JPS5818157A - Zeta potential measuring device - Google Patents

Zeta potential measuring device

Info

Publication number
JPS5818157A
JPS5818157A JP11671281A JP11671281A JPS5818157A JP S5818157 A JPS5818157 A JP S5818157A JP 11671281 A JP11671281 A JP 11671281A JP 11671281 A JP11671281 A JP 11671281A JP S5818157 A JPS5818157 A JP S5818157A
Authority
JP
Japan
Prior art keywords
liquid
potential
zeta potential
flowing
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11671281A
Other languages
Japanese (ja)
Other versions
JPS632469B2 (en
Inventor
Kazuhiro Hayashida
林田 和弘
Shohei Ishida
石田 昇平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP11671281A priority Critical patent/JPS5818157A/en
Publication of JPS5818157A publication Critical patent/JPS5818157A/en
Publication of JPS632469B2 publication Critical patent/JPS632469B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/60Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrostatic variables, e.g. electrographic flaw testing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To measure a zeta potential continuously with high accuracy over a wide measuring range, by changing the pressure of circulated fluid periodically and measuring an AC potential difference generated between electrodes provided at upper-stream packing layer. CONSTITUTION:Powder or fibrous solid sample is packed in a packing layer 1 and liquid is circulated from a liquid vessel 9 through a circulating flow path 17. When the liquid is packed in the path 17, a vibrator 6 is oscillated. When a pressure change is caused in a liquid due to vibration, an AC liquid potential E is generated between electrodes 2 and only AC components are synchronously rectified at a synchronizing rectifier 11 and outputted to an operation device 15. A liquid pressure P and conductivity lambda are inputted to the device 15 to obtain a zeta potential zeta. Thus, the zeta potential can continuously be measured with high accuracy over a wide measuring range without being affected with the drift.

Description

【発明の詳細な説明】 この発明はゼータ電位測定装#に関する。[Detailed description of the invention] The present invention relates to a zeta potential measuring device.

固体−液体の界面での荷電状態を表すゼータ(0電位を
測定する方法の一つとして流動電位法がある。流動電位
法は物体や繊維愈どを電極間に充てんして充てん層を形
成し、この充てん層に液体を透過させることによって電
極間に発生する電位差、すなわち流動電位を測定してゼ
ータ電位を求めるものである。従来の装置では、一定方
向に一定の圧力で液体を流動させたとき発生する直流電
位を測定していたが、電極−液体間の接触電位や電極間
の不整電位によるドリフト分があってゼータ電位の小さ
い試料や等電位付近の測定においては測定精度の向上が
望めない、特に流動液のイオン強度が太きくなると発生
電位が小さくなシ、ドリフト分の割合が大きくなるため
、さらに精度が落ちることになる。このように直流電位
を測定する装置では測定範囲が狭くなる欠点があった。
One of the methods for measuring zeta (zero potential), which represents the charge state at the solid-liquid interface, is the streaming potential method. The zeta potential is determined by measuring the potential difference that occurs between the electrodes when a liquid permeates through this packed layer, that is, the flowing potential.In conventional devices, the liquid is made to flow in a certain direction at a constant pressure. However, since there is a drift due to the contact potential between the electrode and the liquid and the irregular potential between the electrodes, it is difficult to expect improvement in measurement accuracy when measuring samples with small zeta potentials or near equipotentials. In particular, as the ionic strength of the flowing liquid increases, the generated potential becomes smaller and the proportion of drift increases, resulting in further loss of accuracy.In this way, devices that measure DC potential have a narrow measurement range. There was a drawback.

また、このような不整電位があるために、ゼータ電位の
計算は、流体の圧力を連続的に一方向に変化させ、この
ときの流動電位をX−Yレコーダ等に記録して電位と圧
力の勾配から行うか、もしくは少なくとも二点以上の圧
力について流動電位を測定しなければならない欠点があ
った。さらに、この欠点によりPHやイオン強度など液
の性質を変化させたときのゼータ電位の変化を測定した
い場合忙は液の交換など多くの手間を要し連続的にかつ
、簡単に測定することができなかった。
In addition, due to such asymmetric potential, calculation of zeta potential requires changing the pressure of the fluid continuously in one direction, recording the flowing potential at this time on an X-Y recorder, etc., and calculating the relationship between the potential and pressure. This method has the disadvantage that it must be performed from a gradient or the streaming potential must be measured at pressures at at least two or more points. Furthermore, due to this drawback, if you want to measure the change in zeta potential when changing the properties of the liquid such as pH or ionic strength, it is difficult to measure continuously and easily, as it requires a lot of effort such as changing the liquid. could not.

この発明の目的は上記従来の欠点に鑑み、広い測定範囲
に亘り、接触電位や不整電位によるドリフト分の影響を
受けず高精度にかつ連続的にゼータ電位を測定すること
ができるゼータ電位測定装置を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks of the conventional art, an object of the present invention is to provide a zeta potential measuring device that can measure zeta potential with high precision and continuously over a wide measurement range without being affected by drift due to contact potential or irregular potential. Our goal is to provide the following.

この発明は、上記目的を達成するために、循環流路およ
びポンプなどからなり、流動液容器から流動液を充てん
層に循環させる手段と上記流動液に周期的な圧力変化を
与える手段と、上記光てん層に流入する上記流動液の圧
力を測定する手段とを設けたゼータ電位測定装置であシ
、循環する上記流動液の圧力が周期的に変イヒするとき
の上流光てん層に設けられた電極間に発生する交流電位
差を測定してゼータ電位を求めるよう構成されているこ
とを特徴としている。
In order to achieve the above object, the present invention comprises a circulation channel, a pump, etc., means for circulating the fluidized liquid from the fluidized liquid container to the packed bed, means for applying periodic pressure changes to the fluidized liquid, and the above-mentioned. A zeta potential measuring device is provided with a means for measuring the pressure of the flowing liquid flowing into the photoreceptor layer, and is provided in the upstream photoreceptor layer when the pressure of the circulating liquid changes periodically. The device is characterized in that it is configured to determine the zeta potential by measuring the AC potential difference generated between the electrodes.

この発明の交流式ゼータ電位測定原理を以下に説明する
The principle of alternating current zeta potential measurement of this invention will be explained below.

粉末などの充てん層に液体を流しその流れを考えると充
てん層は近似的に細管の集合体とみなす゛ことができる
。第1図に示す原理図はその細管の1本をモデル化した
もので、固体21の表明が負に帯電している場合の液と
イオンの流れおよび電極22の極性との関係を示してい
る。一方向に液体が流れているとき、イオンの流れは定
常状態を保ち、電極間には一定の電位差が発生する(第
1図(〜)。さらに液体が逆方向に流れると極性が異な
る一定の電位差が発生する(第1図■))。従って、圧
力Pが周期的に変化する液体を流したときには、交流の
電位差が発生する。この電位差が流動電位Eであり、周
期的に変化する圧力との関係を第2図に示す。第2図の
Cはゼータ電位が負のときの流動電位Eの変化であシ、
同図りはゼータ電位が正のとき変化を表す。
When a liquid is poured into a layer filled with powder or the like and the flow is considered, the layer can be approximately regarded as an aggregate of thin tubes. The principle diagram shown in Figure 1 is a model of one of the thin tubes, and shows the relationship between the flow of liquid and ions and the polarity of the electrode 22 when the solid 21 is negatively charged. . When a liquid flows in one direction, the flow of ions remains steady, and a constant potential difference occurs between the electrodes (Figure 1 (~). Furthermore, when the liquid flows in the opposite direction, a constant potential difference with different polarity occurs. A potential difference is generated (Fig. 1 ■)). Therefore, when a liquid whose pressure P changes periodically is caused to flow, an alternating current potential difference is generated. This potential difference is the streaming potential E, and its relationship with periodically changing pressure is shown in FIG. C in Figure 2 is the change in streaming potential E when the zeta potential is negative;
The figure shows changes when the zeta potential is positive.

以上のことから圧力が周期的に変化する液体を流すこと
kより流動電位を交流電圧としてとり出すことができる
From the above, by flowing a liquid whose pressure changes periodically, the flowing potential can be extracted as an alternating current voltage.

一方、ゼータ電位(0と流動電位Eは、下式の関係があ
る。
On the other hand, the relationship between the zeta potential (0) and the streaming potential E is expressed by the following formula.

η:液体の粘性係数 λ:液体の導電率 e:液体の誘電率 従って、η、lを一定とすれば、ゼータ電位はλ、E%
 Pを測定して求めることができる。
η: Viscosity coefficient of liquid λ: Electrical conductivity of liquid e: Dielectric constant of liquid Therefore, if η and l are constant, the zeta potential is λ and E%
It can be determined by measuring P.

これに対し、電極間に流れる流動電流Iを測定してもゼ
ータ電位を求めることができる。この場合のことIとの
関係は下式で表される。
On the other hand, the zeta potential can also be determined by measuring the flowing current I flowing between the electrodes. In this case, the relationship with I is expressed by the following formula.

ここでCは充てん層を含む電極間検定数である。Here, C is the number of interelectrode tests including the filling layer.

以下、この発明の実施例を図面に基づき説明するO この実施例は(1)式に基づき、流動電位を測定してゼ
ータ電位を求めるよう構成されたゼータ電位測定装置で
あり、第3図にその構成図を示す。
Hereinafter, an embodiment of the present invention will be described based on the drawings. This embodiment is a zeta potential measuring device configured to measure a flowing potential and obtain a zeta potential based on equation (1). The configuration diagram is shown below.

流動電位測定槽16は粉体などの固体試料を充てんする
ための充てん層1と、液体が流れる方向に設けられた一
対の電極2からなる。第4図に充てん層1の断面を拡大
した図を示す。電極2は液が流れるよう忙直径IW程度
の小孔が多数あけられた形状をなす。電極の材質につい
ては白金または銀に塩化銀でメッキされたものなどを用
いる。
The flowing potential measuring tank 16 includes a filling layer 1 for filling a solid sample such as powder, and a pair of electrodes 2 provided in the direction in which the liquid flows. FIG. 4 shows an enlarged cross-sectional view of the filled layer 1. The electrode 2 has a shape with a large number of small holes having a diameter of about IW to allow liquid to flow. As for the material of the electrode, platinum or silver plated with silver chloride is used.

ろ紙6は充てん層1内に充てんされた固体試料が流出す
るのを防ぐためのものである。流動液容器9内の流動液
を充てん層1に流し循環させるために、流動電位測定槽
16と流動液容器9を連通ずる循環流路17が設けられ
ている。流動電位測定槽16の流入路には流動液に振動
を与える振動子5と流動液の圧力を・測定する圧力セン
サ4が設けられている。ポンプ7は流動液容器9゛から
流動液を吸い上げ流動させるためのものである。循環流
路17の流入側と流出側を連通する流路に設けられたパ
ルプ8は流量調節に用いられる。振動装置6は発振器1
6により駆動される。
The filter paper 6 is for preventing the solid sample filled in the packed layer 1 from flowing out. In order to flow and circulate the fluid in the fluid fluid container 9 through the packed bed 1, a circulation channel 17 is provided which communicates the fluid fluid container 9 with the fluid fluid container 16. The inflow path of the flowing potential measuring tank 16 is provided with a vibrator 5 that gives vibration to the flowing liquid and a pressure sensor 4 that measures the pressure of the flowing liquid. The pump 7 is for sucking up the fluid from the fluid container 9' and making it flow. The pulp 8 provided in the flow path communicating the inflow side and the outflow side of the circulation flow path 17 is used for flow rate adjustment. The vibration device 6 is the oscillator 1
6.

圧力センサ4は圧カセンサ用電源兼整流器12に接続さ
れ、整流されて同期整流器11の基準信号となるととも
に液の圧力を示す信号として演算装置15に導入される
。電極2の間に発生する電位差の出力は同期整流器11
に接続されている。
The pressure sensor 4 is connected to a pressure sensor power supply and rectifier 12, and is rectified to become a reference signal for the synchronous rectifier 11 and is also introduced to the arithmetic unit 15 as a signal indicating the liquid pressure. The output of the potential difference generated between the electrodes 2 is output by a synchronous rectifier 11.
It is connected to the.

なお、同期整流器11の前段にはインピーダンス変換回
路が含まれている。同期整流器11において、電極2間
に発生する交流信号は圧力センサ4の出力信号を基準信
号として同期整流される。導電率測定器14は、流動液
の電気抵抗から液の導電率を測定するものであり、測定
は導電率測定用電極10を流動液中に浸して行われる。
Note that an impedance conversion circuit is included at the stage before the synchronous rectifier 11. In the synchronous rectifier 11, the alternating current signal generated between the electrodes 2 is synchronously rectified using the output signal of the pressure sensor 4 as a reference signal. The conductivity measuring device 14 measures the conductivity of the fluid from the electrical resistance of the fluid, and the measurement is performed by dipping the conductivity measurement electrode 10 into the fluid.

演算装置15は、同期整流器11、圧力センサ用電源兼
整流器12および導電率測定器14のそれぞれの出力、
すなわち流動電位E1液の圧力P1および導電率λに対
応する信号を入力して(1)式に基づきゼータ電位ζを
算出する。
The arithmetic device 15 outputs each of the synchronous rectifier 11, the pressure sensor power supply/rectifier 12, and the conductivity measuring device 14,
That is, a signal corresponding to the pressure P1 and conductivity λ of the liquid flowing potential E1 is input, and the zeta potential ζ is calculated based on equation (1).

以上の構成において、充てん層1内に粉末状あるいは繊
維状の固体試料を充てんして、流動液容器9から循環流
路17を通じて流動液を循環させる。このときの流量は
、充てんすべき固体試料の粒度によって決まる液の透過
率を考慮して決められる。循環流路17内に液がみださ
れたとき、振動装置6を振動させる。流動液に振動によ
る圧力整流されて演算装置t15に出力される。また、
演算装置15には、流動液の圧力P1導電率λが入力さ
れゼータ電位ζが求められる。
In the above structure, the packed layer 1 is filled with a powdery or fibrous solid sample, and the fluid is circulated from the fluid container 9 through the circulation channel 17. The flow rate at this time is determined in consideration of the liquid permeability determined by the particle size of the solid sample to be filled. When the liquid is spilled into the circulation channel 17, the vibration device 6 is vibrated. The pressure of the flowing liquid is rectified by vibration and output to the arithmetic unit t15. Also,
The pressure P1 and conductivity λ of the flowing liquid are input to the calculation device 15, and the zeta potential ζ is determined.

この流動電位の測定は、充てん層1に液をみたしたのち
ポンプ7の駆動を停止し液の流れを止めてから振動を力
えて行ってもよい。また、電極2間で発生する信号を同
期整流するだめの基準信号に、発振器13からの信号を
用いてもよい。さらに、液に振動を与える手段として、
クランク機構からなる機械的構成で振動を発生させても
よく、ポンプ自体が脈流を発生させるものでもよい。
The measurement of the flowing potential may be performed by applying vibration after filling the packed layer 1 with the liquid, stopping the driving of the pump 7 and stopping the flow of the liquid. Further, the signal from the oscillator 13 may be used as a reference signal for synchronously rectifying the signal generated between the electrodes 2. Furthermore, as a means of imparting vibration to the liquid,
The vibration may be generated by a mechanical structure consisting of a crank mechanism, or the pump itself may generate pulsating flow.

また、(2)式に基づいてゼータ電位の測定を行う場合
には同期整流器11の入力インピーダンスを低くして流
動電流■を測定して行うことができる。
Furthermore, when measuring the zeta potential based on equation (2), it can be done by lowering the input impedance of the synchronous rectifier 11 and measuring the flowing current (2).

以上のように、この発明によれば交流の流動電位を測定
するから電極−液体間の接触電位や電極間の不整電位に
よるドリフト分の影響を受けず、そのようなドリフト分
を補償する回路を設けることなく構成が簡単である。ま
た、ドリフト分の影響を受けないから、測定の感度を上
げることによって液のイオン強度が高い場合、または液
のPHが非常に高いかあるいは非常に低い場合さらに流
動電位の発生が少ないの条件での測定などに対してゼー
タ電位を高精度に測定することができる。
As described above, according to the present invention, since the alternating current flowing potential is measured, it is not affected by the drift caused by the contact potential between the electrode and the liquid or the uneven potential between the electrodes, and a circuit that compensates for such drift can be created. The configuration is simple without the need for any additional equipment. In addition, since it is not affected by drift, it is possible to increase the measurement sensitivity when the ionic strength of the liquid is high, or when the pH of the liquid is very high or very low, and even under conditions where there is little generation of streaming potential. Zeta potential can be measured with high precision for measurements such as .

また、固体試料が同じで液の性質、たとえばPHや電解
質濃度を変えて行う測定器が簡単に行え、さらに経時変
化の測定が可能であって測定範囲が広いゼータ電位測定
装置が得られる。液の圧力変化に対する流動電位を直続
することができるからデータを計算機に直接入力してゼ
ータ電位を算出することができ、測定が簡略化される。
In addition, a zeta potential measuring device can be obtained that can easily carry out measurements using the same solid sample while changing liquid properties, such as pH and electrolyte concentration, and can also measure changes over time and has a wide measurement range. Since the flow potential can be directly connected to changes in the pressure of the liquid, the data can be input directly into a computer to calculate the zeta potential, which simplifies the measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のゼータ電位測定原理を説明するだめ
の図、第2図はこの測定原理における液の圧力Pと流動
電位Eの出力波形図、第3図はこの発明の実施例の構成
図、第4図はこの実施例の充てん層1を示す断面拡大図
である。 1・・・・・・充てん層   2・・・・・・電極4・
・・・・・圧力センサ  5・・・・・・振動子6・・
・・・・電磁石    7・・・・・・ポンプ9・・・
・・・流動液容器 10・・・・・・導電率測定用電極  911・・・・
・・同期整流器 12・・・・・・圧力センサ用電源兼整流器16・・・
・・・発振器 14・・・・・・導電率測定器 15・・・・・・演算装置 16・・・・・・流動電位測定槽 17・・・・・・循環流路 特許出願人 株式会社島津製作所
Fig. 1 is a diagram for explaining the zeta potential measurement principle of this invention, Fig. 2 is an output waveform diagram of liquid pressure P and streaming potential E in this measurement principle, and Fig. 3 is the configuration of an embodiment of this invention. 4 are enlarged cross-sectional views showing the filling layer 1 of this embodiment. 1...Filled layer 2...Electrode 4.
... Pressure sensor 5 ... Vibrator 6 ...
...Electromagnet 7...Pump 9...
... Fluid liquid container 10 ... Conductivity measurement electrode 911 ...
...Synchronous rectifier 12...Power supply and rectifier for pressure sensor 16...
... Oscillator 14 ... Conductivity measuring device 15 ... Arithmetic device 16 ... Flowing potential measuring tank 17 ... Circulating flow path Patent applicant Co., Ltd. Shimadzu Corporation

Claims (1)

【特許請求の範囲】[Claims] 固体試料の充てん層からなる流動電位測定槽と、流動液
容器と、上記充てん層を挾み流動液の流動方向に設けた
一対の電極とを備え、上記充てん層内に上記流動液を流
し上記電極間に発生する流動電位からゼータ電位を測定
する装置において、上記流動液を上記流動液容器から上
記充てん層に循環させる手段と、上記流動液に周期的な
圧力変化を与える手段と、上記充てん層に流入する上記
流動液の圧力を測定する手段とを設け、上記流動液の圧
力が周期的に変化するときの上記電極間に発生する交流
電位を測定して上記ゼータ電位を求め・るよう構成され
たゼータ電位測定装置。
A flowing potential measurement tank consisting of a packed layer of a solid sample, a flowing liquid container, and a pair of electrodes sandwiching the packed layer and provided in the flow direction of the flowing liquid, the flowing liquid being flowed into the packed layer and the above-mentioned A device for measuring zeta potential from a flowing potential generated between electrodes, comprising means for circulating the flowing liquid from the flowing liquid container to the packed bed, means for applying periodic pressure changes to the flowing liquid, and the packed bed. means for measuring the pressure of the flowing liquid flowing into the bed, and determining the zeta potential by measuring the alternating current potential generated between the electrodes when the pressure of the flowing liquid changes periodically. The constructed zeta potential measuring device.
JP11671281A 1981-07-24 1981-07-24 Zeta potential measuring device Granted JPS5818157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11671281A JPS5818157A (en) 1981-07-24 1981-07-24 Zeta potential measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11671281A JPS5818157A (en) 1981-07-24 1981-07-24 Zeta potential measuring device

Publications (2)

Publication Number Publication Date
JPS5818157A true JPS5818157A (en) 1983-02-02
JPS632469B2 JPS632469B2 (en) 1988-01-19

Family

ID=14693940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11671281A Granted JPS5818157A (en) 1981-07-24 1981-07-24 Zeta potential measuring device

Country Status (1)

Country Link
JP (1) JPS5818157A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307479A (en) * 1988-06-06 1989-12-12 Tiger Kawashima Co Ltd Automatic sorting weigher of grain
JPH0226684A (en) * 1988-07-15 1990-01-29 Tiger Kawashima Co Ltd Automatic classifying and weighing machine of grain
JPH02238814A (en) * 1989-03-10 1990-09-21 Tiger Kawashima Co Ltd Vertical grain grader
JPH0450758A (en) * 1990-06-19 1992-02-19 Ebara Infilco Co Ltd Zeta potential measuring instrument
JP2691476B2 (en) * 1990-10-08 1997-12-17 ザ・ウイギンズ・ティープ・グループ・リミテッド Electrodynamic potential measurement
WO2004015410A1 (en) * 2002-08-09 2004-02-19 Volker Ribitsch Method and device for determining a flow potential or zeta potential
JP2008259946A (en) * 2007-04-11 2008-10-30 Mitsui Mining Co Ltd Crushing and distribution system
WO2022196533A1 (en) * 2021-03-13 2022-09-22 国立大学法人神戸大学 Zeta potential measurement method and measurement device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307479A (en) * 1988-06-06 1989-12-12 Tiger Kawashima Co Ltd Automatic sorting weigher of grain
JPH0226684A (en) * 1988-07-15 1990-01-29 Tiger Kawashima Co Ltd Automatic classifying and weighing machine of grain
JPH02238814A (en) * 1989-03-10 1990-09-21 Tiger Kawashima Co Ltd Vertical grain grader
JPH0450758A (en) * 1990-06-19 1992-02-19 Ebara Infilco Co Ltd Zeta potential measuring instrument
JP2691476B2 (en) * 1990-10-08 1997-12-17 ザ・ウイギンズ・ティープ・グループ・リミテッド Electrodynamic potential measurement
WO2004015410A1 (en) * 2002-08-09 2004-02-19 Volker Ribitsch Method and device for determining a flow potential or zeta potential
JP2008259946A (en) * 2007-04-11 2008-10-30 Mitsui Mining Co Ltd Crushing and distribution system
WO2022196533A1 (en) * 2021-03-13 2022-09-22 国立大学法人神戸大学 Zeta potential measurement method and measurement device

Also Published As

Publication number Publication date
JPS632469B2 (en) 1988-01-19

Similar Documents

Publication Publication Date Title
KR100193004B1 (en) Water cut monitoring means and method
Reiss et al. Measurement of instantaneous rates of mass transfer to a small sink on a wall
US4812210A (en) Measuring surfactant concentration in plating solutions
US7117750B2 (en) Method for operating a magnetoinductive flowmeter
JPS5818157A (en) Zeta potential measuring device
Štulík et al. Continuous voltammetric measurements with solid electrodes: Part I. A flow-through cell with tubular electrodes employing pulse polarization of the electrode system
Gaucher et al. Hydrodynamics study in a plane ultrafiltration module using an electrochemical method and particle image velocimetry visualization
KR20060002992A (en) Magnetic flow transducer and flow meter incorporating the same
JPS638423B2 (en)
Ayliffe et al. An electric impedance based microelectromechanical system flow sensor for ionic solutions
Long et al. An improved mass-transport cell for measuring electrophoretic mobilities
US2382735A (en) Electrical cell apparatus
Laitinen et al. Impedance Measurements at Solid Electrodes in Molten Lithium Chloride‐Potassium Chloride
KR20150106536A (en) Method and apparatus for measuring hematocrit of blood
JP4045242B2 (en) Method and apparatus for measuring zeta potential using AC electric field and T channel
Figaszewski et al. Application of the vibrating interface method to the measurements of charge density on a mercury electrode
JP2001174431A (en) Apparatus and method for measuring residual chlorine concentration in acidic liquid
SU915014A1 (en) Device for forming electrolyte gap in mercury coulometer
SU1332213A1 (en) Device for measuring the concentration of solutions
SU658442A1 (en) Method of measuring the function of surface tension of solid electrode versus potential
Yager et al. A semiautomatic moving boundary apparatus
JPH10221135A (en) Electromagnetic flowmeter
JPS6097247A (en) Continuous liquid-concentration measuring device
JPS63210627A (en) Liquid-level meter
JP2933362B2 (en) An improved system for measuring electrokinetic properties and characterizing electrokinetic separation by monitoring current in electrophoresis