JPH0628730B2 - Exhaust gas purification catalyst manufacturing method - Google Patents

Exhaust gas purification catalyst manufacturing method

Info

Publication number
JPH0628730B2
JPH0628730B2 JP60291633A JP29163385A JPH0628730B2 JP H0628730 B2 JPH0628730 B2 JP H0628730B2 JP 60291633 A JP60291633 A JP 60291633A JP 29163385 A JP29163385 A JP 29163385A JP H0628730 B2 JPH0628730 B2 JP H0628730B2
Authority
JP
Japan
Prior art keywords
alumina
titania
carrier
exhaust gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60291633A
Other languages
Japanese (ja)
Other versions
JPS62149338A (en
Inventor
浩直 沼本
西野  敦
康弘 竹内
之良 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60291633A priority Critical patent/JPH0628730B2/en
Publication of JPS62149338A publication Critical patent/JPS62149338A/en
Publication of JPH0628730B2 publication Critical patent/JPH0628730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、急熱,急冷の激しい条件、すなわち耐熱衝撃
特性を強く要求される各種燃焼装置または自動車の排ガ
ス浄化に用いられる触媒の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a catalyst used for purifying exhaust gas of various combustion devices or automobiles in which rapid heat and rapid cooling conditions are severe, that is, thermal shock resistance is strongly required.

従来の技術 従来、触媒担体としてはアルミナ,コーディライト,ム
ライト等が用いられているが、アルミナ以外は比表面積
が小さいため、担体表面にアルミナ等の被膜を形成し、
この被膜上に触媒金属を担持させて使用されて来た。例
えば、特公昭50−9749号公報にコロイド状ベーマ
イトと比表面積の大きな活性アルミナ粒により水性組成
物を調製し、これを触媒担体に均一に付着させ、400
ないし500℃の温度に加熱して活性アルミナ層を形成
させる方法が記載されている。
2. Description of the Related Art Conventionally, alumina, cordierite, mullite, etc. have been used as catalyst carriers, but since the specific surface area is small except for alumina, a film such as alumina is formed on the surface of the carrier.
It has been used by supporting a catalytic metal on this coating. For example, in Japanese Examined Patent Publication (Kokoku) No. 50-9749, an aqueous composition is prepared from colloidal boehmite and activated alumina particles having a large specific surface area, which is evenly adhered to a catalyst carrier.
A method of forming an activated alumina layer by heating to a temperature of ˜500 ° C. is described.

しかし、活性アルミナ被膜は耐熱的には、1000℃を
越えるとアルファ化が急激に進み、担持金属に対して凝
集作用を起こす結果となる。そのため、活性アルミナの
耐熱性向上の検討が進められている。
However, in terms of heat resistance, the activated alumina coating becomes agglomerated with respect to the carried metal when the temperature exceeds 1000 ° C., resulting in a rapid alpha conversion. Therefore, investigations on improving the heat resistance of activated alumina are underway.

発明が解決しようとする問題点 従来のものでは活性アルミナが熱劣化して来るにつれ
て、すなわち、活性アルミナの比表面積が低下して来る
に従い、触媒性能が低下していた。そこで、触媒性能の
劣化を防ぐための熱劣化対策が必要である。
Problems to be Solved by the Invention In the prior art, as the activated alumina deteriorates due to heat, that is, as the specific surface area of the activated alumina decreases, the catalytic performance deteriorates. Therefore, it is necessary to take measures against heat deterioration to prevent deterioration of catalyst performance.

また、耐鉛被毒に対しても、さらに高寿命化が要求され
ている。
Further, even with respect to lead poisoning resistance, a longer life is required.

問題点を解決するための手段 本発明は前記問題点を解決するため、金属アルコキシド
から調製したチタニア・アルミナからなる水性組成物を
担体上に付着させた後、400℃以上の温度で焼成し、
前記担体表面上に被膜層を形成し、この被膜層に触媒を
担持させて排ガス浄化用触媒とするものである。
Means for Solving the Problems In order to solve the above problems, the present invention comprises depositing an aqueous composition comprising titania-alumina prepared from a metal alkoxide on a carrier, followed by firing at a temperature of 400 ° C. or higher,
A coating layer is formed on the surface of the carrier, and a catalyst is supported on the coating layer to form an exhaust gas purifying catalyst.

作用 環境基準が一段と厳しくなりつつある昨今、排ガス浄化
性能のレベルアップが望まれている。触媒性能に必要な
ものとしては三元性能,耐熱性,耐鉛被毒性,耐熱衝撃
性等がある。
In recent years, as environmental standards are becoming more stringent, it is desired to improve exhaust gas purification performance. Required for catalytic performance are ternary performance, heat resistance, lead poisoning resistance, and thermal shock resistance.

本発明では、チタニア・アルミナの被膜層を施すことに
よって熱劣化に対して効果を示す。それは、被膜層中に
おいて、白金等の触媒金属はチタニア上に高分散されて
おり、アルミナ層は多孔質を有する構造体として十分に
働いている。したがって、チタニア・アルミナ層が熱劣
化を受けた際にも、チタニア上に分散している白金等は
アルミナの熱劣化に直接的な影響を受けにくい。また、
チタニア上に担持された白金等の触媒は、Pb,S被毒
に対してもかなり効果的に作用し、被毒されにくい。
In the present invention, by providing a coating layer of titania-alumina, it is effective against heat deterioration. In the coating layer, the catalytic metal such as platinum is highly dispersed on the titania, and the alumina layer functions sufficiently as a porous structure. Therefore, even when the titania-alumina layer is thermally deteriorated, platinum or the like dispersed on the titania is not directly affected by the thermal deterioration of alumina. Also,
A catalyst such as platinum supported on titania acts quite effectively against Pb and S poisons and is less likely to be poisoned.

実施例 〈実施例1〉 チタニア・アルミナの水性組成物の調製法の一例とし
て、チタンテトラエトキシドとアルミニウムイソプロポ
キシドの等モルを過剰の純水に攪拌しながら加えて行
き、加水分解によりできるかぎりゆっくりとチタニア・
アルミナゲルを成長させる。得られた沈殿はろ過し、そ
の後純水を加えてチタニア・アルミナ約20wt%の水
性組成物とした。同様にして、各種のアルコキシドを用
いてチタニア・アルミナの水性組成物を調製した。その
場合にもチタニアとアルミナが等モルとなるようにし
た。また、加水分解において少量のアンモニア水を使用
することもできた。
Example <Example 1> As an example of a method for preparing an aqueous composition of titania-alumina, equimolar amounts of titanium tetraethoxide and aluminum isopropoxide are added to excess pure water with stirring, and then hydrolysis can be performed. As slowly as possible
Grow the alumina gel. The obtained precipitate was filtered, and then pure water was added to make an aqueous composition of about 20 wt% titania-alumina. Similarly, an aqueous titania-alumina composition was prepared using various alkoxides. Even in that case, titania and alumina were made to be equimolar. It was also possible to use a small amount of aqueous ammonia in the hydrolysis.

上記のようにして得たチタニア・アルミナの水性組成物
は、ハニカム断面積100cm2,長さ1cm,セル壁厚0.2
5mm,セル径1.0mm×1.0mmのハニカム状担体にディップ
法により被覆し、80℃で1時間乾燥後、500℃で1
時間熱処理して担体表面にチタニア・アルミナの被膜層
を形成した。次に白金塩水溶液を含浸し、300℃の水
素雰囲気で還元処理する方法により白金を担体100m
あたり約10mg担持し、触媒した。
The titania-alumina aqueous composition obtained as described above had a honeycomb cross-sectional area of 100 cm 2 , a length of 1 cm, and a cell wall thickness of 0.2.
A honeycomb carrier with a cell diameter of 5 mm and a cell diameter of 1.0 mm × 1.0 mm is coated by the dipping method, dried at 80 ° C for 1 hour, and then dried at 500 ° C
After heat treatment for a period of time, a coating layer of titania / alumina was formed on the surface of the carrier. Next, the platinum salt was impregnated with an aqueous solution of platinum salt at a temperature of 300 ° C.
Approximately 10 mg was supported and catalyzed.

これらの触媒の性能評価については一酸化炭素(CO)
の浄化率を下記の条件で測定した。
For the performance evaluation of these catalysts, carbon monoxide (CO)
The purification rate was measured under the following conditions.

空間速度 70000hr-1 CO濃度 200ppm 触媒温度 250℃ また、寿命試験として800℃で1000時間熱処理後
のCO浄化率を同様にして測定した。
Space velocity 70,000 hr −1 CO concentration 200 ppm Catalyst temperature 250 ° C. Further, as a life test, the CO purification rate after heat treatment at 800 ° C. for 1000 hours was measured in the same manner.

第1表にこれらの結果を示す。比較例として、チタニア
・アルミナを単独で水性組成として用いた場合の性能結
果も合わせて示す。
Table 1 shows these results. As a comparative example, performance results when titania-alumina alone is used as an aqueous composition are also shown.

この結果から明らかなように、金属アルコキシドから調
製したチタニア・アルミナ被膜を持つ触媒はすぐれた性
能を示す。
As is clear from this result, the catalyst having the titania-alumina coating prepared from the metal alkoxide shows excellent performance.

中でもチタンテトライソプロポキシドTi(i-C3H7O)4とア
ルミニウムsec−ブトキシドA(sec-C4H9O)3から調製
されたものが最もすぐれていた。また、その場合にアン
モニア水を少量使用しても性能にあまり差はない。した
がって、アンモニア水はゲル化促進剤として使用するこ
とができる。
Among them those prepared from titanium tetraisopropoxide Ti (iC 3 H 7 O) 4 and the aluminum sec- butoxide A (sec-C 4 H 9 O) 3 was the most excellent. In that case, there is not much difference in performance even if a small amount of ammonia water is used. Therefore, ammonia water can be used as a gelation promoter.

なお、チタニアとアルミナの粒子が均一に分散している
のが最もよい。次にアルミナが先に成長し、遅れてチタ
ニアが成長する場合であり、これは多孔状のアルミナ上
にチタニアがコーティングされた状態となる。最もよく
ないのはチタニアが先に成長し、アルミナがその後成長
する場合である。
It is best that the particles of titania and alumina are evenly dispersed. Next, there is a case where alumina grows first and titania grows later, which is a state in which titania is coated on porous alumina. The worst is when titania grows first and alumina grows thereafter.

ここでは担体としてアルミン酸石灰と溶融シリカとの重
量比3:1の混合物を水と混練してハニカム状に押出し
成形し、乾燥後、1000℃で熱処理した担体を使用し
たが、本発明において使用できる担体はこれに限定する
ものではなく、コーディライト,ムライトからなる担体
でもよい。しかし、コーティング被膜と担体との密着性
を考慮した場合には多孔性、低膨張係数を有するハニカ
ム状担体が望ましい。
The carrier used here is a carrier in which lime aluminate and fused silica in a weight ratio of 3: 1 are kneaded with water, extruded into a honeycomb shape, dried, and then heat treated at 1000 ° C. The carrier that can be used is not limited to this, and may be a carrier composed of cordierite or mullite. However, in consideration of the adhesion between the coating film and the carrier, a honeycomb carrier having porosity and a low expansion coefficient is desirable.

〈実施例2〉 実施例1においてすぐれた特性を示したチタンテトライ
ソプロポキシドとアルミニウムsec−ブトキシドから調
製したチタニア・アルミナ被膜を用する触媒について、
被膜の熱処理温度について検討した。その結果を第2表
に示す。
Example 2 Regarding the catalyst using the titania-alumina coating film prepared from titanium tetraisopropoxide and aluminum sec-butoxide, which showed excellent characteristics in Example 1,
The heat treatment temperature of the coating was examined. The results are shown in Table 2.

この結果から、熱処理温度が低すぎると後で担持した白
金が被膜に埋没していく状態となり、寿命が劣る。ま
た、高温すぎてもチタニア・アルミナとしての特性が発
揮できない。したがって、500〜600℃が最適であ
った。
From this result, if the heat treatment temperature is too low, the platinum carried later will be buried in the coating, resulting in a shorter life. Further, even if the temperature is too high, the characteristics as titania-alumina cannot be exhibited. Therefore, the optimum temperature is 500 to 600 ° C.

〈実施例3〉 金属アルコキシドからチタニア・アルミナの水性組成物
を調製する方法として、金属アルコキシドを熱分解した
場合について示す。
Example 3 As a method for preparing an aqueous titania-alumina composition from a metal alkoxide, the case of thermally decomposing a metal alkoxide will be described.

チタンテトライソプロポキシドとアルミニウムsec−ブ
トキシドを用いて、反応炉400℃の中へ導入すること
によって微細なチタニア・アルミナ粒子が得られた。こ
のチタニア・アルミナ粒子を30wt%の水性組成物と
して、実施例1と同じハニカム状担体に被膜を形成し、
実施例1におけるNO.4の場合と比較した。性能評価方
法は実施例1と同様である。
By using titanium tetraisopropoxide and aluminum sec-butoxide and introducing them into a reaction furnace at 400 ° C., fine titania-alumina particles were obtained. The titania-alumina particles were used as a 30 wt% aqueous composition to form a film on the same honeycomb-shaped carrier as in Example 1,
Comparison was made with the case of No. 4 in Example 1. The performance evaluation method is the same as that of the first embodiment.

この結果から明らかなように、チタニア・アルミナの調
製方法としては、加水分解の方が熱分解に比べてすぐれ
ている。
As is clear from this result, hydrolysis is superior to pyrolysis as a method for preparing titania-alumina.

〈実施例4〉 実施例1においてすぐれた性能を示したチタンテトライ
ソプロポキシドとアルミニウムsec−ブトキシドを用い
て調製したチタニア・アルミナ被膜を持つハニカム状担
体に対して自動車用触媒としての性能評価をした。
Example 4 A honeycomb carrier having a titania / alumina coating film prepared using titanium tetraisopropoxide and aluminum sec-butoxide, which showed excellent performance in Example 1, was evaluated for its performance as an automobile catalyst. did.

担体の形状はハニカム断面積100cm2,長さ8cm,セ
ル壁厚0.25mm,セル径1.0mm×1.0mmである。
The carrier has a honeycomb cross-sectional area of 100 cm 2 , a length of 8 cm, a cell wall thickness of 0.25 mm, and a cell diameter of 1.0 mm × 1.0 mm.

上記の担体に、硝酸セリウム水溶液を含浸した後500
℃で熱処理する方法により酸化セリウムを担体1当た
り20g相当担持させ、次に白金塩とロジウム塩を含む
水溶液を含浸し、300℃の水素雰囲気下で還元処理す
ることにより担体1当たり白金を1g,ロジウムを5
g相当担持させた。
After impregnating the above carrier with an aqueous cerium nitrate solution, 500
20 g of cerium oxide per carrier was supported by a method of heat treatment at ℃, then impregnated with an aqueous solution containing a platinum salt and a rhodium salt, and subjected to a reduction treatment under a hydrogen atmosphere at 300 ℃, 1 g of platinum per carrier, 5 rhodium
g was supported.

性能試験は1.5のV−4エンジンを使用し、理論空燃
比における排ガス温度が450℃になる所に触媒を設置
し、測定した。
The performance test was performed by using a V-4 engine of 1.5, and installing a catalyst at a place where the exhaust gas temperature at the stoichiometric air-fuel ratio was 450 ° C. and measuring.

触媒の初期特性を図に示した。さらに触媒寿命をテスト
するために、触媒層の温度800℃,空間速度6000
0hr-1で100時間有鉛ガソリンを用いて耐久テストを
行った。そして、その後の性能は初期と同様に測定し
た。
The initial characteristics of the catalyst are shown in the figure. In order to further test the catalyst life, the temperature of the catalyst layer is 800 ° C and the space velocity is 6000.
An endurance test was conducted using leaded gasoline for 100 hours at 0 hr -1 . Then, the subsequent performance was measured as in the initial stage.

評価方法は炭化水素(HC),CO,一酸化窒素(N
O)の浄化率が80%の空燃比塩をウインドウ幅として
測定した。
The evaluation method is hydrocarbon (HC), CO, nitric oxide (N
The air-fuel ratio salt having a purification rate of O) of 80% was measured as the window width.

その結果、初期におけるウインドウ幅は0.24,800
℃,200時間熱処理後では0.19であった。
As a result, the initial window width is 0.24,800.
It was 0.19 after the heat treatment at 200C for 200 hours.

この結果から、本発明の触媒は自動車用としても十分な
性能を示し、Pb,Sの被毒に対しても耐久性を維持し
ていることがわかる。
From these results, it can be seen that the catalyst of the present invention has sufficient performance for automobiles and maintains durability against Pb and S poisoning.

発明の効果 本発明により得られる触媒は、耐熱性,耐鉛被毒性にす
ぐれ、各種燃焼機器や自動車用触媒として広く利用でき
る。
Effect of the Invention The catalyst obtained by the present invention has excellent heat resistance and lead poisoning resistance, and can be widely used as a catalyst for various combustion equipment and automobiles.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の実施例の触媒における自動車用触媒として
の性能を示す図である。
The figure shows the performance of the catalyst of the example of the present invention as an automobile catalyst.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/56 301 A 8017−4G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B01J 23/56 301 A 8017-4G

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属アルコキシドから調製したチタニア・
アルミナからなる水性組成物を担体上に均一に付着させ
たの後、400℃以上の温度で焼成して前記担体表面上
にチタニア・アルミナ被膜を形成し、この被膜層に白金
族金属、または白金族金属と希土類金属酸化物を担持さ
せることを特徴とする排ガス浄化用触媒の製造法。
1. A titania prepared from a metal alkoxide.
After uniformly depositing an aqueous composition of alumina on a carrier, it is fired at a temperature of 400 ° C. or higher to form a titania-alumina film on the surface of the carrier, and a platinum group metal or platinum is formed on the film layer. A method for producing an exhaust gas-purifying catalyst, which comprises supporting a group metal and a rare earth metal oxide.
【請求項2】金属アルコキシドが、チタンのエトキシド
またはイソプロポキシドと、アルミニウムのイソプロポ
キシドまたはsec−ブトキシドである特許請求の範囲第
1項記載の排ガス浄化用触媒の製造法。
2. The method for producing an exhaust gas purifying catalyst according to claim 1, wherein the metal alkoxide is ethoxide or isopropoxide of titanium and isopropoxide or sec-butoxide of aluminum.
JP60291633A 1985-12-24 1985-12-24 Exhaust gas purification catalyst manufacturing method Expired - Lifetime JPH0628730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291633A JPH0628730B2 (en) 1985-12-24 1985-12-24 Exhaust gas purification catalyst manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291633A JPH0628730B2 (en) 1985-12-24 1985-12-24 Exhaust gas purification catalyst manufacturing method

Publications (2)

Publication Number Publication Date
JPS62149338A JPS62149338A (en) 1987-07-03
JPH0628730B2 true JPH0628730B2 (en) 1994-04-20

Family

ID=17771481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291633A Expired - Lifetime JPH0628730B2 (en) 1985-12-24 1985-12-24 Exhaust gas purification catalyst manufacturing method

Country Status (1)

Country Link
JP (1) JPH0628730B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1238085B (en) * 1990-02-07 1993-07-05 Snam Progetti CATALIC COMPOSITION FOR THE DEHYDROGENATION OF C2-C5 PARAFFINS
US5210062A (en) * 1991-08-26 1993-05-11 Ford Motor Company Aluminum oxide catalyst supports from alumina sols
JP6401740B2 (en) * 2016-06-13 2018-10-10 株式会社豊田中央研究所 Exhaust gas purification catalyst and method for producing the same

Also Published As

Publication number Publication date
JPS62149338A (en) 1987-07-03

Similar Documents

Publication Publication Date Title
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
JP3494331B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0675676B2 (en) Exhaust gas purification catalyst
KR20060100447A (en) Catalyst for a diesel particulate filter
JPH0644999B2 (en) Exhaust gas purification catalyst
JP2003126694A (en) Catalyst for cleaning exhaust gas
JP3409894B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH0699069A (en) Catalyst for purification of exhaust gas
JP3551472B2 (en) Exhaust gas purification catalyst
JPH0628730B2 (en) Exhaust gas purification catalyst manufacturing method
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP3247956B2 (en) Exhaust gas purification catalyst
JP3496348B2 (en) Exhaust gas purification catalyst
JPH07171392A (en) Catalyst for exhaust gas purification
JPH0628731B2 (en) Exhaust gas purification catalyst manufacturing method
JP2002361090A (en) Catalyst for cleaning exhaust gas
JPS61209045A (en) Catalyst for purifying exhaust gas
JP3839860B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3120518B2 (en) Method for producing exhaust gas purifying catalyst
JPS62254843A (en) Catalyst carrier
JPH0361492B2 (en)
JPS6377545A (en) Catalyst for purifying exhaust gas
JPH0724316A (en) Production of catalyst carrier
JP3826476B2 (en) Exhaust gas purification catalyst and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term