JPH0628681Y2 - Abnormality detection device for particle detection device - Google Patents

Abnormality detection device for particle detection device

Info

Publication number
JPH0628681Y2
JPH0628681Y2 JP16596888U JP16596888U JPH0628681Y2 JP H0628681 Y2 JPH0628681 Y2 JP H0628681Y2 JP 16596888 U JP16596888 U JP 16596888U JP 16596888 U JP16596888 U JP 16596888U JP H0628681 Y2 JPH0628681 Y2 JP H0628681Y2
Authority
JP
Japan
Prior art keywords
voltage
detection device
output voltage
liquid temperature
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16596888U
Other languages
Japanese (ja)
Other versions
JPH0285353U (en
Inventor
秀行 是常
清幸 田中
Original Assignee
東亜医用電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亜医用電子株式会社 filed Critical 東亜医用電子株式会社
Priority to JP16596888U priority Critical patent/JPH0628681Y2/en
Publication of JPH0285353U publication Critical patent/JPH0285353U/ja
Application granted granted Critical
Publication of JPH0628681Y2 publication Critical patent/JPH0628681Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、粒子計数装置等に適用される粒子検出装置
の異常検知装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an abnormality detection device for a particle detection device applied to a particle counting device or the like.

〔従来の技術〕[Conventional technology]

血球等の粒子を計数する粒子計数装置には、隔壁で仕切
った両室にそれぞれ電極を設けるとともに、血液を希釈
液で希釈して作製した血液の粒子が浮遊する電解液を前
記両室に容れ、かつ前記粒子を通過させる微細孔を前記
隔壁に形成した粒子検出装置が広く用いられている。前
記電極間に定電流を供給するとともに微細孔に粒子を浮
遊した電解液を通過させて、電解液と血液の粒子の電気
的インピーダンスの差異に基づく電気的変化を検知する
ことにより、微細孔を通過した粒子を計数するものであ
る。
In a particle counting device for counting particles such as blood cells, an electrode is provided in each of the chambers partitioned by a partition, and an electrolytic solution in which particles of blood prepared by diluting blood with a diluting solution are suspended is placed in both chambers. In addition, a particle detection device in which fine pores through which the particles pass is formed in the partition wall is widely used. By supplying a constant current between the electrodes and passing the electrolytic solution in which the particles are suspended in the micropores, and detecting an electrical change based on the difference in the electrical impedance of the electrolytic solution and the particles of the blood, the micropores are formed. The number of passed particles is counted.

ところで、この粒子計数装置で粒子を計数していると、
微細孔に詰まりが発生し、そのため検出感度が大きくな
って正常な測定ができなくなるという問題があった。微
細孔の径はたとえば血球を計数する場合には数10μm
から100μmと微小であるため、とくに微細孔が詰ま
り易いのである。
By the way, when counting particles with this particle counter,
There is a problem that the fine holes are clogged, which increases the detection sensitivity and prevents normal measurement. The diameter of the micropores is, for example, several tens of μm when counting blood cells.
Since it is as small as 100 μm to 100 μm, it is particularly easy for the fine holes to be clogged.

そのため、従来つぎのような粒子検出装置の異常検知装
置があった。すなわち、第1の従来例は、粒子の計数に
要する時間を検出するものである。微細孔の詰まりが発
生すると、微細孔の部分の流体抵抗が増し電解液が流れ
にくくなる。このため、所定量の電解液が微細孔を流れ
るのに要する時間が増す。そこで、これに注目して計数
に要する時間を検出,監視する。
Therefore, conventionally, there has been an abnormality detection device of the following particle detection device. That is, the first conventional example detects the time required for counting particles. When the clogging of the fine pores occurs, the fluid resistance of the fine pores increases and it becomes difficult for the electrolytic solution to flow. Therefore, the time required for a predetermined amount of electrolytic solution to flow through the fine pores increases. Therefore, paying attention to this, the time required for counting is detected and monitored.

第2の従来例は、粒子検出装置から得られる粒子信号の
間隔や面積を検出するものがある。すなわち、微細孔に
詰まりが発生すると電解液が流れにくくなるため、検出
される粒子信号の間隔や幅が広くなり、また検出感度も
高くなるため粒子信号の高さが大きくなる。そこでこれ
らに注目して、粒子信号の間隔や面積を検出,監視す
る。
In the second conventional example, there is one that detects the intervals and areas of particle signals obtained from the particle detection device. That is, when clogging occurs in the fine holes, the electrolyte solution becomes difficult to flow, and the intervals and widths of the particle signals to be detected are widened, and the detection sensitivity is also high, so the height of the particle signals is high. Therefore, paying attention to these, the intervals and areas of particle signals are detected and monitored.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

ところが、第1の従来例は、電解液を微細孔に通過させ
るための吸引圧力が変化した場合、微細孔を流れる流速
が変化するので、詰まりの検出感度が鈍くなったり、誤
検出が生じるという欠点があった。
However, in the first conventional example, when the suction pressure for passing the electrolytic solution through the fine holes changes, the flow velocity flowing through the fine holes changes, so that the clogging detection sensitivity becomes low and erroneous detection occurs. There was a flaw.

第2の従来例は、粒子の濃度や大きさによって微細孔を
流れる粒子の速度が変化するため、ある決まった濃度の
ある決まった粒子を測定する場合にしか正しく検出でき
ないという欠点があった。血液の場合には、検体ごとに
血球の大きさや濃度が大きく異なるので、検体によって
検出感度が鈍くなったり、誤検出が生じる。
The second conventional example has a drawback that the velocity of the particles flowing through the micropores changes depending on the concentration and size of the particles, so that the particles can be correctly detected only when measuring a certain particle having a certain density. In the case of blood, since the size and concentration of blood cells differ greatly from sample to sample, the detection sensitivity may be low or erroneous detection may occur depending on the sample.

したがって、この考案の目的は、吸引圧力,粒子の濃度
や大きさに影響されることなく、安定して微細孔の詰ま
りを検出することができる粒子検出装置の異常検知装置
を提供することである。
Therefore, an object of the present invention is to provide an abnormality detecting device for a particle detecting device, which can stably detect clogging of fine holes without being affected by suction pressure, particle concentration and size. .

〔課題を解決するための手段〕[Means for Solving the Problems]

請求項(1)の粒子検出装置の異常検知装置は、隔壁で仕
切った両室にそれぞれ電極を設けるとともに粒子を浮遊
させた電解液を容れかつ前記粒子を通過させる微細孔を
前記隔壁に形成した粒子検出装置と、前記電極間に定電
流を供給する電源と、前記電極間に接続されて前記電極
間に現れた電圧の直流成分を取り出す電圧取出し手段
と、この電圧取出し手段の出力電圧を前記微細孔の詰ま
りの基準となる基準値と比較して前記基準値を超えた場
合に検知信号を出力する詰まり検出手段とを備えたもの
である。
The abnormality detection device of the particle detection device according to claim (1), wherein electrodes are provided in both chambers partitioned by partition walls, and fine holes are formed in the partition walls for containing the electrolytic solution in which the particles are suspended and for passing the particles. The particle detection device, a power supply for supplying a constant current between the electrodes, a voltage extracting means connected between the electrodes for extracting a DC component of a voltage appearing between the electrodes, and an output voltage of the voltage extracting means And a clogging detection unit that outputs a detection signal when the reference value exceeds the reference value, which is a reference for the clogging of the fine holes.

請求項(2)の粒子検出装置の異常検知装置は、請求項(1)
において、前記粒子検出装置の前記電解液の液温を検出
して前記液温に対応した出力電圧を出力する液温取出し
手段と、前記電圧取出し手段の前記出力電圧を前記液温
取出し手段の前記出力電圧で補正する補正手段とを有
し、前記補正手段の出力電圧を前記詰まり検出手段の前
記基準値と比較するものである。
The abnormality detection device of the particle detection device of claim (2) is the claim (1)
In, the liquid temperature extraction means for detecting the liquid temperature of the electrolytic solution of the particle detection device and outputting an output voltage corresponding to the liquid temperature, and the output voltage of the voltage extraction means for the liquid temperature extraction means The output voltage of the correction means is compared with the reference value of the clogging detection means.

請求項(3)の粒子検出装置の異常検知装置は、請求項(1)
または請求項(2)において、前記微細孔の孔寸法のばら
つきによる出力電圧の変位を調整する調整手段を前記電
圧取出し手段に設けたものである。
The abnormality detection device of the particle detection device according to claim (3) is defined by claim (1).
Alternatively, in claim (2), the voltage extracting means is provided with adjusting means for adjusting the displacement of the output voltage due to the variation in the hole size of the fine holes.

〔作用〕[Action]

請求項(1)の粒子検出装置の異常検知装置によれば、粒
子検出装置の電極間に電源を接続すると、電解液の抵抗
率と微細孔の孔寸法により決まるインピーダンスによる
直流成分と、粒子が微細孔を通過するときの前記インピ
ーダンスの増加によるパルス成分とからなる電圧が前記
電極間に現れる。この電圧の直流成分を電圧取出し手段
により取出し、そのレベルを詰まり検出手段の基準値と
比較する。この場合、微細孔の開口面積が詰まりにより
小さくなると、電極間のインピーダンスが増大して電極
間の電圧が上昇し、その電圧が基準値を超えると、詰ま
り検出手段より検出信号が出力される。前記のように、
電極間の電圧の直流成分は電解液の抵抗率と微細孔の孔
寸法により決まるインピーダンスによるものであるた
め、従来例のように電解液を微細孔に通過させるための
吸引圧力が変化しても電極間の電圧は変化せず、また粒
子濃度や粒子の大きさに影響されない。したがって常に
安定して微細孔の詰まりを検出することが可能になる。
According to the abnormality detection device of the particle detection device of claim (1), when a power supply is connected between the electrodes of the particle detection device, the DC component due to the impedance determined by the resistivity of the electrolytic solution and the hole size of the fine holes, and the particles are A voltage composed of a pulse component due to the increase of the impedance when passing through the fine holes appears between the electrodes. The DC component of this voltage is taken out by the voltage take-out means, and its level is compared with the reference value of the clogging detection means. In this case, when the opening area of the fine holes becomes smaller due to clogging, the impedance between the electrodes increases and the voltage between the electrodes rises, and when the voltage exceeds the reference value, the clogging detection means outputs a detection signal. As mentioned above,
Since the DC component of the voltage between the electrodes is due to the impedance determined by the resistivity of the electrolytic solution and the hole size of the fine holes, even if the suction pressure for passing the electrolytic solution through the fine holes changes as in the conventional example. The voltage between the electrodes does not change and is not affected by particle concentration or particle size. Therefore, it becomes possible to always stably detect the clogging of the fine holes.

請求項(2)の粒子検出装置の異常検知装置によれば、電
解液の液温に対応した電圧が液温取出し手段により得ら
れ、この出力電圧および電圧取出し手段の出力電圧を補
正手段にて入力して電圧取出し手段の出力電圧を温度補
正すると、補正された電圧は電解液の温度によるインピ
ーダンスの変化に影響されなくなり、精度のよい詰まり
検出が可能になる。
According to the abnormality detection device of the particle detection device of claim (2), the voltage corresponding to the liquid temperature of the electrolytic solution is obtained by the liquid temperature extracting means, and the output voltage and the output voltage of the voltage extracting means are corrected by the correcting means. When the input voltage is output and the output voltage of the voltage extracting means is temperature-corrected, the corrected voltage is not affected by the impedance change due to the temperature of the electrolytic solution, and accurate clogging detection can be performed.

請求項(3)の粒子検出装置の異常検知装置によれば、微
細孔の孔寸法のばらつきによる電圧取出し手段の出力電
圧の変位を調整手段により調整することにより、微細孔
の孔寸法のばらつきに影響されない出力電圧が得られ、
精度のよい詰まり検出が可能になる。
According to the abnormality detection device of the particle detection device of claim (3), by adjusting the displacement of the output voltage of the voltage extracting means due to the variation in the hole size of the fine holes by the adjusting means, it is possible to reduce the variation in the hole size of the fine holes. An unaffected output voltage is obtained,
It enables accurate clogging detection.

〔実施例〕〔Example〕

この考案の一実施例を第1図ないし第6図に基づいて説
明する。すなわち、この粒子検出装置の異常検知装置
は、粒子検出装置1と,電源2と,電圧取出し手段3
と,液温取出し手段4と,補正手段5と,詰まり検出手
段6と,調整手段18とを有する。
An embodiment of the present invention will be described with reference to FIGS. That is, the abnormality detecting device of this particle detecting device includes a particle detecting device 1, a power source 2, and a voltage extracting means 3.
The liquid temperature extracting unit 4, the correcting unit 5, the clogging detecting unit 6, and the adjusting unit 18 are provided.

粒子検出装置1は、隔壁8で仕切った両室9,10にそ
れぞれ電極11,12を設けるとともに粒子を浮遊させ
た電解液13を容れかつ前記粒子を通過させる微細孔7
を隔壁8に形成したものである。
The particle detecting device 1 is provided with electrodes 11 and 12 in both chambers 9 and 10 partitioned by a partition wall 8 respectively, and a fine hole 7 for containing an electrolytic solution 13 in which particles are suspended and allowing the particles to pass therethrough.
Is formed on the partition wall 8.

この粒子検出装置1は、隔壁8を構成するペレット15
の微細孔7に血球等の粒子を通過させ、粒子と電解液と
の電気的インピーダンスの差異に基づく変化を検知する
ため、両室9,10の一方の前方室(第1図において下
方)9に微細孔7に向けてノズル16を設け、ノズル1
6から電解液である希釈された血液試料を一定速度で一
定重吐出し、またシース液をパイプ21から前方室9に
一定圧力で流入させノズル16の周囲に流すことにより
シースフローを形成している。このようにシースフロー
を形成することにより粒子は微細孔7の中心に一列に並
んで通過することができる。また両室9,10の他方の
後方室(第1図において上方)10に接続されたパイプ
17よりシース液を流入させて後方室10に設けた回収
管14より回収することにより、微細孔7を通過した粒
子を回収管14に回収し排出している。前方室9と後方
室10とはペレット15を含む隔壁8を間にして微細孔
7のみで通じている。
The particle detecting device 1 includes a pellet 15 that constitutes the partition wall 8.
Particles such as blood cells are allowed to pass through the micropores 7 of FIG. 1 and the change due to the difference in electrical impedance between the particles and the electrolytic solution is detected. Nozzle 16 is provided to the fine hole 7 in
A diluted blood sample, which is an electrolytic solution, is discharged from 6 at a constant heavy rate, and the sheath liquid is caused to flow from the pipe 21 into the front chamber 9 at a constant pressure to flow around the nozzle 16 to form a sheath flow. There is. By forming the sheath flow in this way, the particles can pass through the center of the micropores 7 in line. In addition, the sheath liquid is made to flow from a pipe 17 connected to the other rear chamber (upper side in FIG. 1) 10 of both chambers 9 and 10 and is collected from a collecting pipe 14 provided in the rear chamber 10 to form the fine holes 7 The particles that have passed through are collected in the collecting pipe 14 and discharged. The front chamber 9 and the rear chamber 10 communicate with each other only through the fine holes 7 with the partition wall 8 containing the pellets 15 in between.

電極11は後方室10に設けられプラス電極を実施例と
している。電極12は前方室9の内部に設けられステン
レス製でマイナス極を実施例としている。この電極1
1,12間の電気抵抗は、電解液の抵抗率あるいは電気
伝導度,微細孔の孔寸法すなわち孔面積および孔長さに
より決まる。
The electrode 11 is provided in the rear chamber 10 and a positive electrode is used as an example. The electrode 12 is provided inside the front chamber 9 and is made of stainless steel, and a negative electrode is used as an example. This electrode 1
The electrical resistance between 1 and 12 is determined by the resistivity or electrical conductivity of the electrolytic solution, the pore size of the fine pores, that is, the pore area and the pore length.

電源2は、電極11,12間に定電流を供給する。実施
例では第2図のように、100Vの直流電圧源CV
定電流源CCを接続したもので、0.2mA程度の定電流
を電極11,12間に供給している。電極11,12間
に定電流を流すことにより、電極11,12間の電気抵
抗と電流値により決まる直流電圧が発生する。また微細
孔7を血液等の粒子が通過すると見掛け上微細孔7の電
気抵抗が増すので、電極間11,12の電気抵抗が粒子
の通過中大きく電極11,12間に発生する電圧が大き
くなり、しかも微細孔7を通過する粒子の大きさに比例
したパルス成分の電圧が発生し、この電圧が前記直流電
圧に重畳され、これらの電圧が電極11、12間に現れ
る。この場合、微細孔7にゴミ等が付着しその有効面積
が小さくなると、すなわち微細孔7が詰まりかけると、
電極11,12間のインピーダンスが大きくなり、第4
図に示すように正常時の電極11、12間の電圧の直流
成分Eおよびパルス成分Pから詰まり発生時の直流成分
E′およびパルス成分P′にいずれも大きくなり、感度
が上昇することとなる。このためノイズが発生して正し
い粒子数が計測できなかったり、粒子の正しい大きさが
計測できなくなる等の不具合が生じるのである。
The power supply 2 supplies a constant current between the electrodes 11 and 12. In the embodiment, as shown in FIG. 2, a constant current source CC is connected to a DC voltage source CV 1 of 100 V, and a constant current of about 0.2 mA is supplied between the electrodes 11 and 12. By supplying a constant current between the electrodes 11 and 12, a DC voltage determined by the electric resistance and the current value between the electrodes 11 and 12 is generated. Further, when particles such as blood pass through the fine holes 7, the electric resistance of the fine holes 7 apparently increases, so that the electric resistance between the electrodes 11 and 12 is large during the passage of the particles and the voltage generated between the electrodes 11 and 12 is large. Moreover, a voltage of a pulse component proportional to the size of the particles passing through the fine holes 7 is generated, this voltage is superimposed on the DC voltage, and these voltages appear between the electrodes 11 and 12. In this case, when dust or the like adheres to the fine holes 7 to reduce the effective area thereof, that is, when the fine holes 7 are clogged,
The impedance between the electrodes 11 and 12 increases and the fourth
As shown in the figure, the DC component E and the pulse component P of the voltage between the electrodes 11 and 12 in the normal state increase from the DC component E'and the pulse component P'when the clogging occurs, and the sensitivity increases. . As a result, noise may occur and the correct number of particles cannot be measured, or the correct size of particles cannot be measured.

電圧取出し手段3は、電極11,12間に接続されて前
記電極11、12間に現れた電圧Vの直流成分を取り
出す。この電圧取出し手段3の実施例を第2図に示す。
すなち、電極11、12間の電圧Vを高入力インピー
ダンスかつ低出力インピーダンスの素子をたとえばエミ
ッタホロワのトランジスタTで受け、電圧Vのうち
直流成分を抵抗R,Rで分圧し、パルス成分をコン
デンサCにより除去する。さらに分圧された直流電圧は
正転増幅器Aに入力され、可変抵抗を実施例とする調
整手段18で所定の値になるように調整され、電極1
1,12間の直流電圧に比例した電圧Vdが出力され
る。正転増幅器Aにおいて、Rは抵抗、Cはコン
デンサである。
The voltage extracting means 3 is connected between the electrodes 11 and 12 and extracts the DC component of the voltage V D appearing between the electrodes 11 and 12. An embodiment of this voltage extracting means 3 is shown in FIG.
Sand, receiving an element of the voltage V D between the electrodes 11 and 12 high input impedance and low output impedance for example a transistor T 1 of the emitter follower, by dividing the DC component in the resistor R 1, R 2 of the voltage V D , The pulse component is removed by the capacitor C. Further, the divided DC voltage is input to the non-inverting amplifier A 1 and is adjusted to a predetermined value by the adjusting means 18 having a variable resistance as an embodiment, and the electrode 1
A voltage Vd proportional to the DC voltage between 1 and 12 is output. In the non-inverting amplifier A 1 , R 3 is a resistor and C 1 is a capacitor.

液温取出し手段4は、粒子検出装置1の電解液13の液
温を検出して前記液温に対応した出力電圧を出力する。
すなわち、電解液は液温に応じてその電気伝導度あるい
は抵抗率が変化し電気抵抗が変化するので、液温を一定
にしていない場合には電圧取出し手段3の出力電圧Vd
を温度補正する必要がある。そこで液温取出し手段4の
液温検出手段22で電解液13の液温を電気信号に変換
し液温に比例した出力電圧Vtを取り出す。第3図に示
すように、液温検出手段22は抵抗Rを有するサーミ
スタを実施例とするもので、ステンレス製の電極12の
内部に埋設されている。この温度検出素子22の一端に
抵抗R,7.5Vの定電圧源CVが接続されると、電
圧検出素子22間に電圧Vが発生する。この電圧V
は正転増幅器Aに印加され、たとえば2.5倍に増幅さ
れた後、差動増幅器Aに入力される。差動増幅器A
では定電圧源CVによりたとえば2.5Vを差し引かれ
た後、3.6倍に増幅されることにより、液温Tと比例関
係になる出力電圧Vtが得られた。この実施例ではVt
(Volt)=T(℃)/10であった。正転増幅器A
おいてR,Rは抵抗,Cはコンデンサ、差動増幅
器AにおいてR〜R10は抵抗,Cはコンデンサ
である。
The liquid temperature extracting means 4 detects the liquid temperature of the electrolytic solution 13 of the particle detecting device 1 and outputs an output voltage corresponding to the liquid temperature.
That is, since the electric conductivity or the resistivity of the electrolytic solution changes depending on the liquid temperature and the electric resistance also changes, the output voltage Vd of the voltage extracting means 3 when the liquid temperature is not constant.
Need to be temperature corrected. Therefore, the liquid temperature detecting means 22 of the liquid temperature extracting means 4 converts the liquid temperature of the electrolytic solution 13 into an electric signal and takes out an output voltage Vt proportional to the liquid temperature. As shown in FIG. 3, the liquid temperature detecting means 22 uses a thermistor having a resistance R T as an example, and is embedded inside the electrode 12 made of stainless steel. When a constant voltage source CV 2 of resistance R 4 , 7.5V is connected to one end of the temperature detecting element 22, a voltage V T is generated between the voltage detecting elements 22. This voltage V T
Is applied to the non-inverting amplifier A 2 , amplified by a factor of 2.5, and then input to the differential amplifier A 3 . Differential amplifier A 3
Then, for example, 2.5 V was subtracted by the constant voltage source CV 3 and then amplified by 3.6 times to obtain the output voltage Vt which is in a proportional relationship with the liquid temperature T. In this embodiment, Vt
(Volt) = T (° C.) / 10. In the non-inverting amplifier A 2 , R 5 and R 6 are resistors, C 2 is a capacitor, and in the differential amplifier A 3 , R 7 to R 10 are resistors, and C 3 is a capacitor.

補正手段5は、電圧取出し手段3の出力電圧Vdを前記
液温取出し手段4の出力電圧Vtで補正する。電解液は
液温に依存した電気伝導度δ(T),あるいは抵抗率ρ
(T)を有しているから、電圧取出し手段3で得られた
出力電圧Vdも液温に関係し、出力電圧Vtと同じ特性
を有することになる。したがってたとえば、標準的な微
細孔7の寸法を有するペレットにおいて、一般的に Vd=Vt・f(Vt)+k なる県警が成立可能である。ただし、f(Vt)はVt
の関数,kは定数である。なお、この関数式は予め実験
により求めることができる。そこで、この関係式に基づ
いて Vd′=−Vt・f(Vt)+k′ を仮定し、この式に実測電圧Vtを代入することにより
Vd′を算出し、さらに実測電圧Vdと算出電圧Vd′
とから(Vd+Vd′)を算出することにより、液温に
無関係なデータを得ることができる。このことは補正手
段5により電圧取出し手段3の出力電圧Vdを液温取出
し手段4の出力電圧Vtを用いて補正することを意味す
る。このことにより、液温に関係のないしかも電極1
1,12間の直流成分の電圧に対応した電圧を得ること
が可能になる。
The correction means 5 corrects the output voltage Vd of the voltage extraction means 3 with the output voltage Vt of the liquid temperature extraction means 4. The electrolyte has an electrical conductivity δ (T) or a resistivity ρ depending on the liquid temperature.
Since it has (T), the output voltage Vd obtained by the voltage extracting means 3 is also related to the liquid temperature and has the same characteristics as the output voltage Vt. Therefore, for example, in a pellet having a standard size of the micropores 7, the prefectural police can generally be established as Vd = Vt · f (Vt) + k. However, f (Vt) is Vt
, K is a constant. The functional expression can be obtained in advance by experiments. Therefore, based on this relational expression, Vd ′ = − Vt · f (Vt) + k ′ is assumed, and Vd ′ is calculated by substituting the actually measured voltage Vt into this equation, and further, the actually measured voltage Vd and the calculated voltage Vd ′.
By calculating (Vd + Vd ′) from the above, data unrelated to the liquid temperature can be obtained. This means that the correcting means 5 corrects the output voltage Vd of the voltage extracting means 3 using the output voltage Vt of the liquid temperature extracting means 4. As a result, the electrode 1 is independent of the liquid temperature.
It is possible to obtain a voltage corresponding to the voltage of the DC component between 1 and 12.

このような処理は、たとえば電圧取出し手段3の出力電
圧Vdおよび液温取出し手段4の出力電圧Vtをそれぞ
れA/D変換器(図示せず)に入力してデジタルデータ
に変換し、両データをさらに演算処理装置(図示せず)
に入力して、演算処理すればよく、これにより液温に無
関係な直流成分のデータを得ることができる。
In such processing, for example, the output voltage Vd of the voltage extracting means 3 and the output voltage Vt of the liquid temperature extracting means 4 are input to an A / D converter (not shown) and converted into digital data, and both data are converted. Further processing device (not shown)
It suffices to input the data to and perform arithmetic processing, whereby data of the DC component irrelevant to the liquid temperature can be obtained.

さらに具体的に説明すると、第5図は液温取出し手段4
により取り出された出力電圧Vtと電圧取出し手段3に
より取り出された出力電圧Vdの関係を説明するもので
ある。出力電圧Vt,Vd間の前記関係式のおいて、微
細孔7に詰まりが発生していないとき、 Vd=aVt+bVt+C …(1) なる関係が成立しているものとする。ただし、a,b,
cは定数である。第5図に実線で示す曲線は、標準的な
寸法の微細孔7を有するペレット15を用いて液温を変
えながら電圧VdとVtとを順次測定することにより得
られる。この式(1)に基づいて Vd′=−aVt+−bVt+C′ …(2) なる式を仮定し、前記式(1)とこの式(2)とを辺々加える
と、 Vd+Vd′=C+C′ となり、液温に無関係なデータになることがわかる。す
なわち、詰まりが発生していないとき、実測電圧Vd
と、式(2)に実測電圧Vtを代入して求めた算出電圧V
d′との和 Vd+Vd′=Vd−aVt−bVt+C′ …(3) は液温に関係なくC+C′なる値をとる。たとえば25
℃で第5図のように出力電圧Vt=2.5(Volt)のとき
出力電圧Vd=Vd′=3(Volt)の関係があるとする
と、C+C′=6(Volt)を示す。もし、詰まりが発生
していれば、電圧Vd+Vd′はC+C′より大きな値
となる。
More specifically, FIG. 5 shows the liquid temperature extracting means 4
The relationship between the output voltage Vt taken out by and the output voltage Vd taken out by the voltage take-out means 3 will be described. In the above relational expression between the output voltages Vt and Vd, it is assumed that the relationship of Vd = aVt 2 + bVt + C (1) is established when the fine holes 7 are not clogged. However, a, b,
c is a constant. The curve shown by the solid line in FIG. 5 is obtained by sequentially measuring the voltages Vd and Vt while changing the liquid temperature using the pellet 15 having the standard size micropores 7. Based on this equation (1), assuming that the equation Vd ′ = − aVt 2 + −bVt + C ′ (2), and adding the above equation (1) and this equation (2) to each other, Vd + Vd ′ = C + C It turns out that the data becomes irrelevant to the liquid temperature. That is, when the clogging does not occur, the measured voltage Vd
And the calculated voltage V obtained by substituting the measured voltage Vt into the equation (2).
d 'sum Vd + Vd of the' = Vd-aVt 2 -bVt + C '... (3) is C + C regardless liquid temperature' takes the value that will. For example 25
As shown in FIG. 5, when the output voltage Vt = 2.5 (Volt) and the output voltage Vd = Vd ′ = 3 (Volt), there is a relationship of C + C ′ = 6 (Volt). If clogging occurs, the voltage Vd + Vd 'becomes a value larger than C + C'.

このようにして、電解液13の液温に影響されない電圧
を得ることができ、出力電圧Vdの調整や詰まりの検知
がより一層簡単に行なえるようになる。
In this way, it is possible to obtain a voltage that is not affected by the liquid temperature of the electrolytic solution 13, and it becomes easier to adjust the output voltage Vd and detect clogging.

詰まり検出手段6は、補正手段5で補正された電圧Vd
+Vd′を前記微細孔7の詰まりの基準となる基準値と
比較して前記基準値を超えた場合に検知信号を出力す
る。たとえば基準値は前記液温に関係のない値(C+
C′)に第5図に示すようにα=0.15なる値を加えた
(C+C′+α)とし、これを詰まり検知レベルとす
る。そして、補正手段5により得られた直流成分のデー
タ、すなわち実測された出力電圧Vd,Vtを用いて算
出されたVd+Vd′=(Vd−aVt−bVt+
C′)と、比較判定手段により比較判定し、 Vd−Vd′=Vd−aVt−bVt+C′<C+
C′+αが成立しているときには詰まりは発生していな
いと判定される。また、 Vd−Vd′=Vd−aVt−bVt+C′≧C+
C′+αが成立したとき詰まりが発生したと判定され、
簡単に判定することが可能になる。
The clogging detection means 6 uses the voltage Vd corrected by the correction means 5.
+ Vd 'is compared with a reference value serving as a reference for the clogging of the fine holes 7, and a detection signal is output when the value exceeds the reference value. For example, the reference value is a value (C +
A value of α = 0.15 is added to (C ′) as shown in FIG. 5 to obtain (C + C ′ + α), which is the clogging detection level. Then, Vd + Vd ′ = (Vd−aVt 2 −bVt +) calculated using the data of the DC component obtained by the correction means 5, that is, the actually measured output voltages Vd and Vt.
C 'and), and the comparison determination by the comparison determination unit, Vd-Vd' = Vd- aVt 2 -bVt + C '<C +
When C '+ α is established, it is determined that no clogging has occurred. Further, Vd−Vd ′ = Vd−aVt 2 −bVt + C ′ ≧ C +
When C ′ + α is satisfied, it is determined that a clogging has occurred,
It becomes possible to easily determine.

なお、出力電圧Vd,Vtの測定は計数中やそれ以外に
かかわらず任意の時に行うことができる。
The output voltages Vd and Vt can be measured at any time during counting or other times.

調整手段18は、微細孔7の孔寸法すなわち開口面積の
大きさ等のばらつきによる電圧の変位を調整するもので
ある。実施例で第2図に示す正転増幅器Aの可変抵抗
を用いている。ペレット15ごとに微細孔7の寸法が多
少ばらつくと、出力電圧VdとVtの関係も多少ばらつ
くので、実測したVd,Vtを用いて前記の詰まりの判
定を行うと不具合が生じる。そこで、第2図の可変抵抗
の町営手段18により出力電圧Vdを所定の値に調整
し、前記の判定条件を用いて正しく詰まりの判定が行え
るようにするものである。第6図は出力電圧VdとVt
の関係を示し、曲線Qは正しく調整されていない場合
の関係を示し、曲線Qは出力電圧Vdが正しく調整さ
れている場合の関係を示している。同じく直線Qは正
しく調整されていない場合のVd+Vd′のレベルを示
し、直線Qは出力電圧Vdが正しく調整されている場
合のVd+Vd′のレベルを示している。この図から明
らかなように直線Qを直線Qに一致させることによ
り曲線Qを曲線Qに一致させることができるのがわ
かる。詰まり液温状態にかかわらず、 Vd+Vd′=Vd−aVt−bVt+C′が(C+
C′)になるように出力電圧Vdを調整すればよいの
で、調整が非常に簡単である。
The adjusting means 18 adjusts the displacement of the voltage due to variations in the hole size of the fine holes 7, that is, the size of the opening area. In the embodiment, the variable resistor of the non-inverting amplifier A 1 shown in FIG. 2 is used. If the size of the fine holes 7 varies slightly for each pellet 15, the relationship between the output voltages Vd and Vt also varies to some extent. Therefore, if the above-described clogging is determined using the measured Vd and Vt, a problem occurs. Therefore, the output voltage Vd is adjusted to a predetermined value by the variable resistance town management means 18 shown in FIG. 2 so that the clogging can be correctly determined using the above-mentioned determination conditions. FIG. 6 shows the output voltages Vd and Vt.
, The curve Q 1 shows the relationship when the output voltage Vd is not correctly adjusted, and the curve Q 2 shows the relationship when the output voltage Vd is correctly adjusted. Also linear Q 3 are 'indicates the level of the straight line Q 4 are Vd + Vd when the output voltage Vd is correctly adjusted' correctly Vd + Vd when not adjusted it is indicative of the levels of. As is clear from this figure, it is possible to match the curve Q 1 with the curve Q 2 by matching the straight line Q 3 with the straight line Q 4 . Vd + Vd ′ = Vd−aVt 2 −bVt + C ′ becomes (C +
Since the output voltage Vd may be adjusted so that it becomes C ′), the adjustment is very simple.

この粒子検出装置の異常検知装置は、電圧取り出し手段
3により電極11,12間に発生した電圧の直流成分に
対応した値を取出し、その値と液温取出し手段4により
取り出された液温と対応した値とを用いて補正すること
により、液温に依存しない電圧の直流成分に対応した値
を得ることができるので、微細孔7の孔寸法のばらつき
を吸収するための調整手段18による電圧取出し手段3
の調整が容易となり、詰まり検知の判定も容易になる。
The abnormality detecting device of this particle detecting device extracts a value corresponding to the DC component of the voltage generated between the electrodes 11 and 12 by the voltage extracting means 3, and the value and the liquid temperature extracted by the liquid temperature extracting means 4 correspond to each other. Since the value corresponding to the direct current component of the voltage that does not depend on the liquid temperature can be obtained by performing the correction using the obtained value, the voltage extraction by the adjusting means 18 for absorbing the variation in the hole size of the fine holes 7 can be obtained. Means 3
Adjustment becomes easy, and the judgment of clogging detection becomes easy.

なお、液温および微細孔7が一定となる条件下で微細孔
7の詰まり検知を行う場合には、液温取出し手段,補正
手段や調整手段は不要である。
When the clogging of the fine holes 7 is detected under the condition that the liquid temperature and the fine holes 7 are constant, the liquid temperature extracting means, the correcting means and the adjusting means are unnecessary.

〔考案の効果〕[Effect of device]

請求項(1)の粒子検出装置の異常検知装置は、電極間に
現れる電圧の直流成分を所定の基準値と比較したため、
電極間の電圧の直流成分は電解液および微細孔により決
まるインピーダンスに基づくので、微細孔を流れる粒子
や電解液の流速の影響を受けず、従来のように吸引圧
力,粒子の濃度や大きさに影響されないので、常に安定
して微細孔の詰まりの検知ができるという効果がある。
The abnormality detection device of the particle detection device of claim (1), since the direct current component of the voltage appearing between the electrodes is compared with a predetermined reference value,
Since the DC component of the voltage between the electrodes is based on the impedance determined by the electrolyte and the micropores, it is not affected by the flow velocity of the particles flowing through the micropores or the electrolyte, and the suction pressure, the concentration and size of the particles can be controlled as in the past. Since it is not affected, there is an effect that the clogging of the fine holes can always be detected stably.

請求項(2)の粒子検出装置の異常検知装置は、電解液の
液温に対応した電圧で電圧取出し手段の出力電圧を温度
補正したため、電解液の温度に影響されない精度のよい
詰まり検出が可能になる。
Since the abnormality detection device of the particle detection device according to claim (2) temperature-corrects the output voltage of the voltage extracting means with a voltage corresponding to the liquid temperature of the electrolytic solution, it is possible to detect clogging accurately without being affected by the temperature of the electrolytic solution. become.

請求項(3)の粒子検出装置の異常検知装置は、微細孔の
孔寸法のばらつきによる電圧取出し手段の出力電圧の変
位を調整したため、微細孔の孔寸法に影響されない精度
のよい詰まり検出が可能になる。
Since the abnormality detection device of the particle detection device according to claim (3) adjusts the displacement of the output voltage of the voltage extraction means due to the variation in the hole size of the fine holes, it is possible to detect clogging accurately without being affected by the hole size of the fine holes. become.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案の一実施例の説明図、第2図は電圧取
出し手段の回路図、第3図は液温取出し手段の回路図、
第4図は微細孔に詰まりが発生したときの電極間の電圧
特性図、第5図は出力電圧Vd,Vtの関係図、第6図
は微細孔のばらつきにおける出力電圧Vd,Vtの関係
図である。 1……粒子検出装置、2……電源、3……電圧取出し手
段、4……詰まり検出手段、7……微細孔、8……隔
壁、9,10……両室、11,12……電極、13……
電解液。
FIG. 1 is an explanatory view of an embodiment of the present invention, FIG. 2 is a circuit diagram of voltage extracting means, FIG. 3 is a circuit diagram of liquid temperature extracting means,
FIG. 4 is a voltage characteristic diagram between electrodes when clogging occurs in the fine holes, FIG. 5 is a relationship diagram of the output voltages Vd and Vt, and FIG. 6 is a relationship diagram of the output voltages Vd and Vt in the variation of the fine holes. Is. 1 ... Particle detection device, 2 ... Power supply, 3 ... Voltage extraction means, 4 ... Clogging detection means, 7 ... Fine holes, 8 ... Partition walls, 9, 10 ... Both chambers, 11, 12 ... Electrodes, 13 ...
Electrolyte.

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】隔壁で仕切った両室にそれぞれ電極を設け
るとともに粒子を浮遊させた電解液を容れかつ前記粒子
を通過させる微細孔を前記隔壁に形成した粒子検出装置
と、前記電極間に定電流を供給する電源と、前記電極間
に接続されて前記電極間に現れた電圧の直流成分を取り
出す電圧取出し手段と、この電圧取出し手段の出力電圧
を前記微細孔の詰まりの基準となる基準値と比較して前
記基準値を超えた場合に検知信号を出力する詰まり検出
手段とを備えた粒子検出装置の異常検知装置。
1. A particle detection device in which electrodes are provided in both chambers partitioned by partition walls, and fine holes are formed in the partition walls for containing an electrolytic solution in which particles are suspended and for allowing the particles to pass, and a fixed electrode between the electrodes. A power supply for supplying an electric current, a voltage extracting means connected between the electrodes for extracting a DC component of a voltage appearing between the electrodes, and a reference value serving as a reference for clogging of the fine holes with an output voltage of the voltage extracting means. An abnormality detection device for a particle detection device, comprising: a clogging detection unit that outputs a detection signal when the value exceeds the reference value.
【請求項2】前記粒子検出装置の前記電解液の液温を検
出して前記液温に対応した出力電圧を出力する液温取出
し手段と、前記電圧取出し手段の前記出力電圧を前記液
温取出し手段の前記出力電圧で補正する補正手段とを有
し、前記補正手段の出力電圧を前記詰まり検出手段の前
記基準値と比較する請求項(1)記載の粒子検出装置の異
常検知装置。
2. A liquid temperature extracting means for detecting the liquid temperature of the electrolytic solution of the particle detecting device and outputting an output voltage corresponding to the liquid temperature, and the output voltage of the voltage extracting means for extracting the liquid temperature. An abnormality detection device for a particle detection device according to claim 1, further comprising a correction means for correcting the output voltage of the means, and comparing the output voltage of the correction means with the reference value of the clogging detection means.
【請求項3】前記電圧取出し手段は前記微細孔の孔寸法
のばらつきによる前記出力電圧の変位を調整する調整手
段を有する請求項(1)または請求項(2)記載の粒子検出装
置の異常検知装置。
3. The abnormality detection of the particle detecting device according to claim 1, wherein the voltage extracting means has an adjusting means for adjusting a displacement of the output voltage due to a variation in hole size of the fine holes. apparatus.
JP16596888U 1988-12-22 1988-12-22 Abnormality detection device for particle detection device Expired - Lifetime JPH0628681Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16596888U JPH0628681Y2 (en) 1988-12-22 1988-12-22 Abnormality detection device for particle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16596888U JPH0628681Y2 (en) 1988-12-22 1988-12-22 Abnormality detection device for particle detection device

Publications (2)

Publication Number Publication Date
JPH0285353U JPH0285353U (en) 1990-07-04
JPH0628681Y2 true JPH0628681Y2 (en) 1994-08-03

Family

ID=31452935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16596888U Expired - Lifetime JPH0628681Y2 (en) 1988-12-22 1988-12-22 Abnormality detection device for particle detection device

Country Status (1)

Country Link
JP (1) JPH0628681Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075324A (en) * 2001-09-06 2003-03-12 Sysmex Corp Resistance type particle counter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9429509B2 (en) * 2002-01-28 2016-08-30 Sysmex Corporation Particle analyzer and particle analysis method
CN111122841A (en) * 2018-10-31 2020-05-08 深圳市帝迈生物技术有限公司 Method for improving sample result accuracy and sample analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075324A (en) * 2001-09-06 2003-03-12 Sysmex Corp Resistance type particle counter

Also Published As

Publication number Publication date
JPH0285353U (en) 1990-07-04

Similar Documents

Publication Publication Date Title
EP2283325B1 (en) Electromagnetic flowmeter and method with full pipe detection by the help of a third electrode
US7921736B2 (en) Magneto-inductive flow measuring device
US7117750B2 (en) Method for operating a magnetoinductive flowmeter
US10345127B2 (en) Flowmeter and cassette module for a flowmeter
JP2013518268A (en) Control of particle flow in apertures.
TW201721105A (en) Apparatus for detecting the liquid level
JPH0628681Y2 (en) Abnormality detection device for particle detection device
US3973194A (en) Particle counter
CN107466364B (en) Apparatus for counting particles
US4019134A (en) Particle detector independent of errors caused by changes of electrolyte conductivity and electrode polarization
EP3237850A1 (en) Flowmeter
GB1485750A (en) Method of and instrument for determination of the size of particles in a turbulently flowing fluid stream
US3861800A (en) Particle counter independent of flow rate
CN110376399A (en) The measuring system and measurement method of particle flow parameter
US3984773A (en) Pulse counting-rate meter
JPS5818157A (en) Zeta potential measuring device
JPH0442771Y2 (en)
US6539811B2 (en) Apparatus for measuring the flow of a medium to be measured through a measuring tube
JP6135924B2 (en) Electromagnetic flow meter
JPH0210438Y2 (en)
JP4053392B2 (en) Capacity type electromagnetic flow meter
JPH0566972B2 (en)
JPH0236176B2 (en)
JPS6032567Y2 (en) Flow rate/flow rate detection device
JPH0120675Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term