
量)Δ〔N〕abの和:〔N〕MD−Δ〔N〕de+Δ〔N〕
abで表わされる。この発明は、溶落ち時の窒素濃度
〔N〕MDがスクラップ等原料からの持ち込みN量に依存
して与えられた場合である。従って、精錬終了時におけ
る溶鋼の窒素濃度〔N〕Tap をできるだけ低くするため
には、溶鋼への酸素ガス吹込みによる脱炭時にCO気泡
を大量に発生させて脱Nを促進させること、溶鋼表面を
被覆するスラグをフォーミングさせることにより溶鋼へ
の侵入空気を遮断して吸Nを抑制すること、及び溶鋼表
面に裸湯部分を作らせないようにして吸Nを防ぐことが
必要であり、更に、上記スラグのフォーミングを確保す
るために炉内への吹き込む炭素のキャリアーガス中のN
濃度をできるだけ小さくして、キャリアーガスからの溶
鋼吸Nをなくすことが重要である。
Means for Solving the Problems The present inventors have made intensive studies to improve the operation method of the arc furnace from the above viewpoint.
In general, the nitrogen concentration of molten steel at the end of arc furnace refining [N] Tap is the nitrogen concentration of molten steel at the start of refining, that is, the nitrogen concentration at the end of melting of scrap loaded in the furnace (during burn-down). Concentration [N] MD , amount of N released from molten steel to CO bubbles generated by the reaction between oxygen gas blown into the furnace during the refining period and C in molten steel (removed N amount) Δ [N] de , and refining Amount of nitrogen that has entered the furnace during the period
Amount) Δ [N] Sum of ab : [N] MD -Δ [N] de + Δ [N]
ab . In the present invention, the nitrogen concentration at the time of burn-down [N] MD is given depending on the amount of N carried in from a raw material such as scrap. Therefore, in order to reduce the nitrogen concentration [N] Tap of the molten steel at the end of refining as much as possible, a large amount of CO bubbles are generated during decarburization by blowing oxygen gas into the molten steel to promote denitrification. It is necessary to form a slag covering the steel to block air entering the molten steel and thereby suppress N absorption, and to prevent the absorption of N by preventing a bare metal portion from being formed on the surface of the molten steel. And N in the carrier gas of carbon blown into the furnace to secure the slag forming.
It is important to reduce the concentration as much as possible to eliminate the absorption of molten steel N from the carrier gas.

【0009】この発明において本発明者等は、特に、炭
素吹込み用キャリアーガス中の窒素濃度の制限、及び精
錬中の裸湯出現の防止に着眼した。こうして、脱Nを促
進させるためのCO発生条件、スラグのフォーミングを
十分確保するための条件、炭素キャリアーガス中の窒素
濃度の制限条件、及び精錬中に裸湯出現防止のスラグ量
の確保について、60tonから200ton規模のア
ーク炉を用いて種々の試験を行ない、試験結果を解析し
た。
In the present invention, the present inventors have particularly focused on limiting the nitrogen concentration in the carrier gas for carbon injection and preventing the appearance of hot water during refining. Thus, the conditions for generating CO to promote denitrification, the conditions for ensuring sufficient slag forming, the limiting conditions for the nitrogen concentration in the carbon carrier gas, and the securing of the amount of slag for preventing the appearance of bare water during refining, Various tests were performed using an arc furnace on a scale of 60 to 200 tons, and the test results were analyzed.

【0010】その結果、アーク炉精錬終了時に窒素濃度
が25ppm以下の低窒素溶鋼を得るためには、少なく
とも下記〜の条件を同時に満たす必要があるとの結
論を得た。
As a result, it has been concluded that at the end of the refining of the arc furnace, in order to obtain a low-nitrogen molten steel having a nitrogen concentration of 25 ppm or less, it is necessary to simultaneously satisfy at least the following conditions.

【0011】 上述した脱N量Δ〔N〕deを大きくす
るためには、所定値以上の脱N速度で所定時間以上送酸
しなければならない。即ち、精錬期における炉内への送
酸速度Qo2が下記(4)式、望ましくは(5)式: Qo2≧0.55 Nm3 /min/ton ----------(4) Qo2≧0.67 Nm3 /min/ton ----------(5) を満たす条件下で、所定の送酸時間(t* min)の吹
錬をすることが必要である。この送酸速度Qo2に対して
溶鋼から十分なCOガス発生速度を得るのに必要なC濃
度〔C〕* (wt.%)を溶鋼中に確保する。上記(4)又
は(5)式の条件は、溶鋼の脱N反応:2=N
2 (g)の反応速度を確保するための必要条件である。
In order to increase the above-mentioned de-N amount Δ [N] de , it is necessary to feed acid at a de-N rate higher than a predetermined value for a predetermined time. That is, oxygen-flow-rate Qo 2 is the following equation (4) into the furnace in the refining period, preferably (5): Qo 2 ≧ 0.55 Nm 3 / min / ton ---------- (4) Blowing for a predetermined acid supply time (t * min) under the condition of Qo 2 ≧ 0.67 Nm 3 / min / ton ----- (5) is necessary. The C concentration [C] * (wt.%) Necessary for obtaining a sufficient CO gas generation rate from the molten steel with respect to the acid supply rate Qo 2 is secured in the molten steel. The condition of the above formula (4) or (5) is the de-N reaction of molten steel: 2 N = N
2 This is a necessary condition for securing the reaction rate of (g).

【0012】 精錬により所定値以下の低い窒素濃度
の溶鋼を得るためには、更に、脱N反応:2=N
2 (g)を所定時間以上継続させ、脱N量Δ〔N〕de
所定値以上にしなければならない。そのために必要な送
酸時間t* (min)は、下記(2)式: t* ≧−7.2Qo2+15 (min) ----------(2) を満たすことが必要である。但し、送酸時間を長くする
ほど、溶鋼の脱炭量は増えるので、溶落ち時炭素濃度
〔C〕MDと精錬終了時の目標炭素濃度〔C〕Tap,aim
の差:〔C〕MD−〔C〕 Tap,aim の大きさに応じて送酸
時間の上限が定まる。
Low nitrogen concentration below a predetermined value due to refining
In order to obtain molten steel of N, the de-N reaction:N= N
Two(G) is continued for a predetermined time or more, and the N removal amount Δ [N]deTo
Must be greater than or equal to a predetermined value. Sending necessary for that
Acid time t*(Min) is calculated by the following equation (2): t*≧ -7.2QoTwo+15 (min) ---------- It is necessary to satisfy (2). However, extend the acid supply time
As the decarbonization of molten steel increases, the carbon concentration at the time of
[C]MDAnd target carbon concentration at the end of refining [C]Tap, aimWhen
Difference: [C]MD-[C] Tap, aimAcid transfer according to the size of
The time limit is set.

【0013】 上記で述べた必要なC濃度〔C〕*
(wt.%)を確保するためには、精錬期間に送酸される全
酸素が溶鋼中炭素と反応してCOを生成すると仮定した
場合の炭素の当量C* (kg)以上に、溶鋼の炭素含有
総量T.C(kg)が存在することが、必要である。即
ち、下記(6)式: T.C≧C* ------------(6) を満たすことが必要である。ここで、T.C及びC*
それぞれ下記(7)及び(8)式: T.C=CMD+Cadd (kg) ------------(7) C* =(12/11.2)Qo2* W (kg) ------------(8) 但し、 CMD:溶落ち時の溶鋼に含まれる炭素重量(kg) Cadd :吹錬中に溶鋼に添加すべき炭素重量(kg) W :溶落ち時の溶鋼重量(ton) で表わされる。(6)式と(7)及び(8)式とから下
記(9)式: CMD+Cadd ≧(12/11.2)Qo2* W ------------(9) が得られ、これより下記(3)式: Cadd ≧(12/11.2)Qo2* W−CMD(kg)--------- (3) が得られる。ここで、上記(3)式の右辺の算出値が正
の値の場合は、上記(6)式を満たすためには、(3)
式が満たされる炭素添加量Cadd の炭素を溶鋼に供給し
つつ精錬しなければならない。しかし、(3)式の右辺
の算出値が負の値の場合は、溶鉄に炭素を供給せずに精
錬してもよい。一方、溶鋼に供給するCadd を多くする
につれて精錬終了時の目標炭素濃度〔C〕Tap,aim まで
の脱炭量を多くしなければならない。これは脱N量Δ
〔N〕deが増えるという点では有利であるが、それだけ
精錬時間が延びる。従って、Cadd の量は、精錬終了時
の目標窒素濃度と許される精錬所要時間とのバランス
等、目標操業条件を考慮して決める。
The required C concentration [C] * described above
(Wt.%), The total amount of oxygen fed during the refining period should be equal to or greater than the carbon equivalent C * (kg), assuming that the oxygen reacts with the carbon in the molten steel to produce CO. Total carbon content It is necessary that C (kg) be present. That is, the following equation (6): It is necessary to satisfy C ≧ C * -------- (6). Here, T. C and C * are the following formulas (7) and (8), respectively: C = C MD + C add ( kg) ------------ (7) C * = (12 / 11.2) Qo 2 t * W (kg) -------- ---- (8) where C MD : weight of carbon contained in molten steel at the time of meltdown (kg) C add : weight of carbon to be added to molten steel during blowing (kg) W: weight of molten steel at the time of meltdown (Ton). From the expressions (6) and (7) and (8), the following expression (9): CMD + Cadd ≧ (12 / 11.2) Qo 2 t * W ------------ (9) is obtained, from which the following formula (3) is obtained: C add ≧ (12 / 11.2) Qo 2 t * W-C MD (kg) -------- (3) Can be Here, when the calculated value on the right side of Expression (3) is a positive value, in order to satisfy Expression (6), Expression (3)
Smelting must be performed while supplying carbon with a carbon addition amount C add that satisfies the formula to the molten steel. However, when the calculated value on the right side of the equation (3) is a negative value, refining may be performed without supplying carbon to the molten iron. On the other hand, as the amount of C add supplied to the molten steel increases , the decarbonization amount up to the target carbon concentration [C] Tap, aim at the end of refining must be increased. This is the de-N amount Δ
[N] It is advantageous in that de increases, but the refining time is prolonged accordingly. Therefore, the amount of C add is determined in consideration of the target operating conditions such as the balance between the target nitrogen concentration at the end of refining and the permissible required refining time.

【0014】このように、(4)式望ましくは(5)式
の送酸速度Qo2で酸素ガスを炉内へ供給し、且つ、
(3)式及び(2)式が同時に満たされるように溶鋼中
にCaddの炭素を添加しつつ時間t* の間送酸を継続す
る必要がある。
As described above, oxygen gas is supplied into the furnace at the acid supply rate Qo 2 of the equation (4), preferably the equation (5), and
It is necessary to continue the acid supply for the time t * while adding carbon of C add to the molten steel so that the expressions (3) and (2) are simultaneously satisfied.

【0015】但し、炉内へ送酸する酸素ガスは、純度9
9.5vol.% 以上の酸素ガスであることが必要である。
通常、純酸素ガスは空気から製造するので主な不純物ガ
スとして窒素を含む。送酸すべき酸素ガス中に窒素が
0.5vol.% 以上含有されると精錬終了時に溶鋼中窒素
濃度が安定して25ppm以下にならないからである。
However, the oxygen gas sent into the furnace has a purity of 9%.
It is necessary that the oxygen gas is 9.5 vol.% Or more.
Normally, pure oxygen gas is produced from air, and thus contains nitrogen as a main impurity gas. This is because if the oxygen gas to be acidified contains 0.5 vol.% Or more of nitrogen, the nitrogen concentration in the molten steel does not become 25 ppm or less at the end of refining.

【0016】また、精錬期における送酸速度Qo2は大き
いほどCOボイリングは活発になり、溶鋼の脱Nには有
利となり低窒素溶鋼を得るには有利であるが、一方CO
ガス発生速度が大きくなるにつれてスプラッシュの発生
量も多くなり溶鋼歩留の低下、及びスプラッシュ地金の
側壁等への堆積による操業上の問題が生じる。上記問題
の発生を防ぐためにこの発明においては送酸速度Qo2
1.35Nm3 /min/ton以下に限定する。従っ
て、精錬期における送酸速度Qo2を、下記(1)式: 0.55≦Qo2≦1.35(Nm3 /min/ton)----------(1) の通り限定する。なお、図1に、この発明において送酸
速度Qo2及び送酸時間t * が満たすべき範囲を斜線で図
示した。同図中、送酸時間t* の上限値は、上記に述
べたように、操業条件の一種である〔C〕MD−〔C〕
Tap,aim により決まる。
Also, the acid supply rate Qo in the refining periodTwoIs large
CO boiling has become more active and is effective in removing N from molten steel.
This is advantageous for obtaining low nitrogen molten steel,
Splash generation as gas generation rate increases
As the amount increases, the yield of molten steel decreases,
Operational problems arise due to deposition on the side walls and the like. The above problem
In the present invention, in order to prevent the generation of acid,TwoTo
1.35 NmThree/ Min / ton or less. Follow
The acid transfer rate Qo in the refining periodTwoWith the following formula (1): 0.55 ≦ QoTwo≤1.35 (NmThree/ Min / ton) ---------- Limited as (1). Note that FIG.
Speed QoTwoAnd acid supply time t *The area that should be satisfied
Indicated. In the figure, the acid feeding time t*The upper limit of
As you can see, it is a kind of operating condition [C]MD-[C]
Tap, aimIs determined by

【0017】 溶鋼中に上記Cadd の炭素を添加する
方法として、コークス等を炉内に直接投入する方法と、
キャリアーガスと共にインジュションする(吹き込む)
方法とがある。直接投入する方法では炭素がスラグ上に
浮遊してしまい、脱炭反応にあまり寄与せず効果的でな
い。従って、インジェクション用ランスを用い、キャリ
アーガスにより炭素を溶鋼中に添加する。ランスパイプ
の先端をスラグと溶鋼との界面近傍にねらいを定める。
ここで、キャリアーガス中の窒素濃度を低く制限するこ
とが特に重要である。
As a method of adding the carbon of the C add to the molten steel, a method of directly charging coke or the like into a furnace,
Inject with carrier gas
There is a way. In the direct injection method, carbon floats on the slag, and does not contribute much to the decarburization reaction, which is not effective. Therefore, carbon is added to molten steel by a carrier gas using an injection lance. Aim at the tip of the lance pipe near the interface between the slag and the molten steel.
Here, it is particularly important to limit the nitrogen concentration in the carrier gas to a low level.

【0018】図2に、Arガスをキャリアーガスとして
用いた場合、キャリアーガス中の窒素濃度を種々変化さ
て、精錬終了時における溶鋼の窒素濃度を分析試験した
結果を示す。同図の実験条件は、〔C〕MD=0.3〜
0.5(wt.%)、精錬用酸素ガスの純度=99.5(vo
l.% )、Qo2=0.74〜0.75(Nm3 /min/
ton)、溶落ち後の送酸時間=9.6〜9.7(mi
n)、Cadd =600〜650(kg)、溶鋼量=12
0(ton)、スラグ量=250〜300(kg/m2
−溶鋼表面積)及び終点温度=1590〜1600℃で
ある。同図からわかるように、溶鋼中の窒素濃度を25
ppm以下に低減させるためには、キャリアーガス中の
窒素濃度を3vol.% 以下にすることが必要である。従
来、アーク炉操業において、溶鋼の脱炭量を多くするた
めに炉内へ炭素を吹き込む場合には、炭素のキャリアー
ガスとして一般に空気が使われていた。そのため、キャ
リアーガスからの吸Nが著しく、低窒素鋼の溶製は困難
であった。
FIG. 2 shows the results of an analytical test of the nitrogen concentration of molten steel at the end of refining by varying the nitrogen concentration in the carrier gas when using Ar gas as the carrier gas. Experimental conditions in the figure, [C] MD = 0.3 to
0.5 (wt.%), Purity of oxygen gas for refining = 99.5 (vo
l.%), Qo 2 = 0.74 to 0.75 (Nm 3 / min /
ton), acid sending time after burn-through = 9.6 to 9.7 (mi)
n), C add = 600-650 (kg), molten steel amount = 12
0 (ton), slag amount = 250 to 300 (kg / m 2)
-Molten steel surface area) and end point temperature = 1590-1600 ° C. As can be seen from the figure, the nitrogen concentration in the molten steel was 25%.
In order to reduce the concentration to less than ppm, it is necessary to reduce the nitrogen concentration in the carrier gas to 3 vol.% or less. Conventionally, in the operation of an arc furnace, when carbon is blown into the furnace in order to increase the amount of decarburized molten steel, air has generally been used as a carbon carrier gas. Therefore, absorption of N from the carrier gas is remarkable, and it is difficult to melt the low nitrogen steel.

【0019】この発明において、精錬終了時の窒素濃度
を25ppm以下に安定させるためには、上記〜に
加えて更に、下記及び/又はの条件を付加した精錬
を行なうことが望ましい。
In the present invention, in order to stabilize the nitrogen concentration at the end of refining to 25 ppm or less, it is desirable to carry out refining in addition to the above conditions and further adding the following and / or conditions.

【0020】 通常の操業においては、精錬終了時の
目標炭素濃度〔C〕Tap,aim が与えられる。従って、溶
落ち時の炭素濃度〔C〕MDが高いほど、脱炭すべき炭素
濃度:〔C〕MD−〔C〕Tap,aim は大きくなる。逆に、
溶落ち時の炭素濃度〔C〕MDが低いほど、脱炭すべき炭
素濃度:〔C〕MD−〔C〕Tap,aim は小さくてよい。し
かし、〔C〕MD−〔C〕Tap,aim が小さいほど、所要の
脱炭に伴い発生するCO量は少ないから、脱N量Δ
〔N〕deも少なくなり、低窒素溶鋼の製造上不利とな
る。そこで、〔C〕MD−〔C〕Tap,aim が小さい場合に
は、精錬中の炭素添加量Cadd を、上記(3)式で表わ
された範囲内で多目に決定する。この決定された炭素添
加量Cadd に応じて、送酸速度Qo2及び送酸時間t*
範囲を、それぞれ(1)及び(2)式を満たすことを前
提として、精錬終了時の窒素濃度が安定して25ppm
以下になるための一層望ましい条件は次の通りである。
In a normal operation, a target carbon concentration [C] Tap, aim at the end of refining is given. Therefore, the higher the carbon concentration [C] MD at the time of burn-through, the larger the carbon concentration to be decarburized: [C] MD- [C] Tap, aim . vice versa,
The lower the carbon concentration [C] MD at the time of burn-through, the smaller the carbon concentration to be decarburized: [C] MD- [C] Tap, aim . However, the smaller the [C] MD- [C] Tap, aim is, the smaller the amount of CO generated by the required decarburization is.
[N] de is also reduced, which is disadvantageous in the production of low nitrogen molten steel. Therefore, when [C] MD- [C] Tap, aim is small, the amount of carbon addition C add during refining is determined to be more within the range represented by the above equation (3). Depending on the determined carbon amount C the add, the oxygen-flow-rate Qo 2 and oxygen-flow time t * of the range, on the assumption that meet their (1) and (2), the nitrogen concentration at the time of refining End Is stable and 25ppm
The more desirable conditions for the following are as follows.

【0021】本発明者等は、上述した〜までの条件
を満たし、精錬終了時の溶鋼窒素濃度25ppm以下が
得られたアーク炉精錬試験ヒートを用いて、溶落ちから
精錬終了までの所要脱炭量〔C〕MD−〔C〕
Tap,aim と、その間の送酸量Qo2* との関係を調べる
と、図3のプロットが得られた。図3から、精錬終了時
の目標炭素濃度〔C〕Tap,aim が与えられた場合、溶落
ち時に炭素濃度〔C〕MDを分析して所要脱炭量〔C〕MD
−〔C〕Tap,aim を算出し、この値の増加につれて送酸
量Qo2* を増大させ、且つ、同図中の曲線A以上の値
とならないようにQo2とt * との組合せを決定する。
The present inventors have set forth the above-mentioned conditions (1) to (4).
And the molten steel nitrogen concentration at the end of refining is 25 ppm or less.
Using the obtained arc furnace refining test heat,
Required decarburization amount until refining ends [C]MD-[C]
Tap, aimAnd the amount of acid transfer Qo between themTwot*Find out the relationship with
And the plot of FIG. 3 was obtained. From Fig. 3, at the end of refining
Target carbon concentration [C]Tap, aimIf given
Carbon concentration [C]MDAnd the required decarburization amount [C]MD
-[C]Tap, aimIs calculated, and as this value increases,
Quantity QoTwot*And a value greater than or equal to curve A in FIG.
Qo not to becomeTwoAnd t *Is determined.

【0022】但し、Qo2及びt* は、前記図1に示され
た領域内に限定される。この領域(斜線部)の上限(破
線Qで例示した)は、精錬許容時間や精錬終了時の溶鋼
上限温度等の制約等、操業条件から決められる(同図
中、双曲線Bが送酸量Qo2*の上限となる)。従っ
て、図3においてもこれに対応する送酸量Qo2* の上
限値が存在する。
However, Qo 2 and t * are limited within the region shown in FIG. The upper limit (illustrated by the dashed line Q) of this region (hatched portion) is determined by operating conditions such as the allowable refining time and the upper limit temperature of molten steel at the end of refining, etc. (in FIG. 2 t * ). Therefore, FIG. 3 also has a corresponding upper limit of the acid supply amount Qo 2 t * .

【0023】 炉内溶鋼の上表面を覆うスラグ量が少
ないと、溶鋼への酸素ガス吹込みによる脱炭時にスラグ
層厚さが不均一になり裸湯が現れる場合がある。この場
合、炉内に侵入した空気中の窒素ガスが溶鋼に吸収さ
れ、溶鋼脱窒の促進が阻害され、所定の精錬時間内に目
標炭素濃度が得られなかったり、あるいは、精錬時間を
延長しても一定値までしか窒素濃度が下がらない。こう
した現象を発生させないためには、スラグ量を溶鋼上表
面に150乃至200kg/m2 以上確保する必要があ
る。こうすることにより、安定して溶鋼の窒素濃度を2
5ppm以下まで下げることができる。一方、スラグ量
は多い方が裸湯が現れないという点では有利であるが、
正常に溶融したスラグが形成されなければならない。従
って、そのスラグ量の上限値は鋼浴の深さ/直径の値に
より一律に定めることはできないが、通常300〜40
0kg/m2 の範囲内にすればよい。
If the amount of slag covering the upper surface of the molten steel in the furnace is small, the thickness of the slag layer becomes non-uniform at the time of decarburization by blowing oxygen gas into the molten steel, and bare water may appear. In this case, the nitrogen gas in the air that has entered the furnace is absorbed by the molten steel, which hinders the promotion of denitrification of the molten steel, and the target carbon concentration cannot be obtained within the predetermined refining time, or the refining time is extended. However, the nitrogen concentration decreases only to a certain value. In order to prevent such a phenomenon from occurring, it is necessary to secure a slag amount of 150 to 200 kg / m 2 or more on the molten steel upper surface. By doing so, it is possible to stably reduce the nitrogen concentration of the molten steel to 2
It can be reduced to 5 ppm or less. On the other hand, a large amount of slag is advantageous in that bare water does not appear,
A normally molten slag must be formed. Therefore, the upper limit of the slag amount cannot be uniformly determined by the value of the depth / diameter of the steel bath, but is usually 300 to 40.
It may be within the range of 0 kg / m 2 .

【0024】以上より、この発明のアーク炉による低窒
素溶鋼の製造方法は、次の通りである。請求項1記載の
発明は、アーク炉でスクラップ、還元鉄及び銑鉄等の鉄
源原料の内少なくとも一種を溶解し、原料の溶解が終了
した(溶落ちした)後、炉内に形成された溶鉄に酸素ガ
ス及び炭素を供給し、溶鉄を精錬し低窒素溶鋼を製造す
る。この溶製方法において、酸素ガスの純度、送酸速
度、送酸時間、炭素添加量、及び炭素キャリアーガス中
の窒素濃度を次の通り限定することに特徴を有するもの
である。即ち、酸素ガスの純度を99.5vol.% 以上と
し、送酸速度Qo2及び送酸時間t* がそれぞれ下記
(1)及び(2)式: 0.55≦Qo2≦1.35(Nm3 /min/ton)----------(1) t* ≧−7.2Qo2+15(min) ------------(2) を満たし、且つ、下記(3)式: Cadd ≧(12/11.2)Qo2* W−CMD(kg)--------- (3) 但し、 W :原料溶解終了時の溶鉄量(ton) CMD:原料溶解終了時の溶鉄に含まれる炭素重量(k
g) で算出される炭素添加量Cadd が正の値のときには当該
炭素添加量Cadd の炭素を窒素濃度が3vol.% 以下のキ
ャリアーガスで炉内溶鉄に吹き込みながら精錬するもの
である。
As described above, the method for producing low-nitrogen molten steel using the arc furnace of the present invention is as follows. According to the first aspect of the present invention, at least one of iron source materials such as scrap, reduced iron and pig iron is melted in an arc furnace, and molten iron formed in the furnace after melting of the raw material is completed (burned down). To supply oxygen gas and carbon to smelt molten iron to produce low nitrogen molten steel. This smelting method is characterized in that the purity of the oxygen gas, the acid supply rate, the acid supply time, the amount of carbon added, and the nitrogen concentration in the carbon carrier gas are limited as follows. That is, the purity of the oxygen gas is 99.5 vol.% Or more, and the acid supply rate Qo 2 and the acid supply time t * are expressed by the following formulas (1) and (2): 0.55 ≦ Qo 2 ≦ 1.35 (Nm 3 / min / ton) ---------- (1) t * ≧ -7.2 Qo 2 +15 (min) ------------ (2) is satisfied, and And the following formula (3): C add ≧ (12 / 11.2) Qo 2 t * W-C MD (kg) --- (3) where W: molten iron at the end of melting of the raw material Amount (ton) C MD : Weight of carbon contained in molten iron at the end of melting of raw material (k
When the carbon addition amount C add calculated in g) is a positive value, refining is performed while blowing the carbon of the carbon addition amount C add into the molten iron in the furnace with a carrier gas having a nitrogen concentration of 3 vol.% or less.

【0025】請求項2記載の発明は、請求項1記載の方
法において、(3)式中の溶落ち時から精錬終了時まで
の送酸量であるQo2* の値を、溶落ち時から精錬終了
時までの溶鋼の所要脱炭量〔C〕MD−〔C〕
Tap ,aim(但し、〔C〕MD:溶落ち時の炭素濃度、
〔C〕Tap ,aim:精錬終了時の目標炭素濃度)の増加に
つれて所定の割合で増加させるように、送酸速度Qo2
び送酸時間t* のそれぞれの値を決定することに特徴を
有するものである。
According to a second aspect of the present invention, in the method of the first aspect, the value of Qo 2 t * , which is the amount of acid supply from the time of burn-through to the end of refining in the equation (3), Required decarburization of molten steel from the time of refining to the end of refining [C] MD- [C]
Tap, aim (However, [C] MD : carbon concentration at burn-through,
[C] Tap, aim : is characterized in that the respective values of the acid supply rate Qo 2 and the acid supply time t * are determined so as to increase at a predetermined rate with an increase in the target carbon concentration at the end of refining. Things.

【0026】請求項3記載の発明は、請求項1又は2記
載の方法において、溶鉄の精錬時に溶鉄の上表面を15
0〜400kg/m2 の範囲内のスラグで覆って行なう
ことに特徴を有するものである。
According to a third aspect of the present invention, there is provided the method according to the first or second aspect, wherein the upper surface of the molten iron is reduced by 15 mm when the molten iron is refined.
It is characterized in that it is covered with a slag in the range of 0 to 400 kg / m 2 .

【0027】[0027]

【発明の実施の形態】次に、この発明の実施形態の望ま
しい例を説明する。所定の製鋼用直流アーク炉に溶解原
料として鋼スクラップと冷銑とを装入し、更に初装入コ
ークス及び造滓材を装入し、酸素ガスを付加しながら原
料を溶解すると共に溶湯表面に溶融スラグを形成させ
る。溶落ち後、溶鋼の測温及び炭素濃度の分析をする。
次いで、精錬期において送酸速度Qo2(Nm3 /min
/ton)、送酸時間t* (min)で吹錬し、この間
固体炭素源として粉コークスを炭素量換算値でC
add (kg)だけ吹込みながら精錬した。ここで、送酸
速度Qo2、送酸時間t* 及び炭素添加量Cadd は、それ
ぞれ上記(5)、(2)及び(3)式を満たすように調
整する。精錬終了後、溶鋼の測温、所定の成分組成分析
をし、取鍋への出鋼時に所定量の合金鉄を添加し成分組
成を調整する。
Next, a preferred example of an embodiment of the present invention will be described. A predetermined steelmaking DC arc furnace is charged with steel scrap and cold iron as melting raw materials, further charged with initially charged coke and slag-making material, and melts the raw material while adding oxygen gas, and also on the surface of the molten metal. Form molten slag. After the burn-down, the temperature of the molten steel is measured and the carbon concentration is analyzed.
Next, in the refining period, the acid supply rate Qo 2 (Nm 3 / min)
/ Ton) and blowing for t * (min) during the acid supply time. During this time, coke breeze was converted to carbon as a solid carbon source in terms of carbon content.
only add (kg) was refining while watching blow. Here, the acid supply rate Qo 2 , the acid supply time t *, and the carbon addition amount C add are adjusted so as to satisfy the above equations (5), (2) and (3), respectively. After the refining, the temperature of the molten steel is measured and a predetermined component composition is analyzed. At the time of tapping into a ladle, a predetermined amount of iron alloy is added to adjust the component composition.

【0028】上述したように、精錬期において(5)、
(2)及び(3)式が同時に満足され、しかも溶鋼中へ
のC吹込みキャリアーガス中のN濃度を3vol.% 以下と
しなければならないという知見は、溶鋼の脱Nに及ぼす
COボイリング気泡中のN分圧、脱N反応速度と吸N反
応速度とのバランスにより定まる脱N速度、及び、脱N
所要時間の影響に着眼し、実炉による試験結果を解析し
て得られたものである。この場合、送酸により溶鋼中炭
素と反応して発生するCOガス気泡中に溶鋼中の窒素が
拡散して捕捉され、溶鋼表面の溶融スラグ層を経て鋼浴
から抜け出る。同時にこのとき、溶融スラグはこのCO
気泡によりフォーミング状態になり、鋼浴を炉内への侵
入空気から遮断する働きをする。また、この発明では、
純度99.5vol.% 以上の酸素ガスを使用するので、酸
素ガス中の窒素濃度は0.5vol.% 未満となるから、フ
ォーミングスラグ中のガスの窒素分圧は0.0025a
tm以下が期待される。従って、例えば、1600℃に
おける上記ガスと溶鋼との間の平衡窒素濃度は22.5
ppmと算出され、フォーミングスラグ層からの吸N現
象が起きることはない。上記理由により、溶鋼の脱Nが
進行し精錬終了時には25ppm以下の低窒素溶鋼が得
られる。
As described above, in the refining period (5),
The knowledge that the expressions (2) and (3) are satisfied at the same time and that the N concentration in the carrier gas into which C is injected into the molten steel must be 3 vol. N pressure, N removal rate determined by the balance between the N removal rate and the N absorption rate, and
Focusing on the effect of the required time, it was obtained by analyzing the test results using an actual furnace. In this case, nitrogen in the molten steel is diffused and captured in CO gas bubbles generated by reacting with carbon in the molten steel due to acid supply, and escapes from the steel bath through a molten slag layer on the surface of the molten steel. At the same time, the molten slag
The bubbles enter the forming state and serve to block the steel bath from air entering the furnace. In the present invention,
Since oxygen gas having a purity of 99.5 vol.% Or more is used, the nitrogen concentration in the oxygen gas is less than 0.5 vol.%, And the nitrogen partial pressure of the gas in the forming slag is 0.0025 a.
tm or less is expected. Thus, for example, the equilibrium nitrogen concentration between the gas and molten steel at 1600 ° C. is 22.5
ppm, and the phenomenon of N absorption from the forming slag layer does not occur. For the above reasons, the denitrification of the molten steel proceeds, and at the end of refining, a low nitrogen molten steel of 25 ppm or less is obtained.

【0029】[0029]

【実施例】次に、この発明の低窒素溶鋼の製造方法を、
実施例によって更に詳細に説明する。本発明の範囲内の
方法である実施例を、上述した実施形態の例に準じて試
験し、適宜、本発明の範囲外の比較例も試験した。試験
方法は次の通りである。
Next, a method for producing a low nitrogen molten steel of the present invention will be described.
This will be described in more detail with reference to examples. Examples which are methods within the scope of the invention were tested according to the examples of the embodiments described above, and comparative examples outside the scope of the invention were tested where appropriate. The test method is as follows.

【0030】120ton直流アーク溶解炉(電気容
量:72MVA)で、鋼スクラップ:90wt.%、冷銑:
10wt.%及び初装入コークス:12〜23kg/装入t
on、並びに造滓材:27〜30kg/装入tonを装
入し、酸素ガスを付加しながらアーク熱及び炭素の燃焼
熱で装入原料を加熱・溶解した。溶落ち後、粉コークス
(C純度:85wt.%)を鋼浴に吹き込みながら酸素を供
給した。酸素は、純度99.5vol.% の純酸素ガス(製
法:深冷法)を送酸し精錬すると共に脱Nし、低窒素溶
鋼を製造した。但し、比較例の一部では純度94vol.%
の純酸素を使用した。なお、溶湯表面の溶融スラグ量は
300〜350kg/m2 であった。
In a 120 ton DC arc melting furnace (electric capacity: 72 MVA), steel scrap: 90 wt.
10 wt.% And initially charged coke: 12 to 23 kg / charged t
On and slag-making material: 27 to 30 kg / charged ton were charged, and the charged raw material was heated and melted by arc heat and carbon combustion heat while adding oxygen gas. After burn-through, oxygen was supplied while blowing coke breeze (C purity: 85 wt.%) Into the steel bath. Oxygen was supplied from pure oxygen gas having a purity of 99.5 vol.% (Production method: deep cooling method), refined and de-N-treated to produce low nitrogen molten steel. However, in some of the comparative examples, the purity was 94 vol.%.
Pure oxygen was used. The amount of molten slag on the surface of the molten metal was 300 to 350 kg / m 2 .

【0031】表1〜4に、実施例及び比較例(実施例1
〜7、及び比較例1〜7)の試験条件を示す。同表に
は、送酸速度Qo2、(2)式により定まる所要送酸時間
* 、送酸時間の実績値、溶落ち時の溶鋼C濃度〔C〕
MD及び溶鋼中C重量CMD、(3)式により定まる所要炭
素添加量Cadd (コークス中のC換算値)、その実績
値、及びキャリアーガス(Arガス)中のN濃度を示し
た。
Tables 1 to 4 show Examples and Comparative Examples (Example 1).
Test conditions of Comparative Examples 1 to 7 and Comparative Examples 1 to 7) are shown. In the same table, the acid supply rate Qo 2 , the required acid supply time t * determined by the equation (2), the actual value of the acid supply time, and the molten steel C concentration at the time of meltdown [C]
MD and C weight in molten steel C MD , required carbon addition amount C add (C conversion value in coke) determined by equation (3), the actual value thereof, and N concentration in carrier gas (Ar gas) are shown.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】上記溶製条件により薄鋼板向け低炭素溶鋼
を製造した。表1〜4に、精錬終了時の溶鋼窒素濃度を
併記する。また、図4に、溶落ち後の精錬の進行に伴う
溶鋼の脱窒曲線を示す。
Under the above smelting conditions, a low-carbon molten steel for a thin steel sheet was manufactured. Tables 1 to 4 also show the nitrogen concentration of molten steel at the end of refining. FIG. 4 shows a denitrification curve of molten steel as refining progresses after burn-down.

【0037】・比較例1〜3の試験条件は、実施例1〜
7と比較し、コークスを鋼浴中に吹き込むときのArキ
ャリアーガス中の窒素濃度が3vol.% 以上と高い場合で
ある。前記図2に示した通り、Arキャリアーガス中の
N濃度が増加するにつれて、溶鋼中窒素濃度は増加する
ので、この比較例1〜3の場合は、送酸時間12min
後(精錬終了時)の溶鋼の窒素濃度を25ppmにする
ためには、Arキャリアーガス中の窒素濃度を3vol.%
以下にする必要がある。これは、キャリアーガス中の窒
素濃度が高いほど、フォーミングスラグ中のガスの窒素
分圧が高くなるため、溶鋼の平衡窒素濃度も高くなり、
脱N反応が十分に進行しなかったためと考えられる。
The test conditions of Comparative Examples 1 to 3 are the same as those of Examples 1 to
Compared to No. 7, the nitrogen concentration in the Ar carrier gas when coke was blown into the steel bath was as high as 3 vol.% Or more. As shown in FIG. 2, the nitrogen concentration in the molten steel increases as the N concentration in the Ar carrier gas increases.
In order to make the nitrogen concentration of the molten steel after (at the end of refining) 25 ppm, the nitrogen concentration in the Ar carrier gas should be 3 vol.%.
It must be: This is because the higher the nitrogen concentration in the carrier gas, the higher the nitrogen partial pressure of the gas in the forming slag, the higher the equilibrium nitrogen concentration in the molten steel,
It is considered that the de-N reaction did not proceed sufficiently.

【0038】・比較例4及び5の試験条件は、実施例1
〜7と比較し、精錬中の炭素添加量が本発明の範囲外に
低く(例えば、比較例4では所要炭素添加量:797k
g以上に対してこれよりも少ない601kgの炭素が添
加され)、この点だけが本発明の範囲内から外れてい
る。送酸時間12〜15min後(精錬終了時)の溶鋼
の窒素濃度は、40〜45ppmまでしか低下していな
い。これは、送酸中の溶鋼の炭素濃度の不足により精錬
期後半のスラグフォーミングが不足したため、吸Nを十
分に抑制することができなかったものと考えられる。
The test conditions of Comparative Examples 4 and 5 are the same as in Example 1.
7, the amount of carbon added during refining is low outside the range of the present invention (for example, in Comparative Example 4, the required amount of carbon added: 797 k)
Less than 601 kg of carbon is added for g or more), which is only outside the scope of the invention. The nitrogen concentration of the molten steel after the acid supply time of 12 to 15 minutes (at the end of refining) has only decreased to 40 to 45 ppm. This is considered to be because the slag forming in the latter half of the refining period was insufficient due to the insufficient carbon concentration of the molten steel during the acid supply, and thus the absorption of N could not be sufficiently suppressed.

【0039】・比較例6及び7の試験条件は、実施例1
〜7と比較し、精錬中酸素ガスの純度が本発明の範囲外
に低く(純度:94vol.% (PSA酸素であり、窒素濃
度:3.5vol.% で、不純物として残部に窒素を多量に
含み))、この点だけが本発明の範囲内から外れてい
る。送酸時間15〜17min後(精錬終了時)の溶鋼
の窒素濃度は、80ppmまでしか低下していない。こ
れは、スラグフォーミング中のガスの窒素分圧が高かっ
たために溶鋼の平衡窒素濃度が高く、脱N反応が十分に
進行しなかったためと考えられる。
The test conditions of Comparative Examples 6 and 7 were the same as in Example 1.
As compared with the above, the purity of oxygen gas during refining is lower than the scope of the present invention (purity: 94 vol.% (PSA oxygen, nitrogen concentration: 3.5 vol.%), And a large amount of nitrogen in the balance as impurities. This is only outside the scope of the present invention. The nitrogen concentration of the molten steel after 15 to 17 minutes of the acid supply time (at the end of refining) has decreased only to 80 ppm. This is considered to be because the equilibrium nitrogen concentration of the molten steel was high due to the high nitrogen partial pressure of the gas during slag forming, and the deN reaction did not sufficiently proceed.

【0040】これに対して、 ・実施例No.1〜7ではいずれも精錬終了時の窒素濃度
は25ppm以下に低下している。
On the other hand, in all of Examples Nos. 1 to 7, the nitrogen concentration at the end of refining is reduced to 25 ppm or less.

【0041】上述した実施例にみられるように、この発
明によればアーク炉により窒素濃度が25ppm以下の
低窒素溶鋼を、安定して製造することができる。
As can be seen from the above-described embodiment, according to the present invention, a low-nitrogen molten steel having a nitrogen concentration of 25 ppm or less can be stably manufactured by an arc furnace.

【0042】[0042]

【発明の効果】以上述べたように、この発明によれば、
溶解原料として高配合率の還元鉄を使用する等の特別な
原料供給体制を準備する必要がなく、常法のアーク炉操
業における鉄源原料の供給体制があれば、アーク炉操業
方法の改善により窒素濃度が25ppm以下の溶鋼を安
定して製造することができる。従って、N濃度25pp
m以下が要求される深絞り用の冷延鋼板や表面処理鋼板
の製造も可能となる等、アーク炉による低窒素溶鋼の製
造方法を提供することができ、工業上有用な効果がもた
らされる。
As described above, according to the present invention,
There is no need to prepare a special raw material supply system, such as using a high blended ratio of reduced iron as a melting raw material.If there is a supply system for iron source raw materials in an ordinary arc furnace operation, improvement of the arc furnace operation method It is possible to stably produce molten steel having a nitrogen concentration of 25 ppm or less. Therefore, N concentration 25pp
m, a cold-rolled steel sheet or a surface-treated steel sheet for deep drawing can be manufactured, and a method for manufacturing a low-nitrogen molten steel by an arc furnace can be provided, and an industrially useful effect is brought about.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の方法において送酸速度Qo2及び送酸
時間t* が満たすべき範囲を示すグラフである。
FIG. 1 is a graph showing a range that an acid supply rate Qo 2 and an acid supply time t * should satisfy in the method of the present invention.

【図2】溶鋼中の窒素濃度に及ぼす、溶鋼への炭素イン
ジェクション用キャリアーガス中の窒素濃度の影響を示
すグラフである。
FIG. 2 is a graph showing the effect of the nitrogen concentration in a carrier gas for carbon injection on molten steel on the nitrogen concentration in molten steel.

【図3】この発明の方法における所要脱炭量〔C〕MD
〔C〕Tap,aim と送酸量Qo2 * との関係の一例を示す
グラフである。
FIG. 3 Required decarburization amount [C] in the method of the present inventionMD
[C]Tap, aimAnd acidity QoTwot *Here is an example of the relationship with
It is a graph.

【図4】実施例及び比較例における、溶落ち後の溶鋼の
窒素状況を示すグラフである。
FIG. 4 is a graph showing the state of nitrogen in molten steel after meltdown in Examples and Comparative Examples.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アーク炉でスクラップ、還元鉄及び銑鉄
等の鉄源原料の内少なくとも一種を溶解し、前記原料の
溶解終了後、前記炉内に形成された溶鉄に酸素ガス及び
炭素を供給し、前記溶鉄を精錬し低窒素溶鋼を製造する
方法において、 前記酸素ガスの純度を99.5vol.% 以上とし、前記酸
素ガスの送酸速度Qo2及び送酸時間t* がそれぞれ下記
(1)及び(2)式: 0.55≦Qo2≦1.35(Nm3 /min/ton)----------(1) t* ≧−7.2Qo2+15(min) ------------(2) を満たし、且つ、下記(3)式: Cadd ≧(12/11.2)Qo2* W−CMD(kg)--------- (3) 但し、 W :原料溶解終了時の溶鉄量(ton) CMD:原料溶解終了時の溶鉄に含まれる炭素重量(k
g) の右辺の値が正の値の場合には、(3)式を満たす炭素
添加量Cadd の炭素を前記溶鉄に供給し、前記炭素の供
給は窒素濃度が3vol.% 以下のキャリアーガスで前記溶
鉄に吹き込みながら精錬することを特徴とする、アーク
炉による低窒素溶鋼の製造方法。
At least one of an iron source material such as scrap, reduced iron and pig iron is melted in an arc furnace, and after the melting of the material is completed, oxygen gas and carbon are supplied to molten iron formed in the furnace. And refining the molten iron to produce a low-nitrogen molten steel, wherein the oxygen gas has a purity of 99.5 vol.% Or more, and the oxygen gas supply rate Qo 2 and the acid supply time t * are as follows (1): And equation (2): 0.55 ≦ Qo 2 ≦ 1.35 (Nm 3 / min / ton) ----- (1) t * ≧ −7.2Qo 2 +15 (min) − ----------- Satisfies (2) and the following equation (3): C add ≧ (12 / 11.2) Qo 2 t * W-C MD (kg) ---- ----- (3) where, W: molten iron amount at raw material dissolved ends (ton) C MD: carbon weight (k contained in the raw material dissolution at the end of the molten iron
If the value on the right side of g) is a positive value, carbon having a carbon addition amount C add that satisfies the expression (3) is supplied to the molten iron, and the carbon is supplied by a carrier gas having a nitrogen concentration of 3 vol.% or less. And refining while blowing into said molten iron.
【請求項2】 前記(3)式中の溶落ち時から精錬終了
時までの送酸量であるQo2* の値を、溶落ち時から精
錬終了時までの溶鋼の所要脱炭量〔C〕MD−〔C〕
Tap ,aim(但し、〔C〕MD:溶落ち時の炭素濃度、
〔C〕Tap ,aim:精錬終了時の目標炭素濃度)の増加に
つれて所定の割合で増加させることを特徴とする、請求
項1記載のアーク炉による低窒素溶鋼の製造方法。
2. The value of Qo 2 t * , which is the amount of acid transferred from the time of meltdown to the end of refining in the above equation (3), is determined by the required amount of decarburization of molten steel from the time of meltdown to the end of refining [ C] MD- [C]
Tap, aim (However, [C] MD : carbon concentration at burn-through,
2. The method for producing low-nitrogen molten steel by an arc furnace according to claim 1, wherein the ratio is increased at a predetermined rate as [C] Tap, aim : the target carbon concentration at the end of refining).
【請求項3】 前記溶鉄の精錬は、当該溶鉄の上表面を
150〜400kg/m2 の範囲内のスラグで覆って行
なうことを特徴とする、請求項1又は2記載のアーク炉
による低窒素溶鋼の製造方法。
3. The low-nitrogen furnace according to claim 1, wherein the refining of the molten iron is performed by covering an upper surface of the molten iron with a slag in a range of 150 to 400 kg / m 2. Method for producing molten steel.
JP16478297A 1997-06-20 1997-06-20 Production of molten low nitrogen steel with arc furnace Pending JPH1112634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16478297A JPH1112634A (en) 1997-06-20 1997-06-20 Production of molten low nitrogen steel with arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16478297A JPH1112634A (en) 1997-06-20 1997-06-20 Production of molten low nitrogen steel with arc furnace

Publications (1)

Publication Number Publication Date
JPH1112634A true JPH1112634A (en) 1999-01-19

Family

ID=15799854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16478297A Pending JPH1112634A (en) 1997-06-20 1997-06-20 Production of molten low nitrogen steel with arc furnace

Country Status (1)

Country Link
JP (1) JPH1112634A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037688A1 (en) * 1998-12-18 2000-06-29 Usinor Method for denitriding molten steel during its production
KR100435500B1 (en) * 2002-09-09 2004-06-10 주식회사 포스코 Preparation of Molten Steel Containing Low Nitrogen in Electric Furnace
KR101239650B1 (en) * 2010-11-26 2013-03-11 주식회사 포스코 Method for refining low nitrogen of molten steel
KR101707327B1 (en) * 2015-09-22 2017-02-16 현대제철 주식회사 Method of manufacturing molten steel using electric arc furnace
WO2024190908A1 (en) * 2023-03-16 2024-09-19 日本製鉄株式会社 Method for producing molten steel and arc furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037688A1 (en) * 1998-12-18 2000-06-29 Usinor Method for denitriding molten steel during its production
EA003345B1 (en) * 1998-12-18 2003-04-24 Усинор Method for denitriding molten steel during its production
KR100435500B1 (en) * 2002-09-09 2004-06-10 주식회사 포스코 Preparation of Molten Steel Containing Low Nitrogen in Electric Furnace
KR101239650B1 (en) * 2010-11-26 2013-03-11 주식회사 포스코 Method for refining low nitrogen of molten steel
KR101707327B1 (en) * 2015-09-22 2017-02-16 현대제철 주식회사 Method of manufacturing molten steel using electric arc furnace
WO2024190908A1 (en) * 2023-03-16 2024-09-19 日本製鉄株式会社 Method for producing molten steel and arc furnace

Similar Documents

Publication Publication Date Title
KR101113717B1 (en) Method and melting system for manufacturing a steel containing high contents of manganese and low contents of carbon
CN105861775A (en) Smelting process method of high-nickel-content ultra-low-phosphorus steel
JP3332010B2 (en) Manufacturing method of low phosphorus hot metal
JPS6150122B2 (en)
JPH1112634A (en) Production of molten low nitrogen steel with arc furnace
US6314123B1 (en) Method for continuous smelting of solid metal products
JPS58130216A (en) Refining method of high alloy steel and stainless steel
KR20230136164A (en) Method of refining molten iron and manufacturing method of molten steel using the same
JP2005015889A (en) Method for preventing effluence of slag in converter
CN110423856B (en) Low-temperature smelting method for dephosphorization and decarburization of low-silicon molten iron
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JP3158912B2 (en) Stainless steel refining method
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP4461495B2 (en) Dephosphorization method of hot metal
JP2000109924A (en) Method for melting extra-low sulfur steel
JP2003049216A (en) Method for producing molten steel
JP7248195B2 (en) Converter steelmaking method
JPH10121123A (en) Production of molten low nitrogen steel with arc furnace
CN114381559B (en) Method for reducing molten iron consumption and application thereof
KR100946128B1 (en) Method for Refining Molten Steel Using Converter
KR100910471B1 (en) Method for Improving Cleanliness and Desulfurization Efficiency of Molten Steel
WO2024106086A1 (en) Method for smelting steel
JPH06287621A (en) Melting process for iron scrap with low consumption of energy
JP2757761B2 (en) Method for producing molten stainless steel by smelting reduction