JPH10221135A - Electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter

Info

Publication number
JPH10221135A
JPH10221135A JP2691497A JP2691497A JPH10221135A JP H10221135 A JPH10221135 A JP H10221135A JP 2691497 A JP2691497 A JP 2691497A JP 2691497 A JP2691497 A JP 2691497A JP H10221135 A JPH10221135 A JP H10221135A
Authority
JP
Japan
Prior art keywords
flow rate
potential difference
electrode
electrodes
full
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2691497A
Other languages
Japanese (ja)
Other versions
JP3337118B2 (en
Inventor
Hiroyuki Yoshimura
弘幸 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP02691497A priority Critical patent/JP3337118B2/en
Publication of JPH10221135A publication Critical patent/JPH10221135A/en
Application granted granted Critical
Publication of JP3337118B2 publication Critical patent/JP3337118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable the measurement of a flow rate in a short time by arranging a plurality of electrodes, right and left in pairs on respective upper and lower planes at positions where the internal wall of a measuring pipe contacts planes set being separated by an equal distance above and below a reference surface containing the axis of the measuring pipe and orthogonal to a magnetic field generated. SOLUTION: Two sets of electrode pairs 103a and 103b, pairs of right and left electrodes, are installed in symmetry with each other with respect to a horizontal axis containing the axis of a measuring pipe while being deviated at different positions from each other in the direction of the axis of the pipe. The electrodes set on the one side and the electrodes set on the side as opposed thereto are arranged being overlapped therebetween as viewed from the direction of the axis of the measuring pipe. In other words, the limit of detection is basically raised by expanding parts of the electrodes as immersed in a fluid. In the determination of a flow rate from potential differences between the upper and lower electrodes, when the water is full, the volumetric flow rate and the potential difference between the electrodes are primarily determined. When the water is not full, the relationship between the two factors is not defined primarily under the influence of the installation conditions of a piping. This means that the two factors are necessary as parameters of non-water filling rate. Thus, the correction of the flow rate is accomplished based on the potential difference thereby enabling accurate measuring of the flow rate during the non-full water period.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、殆どの導電性流
体の流量計測に適用可能であり、特に圧損が無視できる
ことから、特にプラントや水処理設備などにおける流量
の管理,制御に好適で、非満水時の流量測定に最適な電
磁流量計に関する。
The present invention is applicable to the measurement of the flow rate of most conductive fluids, and is particularly suitable for controlling and controlling the flow rate in plants, water treatment facilities, etc. The present invention relates to an electromagnetic flowmeter that is optimal for measuring the flow rate when water is full.

【0002】[0002]

【従来の技術】従来の電磁流量計はフレミングの法則に
より、JIS Z8764やJISB7554にも示さ
れるように、その流量信号は液体の管内を流れる方向,
磁界の方向と互いに直交する方向に数10μVから数m
Vの電圧信号として、管内を流れる流体速度に比例して
発生する。現在使用されている電磁流量計では、磁界を
発生する手段として配管の上下に配置した1対の励磁コ
イルに交番電源から電流を流すようにしており、近年は
電流波形を矩形波状とすることで、零点ドリフトや経時
変化を軽減するようにしている。
2. Description of the Related Art A conventional electromagnetic flow meter has a flow signal based on Fleming's law, as shown in JIS Z8764 and JIS B7554.
Several tens of μV to several meters in a direction perpendicular to the direction of the magnetic field
The voltage signal of V is generated in proportion to the velocity of the fluid flowing through the pipe. In an electromagnetic flowmeter currently used, a current is supplied from an alternating power supply to a pair of excitation coils arranged above and below a pipe as a means for generating a magnetic field. , So as to reduce zero point drift and aging.

【0003】交番励磁とする理由は、直流磁界励磁では
流体中に発生する流量信号が直流であるため、流体と電
極間に一定方向に流れる微弱電流で、流体と電極界面に
電気化学反応が連続的に発生し、界面状態が変化して微
弱な起電力を生じたり、界面電気抵抗が増加変動したり
するためである。これらはいずれも一定値ではなく、経
時的に変化したり、流速で変わったりして、流量信号に
とってノイズとなる。このような問題を解決すべく交番
励磁とすると、流量信号も交流となり、電気化学反応も
正,逆反応が交互に生じるため進行せず、安定な計測が
可能になるというわけである。
[0003] The reason for the alternating excitation is that, in a DC magnetic field excitation, a flow signal generated in a fluid is a direct current, so that a weak current flowing in a certain direction between the fluid and the electrode causes a continuous electrochemical reaction at the fluid-electrode interface. This is because the interface state changes and the interface state changes to generate a weak electromotive force, or the interface electric resistance increases and fluctuates. These are not constant values, but change over time or change with the flow velocity, and become noise for the flow rate signal. If alternating excitation is used to solve such a problem, the flow signal is also alternating current, and the electrochemical reaction does not proceed because the forward and reverse reactions occur alternately, so that stable measurement becomes possible.

【0004】図5にこのような電磁流量計の例を示す。
これは、流体101が流れる測定管102、および測定
管102の内壁に取り付けられた1対の電極103a,
103b、測定管102に磁束を与える励磁コイル10
4からなる検出器100と、この検出器100の励磁コ
イル104に電流を流す励磁回路105、電極103
a,103b間に発生する電位差(磁束の強さと測定管
102内を流れる流体101の平均速度に比例する値の
電圧)を増幅する差動増幅器(AMP)106、この差
動増幅器106によって増幅された信号を処理する演算
回路107よりなる変換器108とから構成されてい
る。
FIG. 5 shows an example of such an electromagnetic flow meter.
This includes a measuring tube 102 through which a fluid 101 flows, and a pair of electrodes 103a attached to the inner wall of the measuring tube 102.
103b, excitation coil 10 for applying magnetic flux to measurement tube 102
4, an excitation circuit 105 for flowing a current through an excitation coil 104 of the detector 100, and an electrode 103.
A differential amplifier (AMP) 106 that amplifies a potential difference (a voltage proportional to the intensity of magnetic flux and the average velocity of the fluid 101 flowing through the measuring tube 102) generated between the a and 103b. And a converter 108 comprising an arithmetic circuit 107 for processing the processed signal.

【0005】図6は図5の動作を説明するための各部波
形図である。以下、図5の動作について図6を参照して
説明する。すなわち、測定管102内を流れる流体10
1の流量を測定するときは、励磁回路105から図6
(a)で示すような励磁信号(矩形波電流)を出力して
励磁コイル104を励磁し、測定管102内に図6
(c)に示すような交番磁界を発生させ、各電極103
a,103bに直流成分に起因する分極電位が発生しな
いようにしながら、電極103a,103b間に交番磁
界による磁界の強さと、流体101の、平均速度に比例
する電位差を図6(d)の如く発生させ、これを差動増
幅器106によって増幅させる。
FIG. 6 is a waveform chart of each part for explaining the operation of FIG. Hereinafter, the operation of FIG. 5 will be described with reference to FIG. That is, the fluid 10 flowing through the measurement tube 102
1 is measured from the excitation circuit 105 in FIG.
The excitation signal (rectangular wave current) shown in FIG.
An alternating magnetic field as shown in FIG.
As shown in FIG. 6D, the magnetic field strength between the electrodes 103a and 103b due to the alternating magnetic field and the potential difference proportional to the average velocity of the fluid 101 are reduced while preventing the polarization potentials due to the DC components from being generated at the electrodes 103a and 103b. And amplifies it by the differential amplifier 106.

【0006】上記動作と並行して、図6(c)の方形波
電流が安定する毎に、励磁回路105から出力される図
6(b)のようなサンプリング信号によって、演算回路
107にサンプリング動作を行なわせ、図6(e)の如
く差動増幅器106から出力される流量信号を取り込ま
せるとともに、このサンプリング動作にて取り込まれる
各流量信号にもとづき所定の演算を行ない、信号ケーブ
ル109および検出器100等によって構成されるルー
プ回路を横切る磁束の変化に起因するノイズや、方形波
電流の周期より長い周期を持つノイズを除去した図6
(f)のような流量信号を生成し、これを表示させた
り、4−20mAの電流信号等にしてディジタル伝送す
るようにしている。
In parallel with the above operation, every time the square wave current of FIG. 6C is stabilized, the sampling circuit as shown in FIG. 6B output from the excitation circuit 105 causes the arithmetic circuit 107 to perform a sampling operation. 6 (e), a flow signal output from the differential amplifier 106 is taken in, and a predetermined operation is performed based on each flow signal taken in the sampling operation, thereby obtaining a signal cable 109 and a detector. FIG. 6 is a diagram in which noise caused by a change in magnetic flux traversing a loop circuit constituted by the loop circuit 100 and noise having a period longer than the period of the square wave current are removed.
A flow signal as shown in (f) is generated and displayed, or a digital signal such as a 4-20 mA current signal is transmitted.

【0007】ところで、このような電磁流量計では、そ
の設置時、図7に示すように、上下方向に2分する電極
取り付けライン(管軸を含む水平軸線)110上に相対
向するように1対の電極103を設置するので、測定管
102を流れる流体101の非満水状態、例えば測定管
102内の水位が、満水状態の水位と辛うじて電極10
3に接触する水位との中間の任意位置111にあると
き、その水位に応じて流量誤差が発生することが指摘さ
れている。一般に、電磁流量計は満水状態の流量が流れ
ていることを前提とし、1対の電極から得られる信号を
適宜信号変換して実流量を測定している。そこで、実際
に満水状態のときの流量計出力の流量誤差を零とする
と、或る任意の水位のときには、測定管流路断面積にお
いて約(空隙面積/全流路断面積)分のプラス流量誤差
が発生する。この問題を解決する手段として、例えば特
開平5−223605号公報に示すものが提案されてい
る(提案装置ともいう)。
[0007] By the way, in such an electromagnetic flowmeter, when it is installed, as shown in FIG. Since the pair of electrodes 103 is provided, the non-full state of the fluid 101 flowing through the measuring tube 102, for example, the water level in the measuring tube 102 is barely equal to the water level of the full state.
It has been pointed out that when at an arbitrary position 111 in the middle of the water level contacting with No. 3, a flow rate error occurs according to the water level. In general, the electromagnetic flow meter is based on the premise that a flow in a full state is flowing, and measures the actual flow by appropriately converting signals obtained from a pair of electrodes. Therefore, assuming that the flow rate error of the flow meter output when the water is actually full is zero, at a certain arbitrary water level, the positive flow rate of about (gap area / total flow path cross-sectional area) in the cross-sectional area of the measuring pipe flow path An error occurs. As means for solving this problem, for example, one disclosed in Japanese Patent Application Laid-Open No. 5-223605 has been proposed (also referred to as a proposed device).

【0008】上記提案装置における非満水流量の測定原
理は以下の通りである。 (1)既知の流量Qを、異なる磁束密度分布BAとBB
で事前に測定した出力を、Va,Vbとする。 (2)未知の流量QN を、異なる磁束密度分布BAとB
Bで測定した出力を、VaN ,VbN とする。 (3)VaN ,VbN との比VbN /VaN を求め、V
aとVbとの比Vb/Vaが、VbN /VaN と一致す
る流量Qβを上記(1)項のデータから求め、この流量
Qβのときの(1)項の値Vαβから、(1)項におけ
る流量Qβの条件のときの感度Vαβ/Qβを算出す
る。 (4)上記(2)項で計測したVaN と、(3)項で得
た感度Vαβ/Qβとから、未知の流量QN を下記式か
ら求める。 QN =VaN ・Qβ/Vαβ
[0008] The principle of measuring the non-full water flow rate in the above proposed device is as follows. (1) The known flow rate Q is determined by different magnetic flux density distributions BA and BB.
Let Va, Vb be the outputs measured in advance. (2) an unknown flow rate Q N, different magnetic flux density distributions BA and B
The outputs measured at B are defined as Va N and Vb N. (3) The ratio Vb N / Va N between Va N and Vb N is obtained, and V
The flow rate Qβ at which the ratio Vb / Va of a and Vb is equal to Vb N / Va N is obtained from the data of the above item (1), and from the value Vαβ of the item (1) at the flow rate Qβ, (1) The sensitivity Vαβ / Qβ under the condition of the flow rate Qβ in the term is calculated. (4) From the Va N measured in the above item (2) and the sensitivity Vαβ / Qβ obtained in the item (3), the unknown flow rate Q N is obtained from the following equation. Q N = Va N · Qβ / Vαβ

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
ような手法では、異なる磁束密度分布BAとBBとで、
個々の磁束分布に対応した電極間の起電力を測定するた
め、従来の電磁流量計に対して、流量の算出に必要なデ
ータを測定するのに2倍の時間を必要とし、流量計とし
て流量変化時の応答性が遅くなるという問題がある。し
たがって、この発明の課題は、流量の算出を短時間にで
きるようにし、流量変化時の応答性を低下させないよう
にすることにある。
However, according to the above-described method, different magnetic flux density distributions BA and BB are used.
In order to measure the electromotive force between the electrodes corresponding to the individual magnetic flux distributions, it takes twice as long to measure the data required for calculating the flow rate as a conventional electromagnetic flow meter. There is a problem that the response at the time of change becomes slow. Therefore, an object of the present invention is to make it possible to calculate the flow rate in a short time and not to reduce the responsiveness when the flow rate changes.

【0010】[0010]

【課題を解決するための手段】このような課題を解決す
べく、請求項1の発明では、測定管の中心を通る垂直軸
を挟む一側面と他側面に、それぞれ対として対称的に取
り付けられる少なくとも2対の電極対を備え、非満水時
の体積流量の測定が可能な電磁流量計であって、前記電
極対の各電極形状をピン形状とし、前記電極対の各々を
測定管の中心を通る水平軸に対して対称となる側面位置
に設置するようにしている。請求項2の発明では、測定
管の中心を通る垂直軸を挟む一側面と他側面に、それぞ
れ対として対称的に取り付けられる少なくとも2対の電
極対を備え、非満水時の体積流量の測定が可能な電磁流
量計であって、前記電極対の各電極形状を短冊状とし
て、測定管の周方向には測定管の中心を含む垂直軸との
交点位置から所定距離離れた位置より、測定管の中心を
含む水平軸との交点位置を越える位置まで延長して、各
電極対の各々を測定管の中心を通る水平軸に対しては対
称となる側面位置に、その長さ方向には互いに異なる位
置に偏位させて設置するようにしている。
In order to solve such a problem, according to the first aspect of the present invention, a pair is symmetrically mounted on one side and the other side sandwiching a vertical axis passing through the center of the measuring tube. An electromagnetic flowmeter comprising at least two pairs of electrodes and capable of measuring a volume flow rate when water is not full, wherein each electrode of the pair of electrodes has a pin shape, and each of the pair of electrodes is positioned at the center of a measurement tube. It is installed at the side position that is symmetrical with respect to the passing horizontal axis. According to the second aspect of the present invention, at least two pairs of electrodes are symmetrically mounted on one side and the other side of the vertical axis passing through the center of the measurement tube, respectively, so that the volume flow measurement when the water is not full can be measured. A possible electromagnetic flowmeter, wherein each electrode of the electrode pair is formed in a strip shape, and the measuring tube is arranged in a circumferential direction of the measuring tube from a position at a predetermined distance from an intersection with a vertical axis including the center of the measuring tube. Extending to a position beyond the point of intersection with the horizontal axis including the center of the measurement tube, each of the electrode pairs is positioned at a side position that is symmetrical with respect to the horizontal axis passing through the center of the measurement tube, and in the longitudinal direction, It is designed to be installed at different positions.

【0011】上記請求項1または2の発明では、前記2
つの電極対で発生する電位差が概ね同一の場合は満水状
態とし、その場合はいずれか一方の電極対に発生した電
位差にもとづき流量を求め、2つの電極対で発生する電
位差が相違する場合は非満水状態とし、その場合は両電
極対で発生する電位差の比をもとに非満水率を求め、こ
の非満水率をもとにメーター定数の補正値を求め、2つ
の電極対で発生する電位差の少なくとも1つまたは両電
位差の平均値に対し、前記補正値が適用されたメーター
定数を用いて体積流量を求めることができ(請求項3の
発明)、または、前記2つの電極対で発生する電位差が
概ね同一の場合は満水状態とし、その場合はいずれか一
方の電極対に発生した電位差にもとづき流量を求め、2
つの電極対で発生する電位差が相違する場合は非満水状
態とし、その場合は両電極対で発生する電位差の比をも
とに予め校正されているメーター定数の補正値を求め、
2つの電極対で発生する電位差の少なくとも1つまたは
両電位差の平均値に対し、前記補正値が適用されたメー
ター定数を用いて体積流量を求めることができる(請求
項4の発明)。
[0011] In the first or second aspect of the present invention,
When the potential difference generated between the two electrode pairs is substantially the same, the state is filled with water. In that case, the flow rate is determined based on the potential difference generated between any one of the electrode pairs, and when the potential difference generated between the two electrode pairs is different, a non-filled state is set. In the full state, the non-full rate is calculated based on the ratio of the potential difference generated between the two electrode pairs, and the correction value of the meter constant is calculated based on the non-full rate, and the potential difference generated between the two electrode pairs is determined. The volume flow rate can be determined using the meter constant to which the correction value is applied to the average value of at least one or both potential differences (invention of claim 3), or generated at the two electrode pairs. When the potential difference is substantially the same, the state is filled with water. In that case, the flow rate is calculated based on the potential difference generated in one of the electrode pairs.
If the potential difference generated between the two electrode pairs is different, it is set to a non-full state, and in that case, a correction value of a meter constant that has been calibrated in advance based on the ratio of the potential difference generated between the two electrode pairs is obtained,
The volume flow rate can be determined using a meter constant to which the correction value is applied with respect to at least one of the potential differences generated between the two electrode pairs or an average value of both potential differences (the invention of claim 4).

【0012】この発明は、左右で1対の2つの電極対
A,Bを、測定管軸を含み磁場に直交する基準面の上下
に均等距離を隔てた面と測定管の内壁が接する位置の、
上下各々の面に設けたことが特徴である。即ち、この電
極対の各々の電極に対する重み関数(各電極に対する起
電力の寄与率:JIS B7554参照)は図8(a)
に示すように、上下で対称の形となる。このことは、流
れが軸対称流の場合は以下のことを意味している。な
お、図8の符号Eが電極を示す。 (イ)満水状態:満水状態では重み関数の定義の全面積
が有効となり、電極対A,Bに発生する電位差は同一と
なる。 (ロ)非満水状態:非満水状態では重み関数の定義の上
方部分が無効となり、電極対A,Bの重み関数の無効部
分の面積差に相当して、電極対A,Bに発生する電位差
が相違する。 したがって、この発明では、2つの電極対A,Bに発生
する電位差の相違を計ることにより、非満水流量を求め
るようにしている。なお、図8(b),(c)は、電極
(E)の位置が測定管軸を含む水平軸位置から、それぞ
れ上,下にずれた場合の重み関数分布を示している。
According to the present invention, a pair of left and right electrode pairs A and B are provided at a position where a plane at an equal distance above and below a reference plane including the measurement tube axis and perpendicular to a magnetic field and an inner wall of the measurement tube is in contact with each other. ,
The feature is that it is provided on each of the upper and lower surfaces. That is, the weight function for each electrode of this electrode pair (contribution ratio of electromotive force to each electrode: see JIS B7554) is shown in FIG.
As shown in FIG. This means the following when the flow is an axisymmetric flow. In addition, the code | symbol E of FIG. 8 shows an electrode. (A) Full state: In the full state, the entire area defined by the weight function is valid, and the potential difference generated between the electrode pairs A and B is the same. (B) Non-full state: In the non-full state, the upper part of the definition of the weight function becomes invalid, and the potential difference generated in the electrode pair A, B corresponds to the area difference of the invalid part of the weight function of the electrode pair A, B. Are different. Therefore, in the present invention, the non-full flow rate is determined by measuring the difference in the potential difference between the two electrode pairs A and B. FIGS. 8B and 8C show weight function distributions when the position of the electrode (E) is shifted upward and downward from the horizontal axis position including the measurement tube axis, respectively.

【0013】[0013]

【発明の実施の形態】図1はこの発明の第1の実施の形
態を示す概要図である。ここでは、管軸を通る水平面に
対して、上下に一定間隔だけ離れた上下面と測定管10
2との交点に、電極形状がピン状の1対の上部電極10
3a、1対の下部電極103bをそれぞれ設けて構成さ
れる。つまり、上部電極103aの対と下部電極103
bの対とは、測定管102の中心を含む水平軸(一点鎖
線参照)を挟んで、ほぼ等距離(対称)に設置される。
FIG. 1 is a schematic diagram showing a first embodiment of the present invention. Here, the measuring pipe 10 and the upper and lower faces which are separated from each other by a certain distance vertically with respect to a horizontal plane passing through the pipe axis.
2, a pair of upper electrodes 10 each having a pin-like electrode shape.
3a and a pair of lower electrodes 103b are provided. That is, the pair of the upper electrode 103a and the lower electrode 103
The pair b is installed at substantially the same distance (symmetric) with respect to a horizontal axis (see a dashed line) including the center of the measuring tube 102.

【0014】図2はこの発明の第2の実施の形態を示す
概要図である。図1の場合は、上部電極103aの位置
までしか非満水流量を測定することができない。そこ
で、図2のように電極形状を縦,横所定大きさの短冊状
とし、測定管102の周方向には測定管の中心を含む垂
直軸との交点位置から所定距離離れた位置より、測定管
の中心を含む水平軸(一点鎖線参照)との交点位置を越
える位置まで延長して(図2(a)の矢印参照)、各電
極対の各々を測定管の中心を通る水平軸に対しては対称
となる側面位置に、その長さ方向には図2(b)に示す
ように、互いに異なる位置に偏位させて設置する。
FIG. 2 is a schematic diagram showing a second embodiment of the present invention. In the case of FIG. 1, the non-full flow rate can be measured only up to the position of the upper electrode 103a. Therefore, as shown in FIG. 2, the electrode shape is a rectangular shape having a predetermined size in the vertical and horizontal directions. Extending to a position beyond the intersection with the horizontal axis including the center of the tube (see the dashed line) (see the arrow in FIG. 2A), each electrode pair is moved with respect to the horizontal axis passing through the center of the measurement tube. As shown in FIG. 2 (b), they are placed at different side positions in a symmetrical side position and displaced in different positions in the longitudinal direction.

【0015】換言すれば、左右で1対とする2つの電極
対103aの組と103bの組を測定管の管軸を含む水
平軸に対しては互いに対称に(一定の距離を隔てて)、
管軸方向には互いに異なる位置に偏位させてそれぞれ設
置し、片側面側に設置される電極(図2(b)に点線で
示す電極)と対向する側面側(図2(b)に実線で示す
電極)に設置される電極は、測定管の軸方向から見たと
きは互いに重なるよう(図2(a)参照)に設置する。
つまり、基本的には電極の流体に漬かる部分を拡大する
ことで、検出限界を上げるようにしたものである。
In other words, the pair of two electrode pairs 103a and 103b, which are one pair on the left and right, are symmetrical with respect to the horizontal axis including the tube axis of the measuring tube (at a certain distance),
The tubes are respectively displaced at different positions in the tube axis direction, and are disposed on one side surface (electrodes indicated by dotted lines in FIG. 2B). The electrodes installed on the electrodes (see electrodes in FIG. 2) are arranged so as to overlap each other when viewed from the axial direction of the measuring tube (see FIG. 2A).
In other words, basically, the detection limit is raised by enlarging the part of the electrode that is immersed in the fluid.

【0016】上下電極の各電位差から未知の流量を求め
る手法について、図3を参照して説明する。すなわち、
満水のときは体積流量と電極の電位差は一義的に決定さ
れるのに対し、非満水のときは配管の設置条件(傾斜な
ど)の影響も受けるので、体積流量と電極の電位差とは
一義的な関係になく、非満水率もパラメータとして必要
になる。つまり、非満水流量を求めるには、各電極での
電位差と、各電極での電位差の比との2つのパラメータ
が必要となる。図3(a)は特定の非満水率のときの各
電極での電位差Va,Vbと体積流量との関係を示して
おり、図3(b)は電極の特定の電位差で、非満水率が
変化した場合の電位差Va,Vbの比、すなわち非満水
率に相当する定数とメータ定数の補正係数との関係を示
す。
A method for obtaining an unknown flow rate from each potential difference between the upper and lower electrodes will be described with reference to FIG. That is,
When the water is full, the volume flow rate and the potential difference between the electrodes are uniquely determined. On the other hand, when the water volume is not full, the volume flow rate and the potential difference between the electrodes are unambiguously affected by the installation conditions (such as inclination) of the piping. Regardless of the relationship, the non-full rate is also required as a parameter. That is, in order to obtain the non-full flow rate, two parameters are required: the potential difference at each electrode and the ratio of the potential difference at each electrode. FIG. 3A shows the relationship between the potential difference Va, Vb at each electrode and the volume flow rate at a specific non-fullness rate, and FIG. The relationship between the potential difference Va and Vb in the case of a change, that is, the relationship between a constant corresponding to the non-full rate and a correction coefficient of the meter constant is shown.

【0017】次に、未知の体積流量で測定された各電極
対の電位差をVaN ,VbN とし、図3(c)でこの電
位差の比VbN /VaN と同一のVb/Vaでのメータ
定数の補正係数を求める。次いで、電位差VaN をもと
に図3(d)でメータ定数の無補正の体積流量を求め、
さらに上記非満水率に依存するメータ定数の補正係数を
適用して、最終的な体積流量を求める。この際、各電極
対の電位差の比VbN/VaN から非満水率を求め、さ
らに、メータ定数の補正係数を求めるようにしても良
い。
Next, the potential difference between each pair of electrodes measured at an unknown volume flow rate is defined as Va N , Vb N. In FIG. 3C, the potential difference Vb / Va is the same as the ratio Vb N / Va N of the potential difference. Find the correction coefficient for the meter constant. Next, based on the potential difference Va N , a non-corrected volume flow rate of the meter constant is obtained in FIG.
Further, the final volume flow rate is obtained by applying the correction coefficient of the meter constant depending on the non-full level. At this time, obtains the non-full level ratio from the ratio Vb N / Va N of the potential difference each electrode pair, furthermore, may be obtained a correction coefficient of the meter constant.

【0018】図4にこの発明が適用される変換部の構成
例を示す。タイミング生成回路112は電源からの商用
周波数信号を分周して励磁指令信号を送出し、励磁回路
105では励磁コイル104に方形波電流を流し、測定
管102を励磁する。この励磁による磁界ベクトルと流
体の流速ベクトルとに直交する方向に電荷が発生し、電
極対A(103a)の左右の電極間,電極対B(103
b)の左右の電極間には、水位に対応した各電極対の重
み関数,流速分布,磁界分布に対応した電位差が発生す
る。これらの電極間の電位差信号は、次段の前処理回路
120で、以下のような処理が行なわれる。
FIG. 4 shows a configuration example of a conversion unit to which the present invention is applied. The timing generation circuit 112 divides the frequency of the commercial frequency signal from the power supply and sends out an excitation command signal. The excitation circuit 105 supplies a square wave current to the excitation coil 104 to excite the measurement tube 102. An electric charge is generated in a direction orthogonal to the magnetic field vector and the flow velocity vector of the fluid due to the excitation, and the electrode pair B (103)
A potential difference corresponding to the weight function, flow velocity distribution, and magnetic field distribution of each electrode pair corresponding to the water level is generated between the left and right electrodes in b). The potential difference signal between these electrodes is subjected to the following processing in the pre-processing circuit 120 at the next stage.

【0019】まず、電極間の電位差信号を差動増幅器1
06a,106bで増幅し、ハイパスフィルタ(HP
F)回路113a,113bで電極界面に生じる低周波
の変動成分を除去し、後段のアナログ/ディジタル(A
/D)変換器115a,115bの入力が適正なレベル
となるよう、ゲイン設定回路114a,114bで増幅
率を切り換える。これを、タイミング生成回路112か
らの励磁周波数のn倍の周波数でA/D変換させ、次段
の処理装置からなる体積流量算出回路121に入力す
る。体積流量算出回路121では、電極電位差比演算回
路116で両電極対の電位差の比VbN /VaN を求
め、補正係数参照回路117でメータ定数の補正係数を
参照し、また、メータ定数参照回路118でメータ定数
を参照し、流量算出回路119で体積流量を算出する。
First, a potential difference signal between the electrodes is converted to a differential amplifier 1.
06a, 106b and a high-pass filter (HP
F) The low-frequency fluctuation component generated at the electrode interface is removed by the circuits 113a and 113b, and the analog / digital (A
/ D) The gains are switched by the gain setting circuits 114a and 114b so that the inputs of the converters 115a and 115b are at appropriate levels. This is subjected to A / D conversion at a frequency which is n times the excitation frequency from the timing generation circuit 112, and is input to a volume flow rate calculation circuit 121 comprising a processing unit at the next stage. In volumetric flow rate calculation circuit 121 calculates the ratio Vb N / Va N potentiometric both electrodes pairs electrode potential difference ratio calculating circuit 116, by referring to a correction coefficient meter constant by the correction factor reference circuit 117, also, the meter constant reference circuit The flow rate calculation circuit 119 calculates the volume flow rate with reference to the meter constant at 118.

【0020】[0020]

【発明の効果】この発明によれば、2対の電極対を設
け、これらの電極対に発生する電位差の相違をもとに流
量補正を行なうようにしたので、非満水での流量を正確
に測定できるようになり、従来の満水用流量計と同程度
の頻度で繰り返し測定が可能である。また、満水状態で
も従来のものと同等の精度で測定が可能である、などの
利点が得られる。
According to the present invention, two electrode pairs are provided, and the flow rate is corrected based on the difference in the potential difference generated between these electrode pairs. The measurement can be performed, and the measurement can be repeated at the same frequency as the conventional flow meter for filling with water. In addition, there is an advantage that the measurement can be performed with the same accuracy as the conventional one even in a full state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention.

【図2】この発明の第2の実施の形態を示す断面図であ
る。
FIG. 2 is a sectional view showing a second embodiment of the present invention.

【図3】電極からの電位差より非満水流量を求める手法
の説明図である。
FIG. 3 is an explanatory diagram of a method of calculating a non-full water flow rate from a potential difference from an electrode.

【図4】この発明が適用される変換部の構成を示すブロ
ック図である。
FIG. 4 is a block diagram illustrating a configuration of a conversion unit to which the present invention is applied;

【図5】従来例を示すブロック図である。FIG. 5 is a block diagram showing a conventional example.

【図6】図5の動作説明図である。FIG. 6 is an operation explanatory diagram of FIG. 5;

【図7】非満水状態の説明図である。FIG. 7 is an explanatory diagram of a non-full state.

【図8】電極位置による重み関数の説明図である。FIG. 8 is an explanatory diagram of a weight function according to an electrode position.

【符号の説明】 102…測定管、103,103a,103b…電極、
104…励磁コイル、105…励磁回路、106,10
6a,106b…差同増幅回路、112…タイミング生
成回路、113a,113b…ハイパスフィルタ(HP
F)回路、114a,114b…ゲイン設定回路、11
5a,115b…A/D変換回路、116…電極電位差
比演算回路、117…補正係数参照回路、118…メー
タ定数参照回路、119…流量算出回路、120…前処
理回路、121…体積流量算出回路。
[Description of References] 102: measuring tube, 103, 103a, 103b: electrode,
104: excitation coil, 105: excitation circuit, 106, 10
6a, 106b: Difference amplifier circuit, 112: Timing generation circuit, 113a, 113b: High-pass filter (HP
F) Circuit, 114a, 114b ... gain setting circuit, 11
5a, 115b: A / D conversion circuit, 116: electrode potential difference ratio calculation circuit, 117: correction coefficient reference circuit, 118: meter constant reference circuit, 119: flow rate calculation circuit, 120: preprocessing circuit, 121: volume flow rate calculation circuit .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 測定管の中心を通る垂直軸を挟む一側面
と他側面に、それぞれ対として対称的に取り付けられる
少なくとも2対の電極対を備え、非満水時の体積流量の
測定が可能な電磁流量計であって、 前記電極対の各電極形状をピン形状とし、前記電極対の
各々を測定管の中心を通る水平軸に対して対称となる側
面位置に設置してなることを特徴とする電磁流量計。
At least two pairs of electrodes are symmetrically mounted on one side and the other side sandwiching a vertical axis passing through the center of a measuring tube, and are capable of measuring a volume flow when water is not full. An electromagnetic flowmeter, wherein each electrode shape of the electrode pair is a pin shape, and each of the electrode pairs is provided at a side position symmetrical with respect to a horizontal axis passing through the center of the measurement tube. Electromagnetic flow meter.
【請求項2】 測定管の中心を通る垂直軸を挟む一側面
と他側面に、それぞれ対として対称的に取り付けられる
少なくとも2対の電極対を備え、非満水時の体積流量の
測定が可能な電磁流量計であって、 前記電極対の各電極形状を短冊状として、測定管の周方
向には測定管の中心を含む垂直軸との交点位置から所定
距離離れた位置より、測定管の中心を含む水平軸との交
点位置を越える位置まで延長して、各電極対の各々を測
定管の中心を通る水平軸に対しては対称となる側面位置
に、その長さ方向には互いに異なる位置に偏位させて設
置したことを特徴とする電磁流量計。
2. At least two pairs of electrodes are symmetrically mounted on one side and the other side of the vertical axis passing through the center of the measuring tube, and can measure the volume flow rate when water is not full. An electromagnetic flow meter, wherein each electrode shape of the electrode pair is a strip shape, and the center of the measurement tube is located at a predetermined distance from an intersection with a vertical axis including the center of the measurement tube in the circumferential direction of the measurement tube. Each electrode pair is extended to a position beyond the position of the intersection with the horizontal axis, and each electrode pair is located at a side position symmetrical with respect to the horizontal axis passing through the center of the measurement tube, and at positions different from each other in the length direction. An electromagnetic flowmeter characterized in that it is deviated from the center.
【請求項3】 前記2つの電極対で発生する電位差が概
ね同一の場合は満水状態とし、その場合はいずれか一方
の電極対に発生した電位差にもとづき流量を求め、2つ
の電極対で発生する電位差が相違する場合は非満水状態
とし、その場合は両電極対で発生する電位差の比をもと
に非満水率を求め、この非満水率をもとにメーター定数
の補正値を求め、2つの電極対で発生する電位差の少な
くとも1つまたは両電位差の平均値に対し、前記補正値
が適用されたメーター定数を用いて体積流量を求めるこ
とを特徴とする請求項1または2のいずれかに記載の電
磁流量計。
3. When the potential difference generated between the two electrode pairs is substantially the same, the state is filled with water. In that case, the flow rate is determined based on the potential difference generated at one of the electrode pairs, and the flow rate is generated at the two electrode pairs. When the potential difference is different, the non-full state is set. In this case, the non-full rate is calculated based on the ratio of the potential difference generated between the two electrode pairs, and the correction value of the meter constant is calculated based on the non-full rate. The volume flow rate is obtained using a meter constant to which the correction value is applied with respect to at least one of the potential differences generated in one electrode pair or an average value of both potential differences. Electromagnetic flowmeter as described.
【請求項4】 前記2つの電極対で発生する電位差が概
ね同一の場合は満水状態とし、その場合はいずれか一方
の電極対に発生した電位差にもとづき流量を求め、2つ
の電極対で発生する電位差が相違する場合は非満水状態
とし、その場合は両電極対で発生する電位差の比をもと
に予め校正されているメーター定数の補正値を求め、2
つの電極対で発生する電位差の少なくとも1つまたは両
電位差の平均値に対し、前記補正値が適用されたメータ
ー定数を用いて体積流量を求めることを特徴とする請求
項1または2のいずれかに記載の電磁流量計。
4. When the potential difference generated between the two electrode pairs is substantially the same, the state is filled with water. In that case, the flow rate is determined based on the potential difference generated on one of the electrode pairs, and the flow is generated between the two electrode pairs. When the potential difference is different, it is set to a non-full state. In this case, a correction value of a meter constant that has been calibrated in advance is obtained based on the ratio of the potential difference generated between the two electrode pairs,
The volume flow rate is obtained using a meter constant to which the correction value is applied with respect to at least one of the potential differences generated in one electrode pair or an average value of both potential differences. Electromagnetic flowmeter as described.
JP02691497A 1997-02-10 1997-02-10 Electromagnetic flow meter Expired - Fee Related JP3337118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02691497A JP3337118B2 (en) 1997-02-10 1997-02-10 Electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02691497A JP3337118B2 (en) 1997-02-10 1997-02-10 Electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JPH10221135A true JPH10221135A (en) 1998-08-21
JP3337118B2 JP3337118B2 (en) 2002-10-21

Family

ID=12206485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02691497A Expired - Fee Related JP3337118B2 (en) 1997-02-10 1997-02-10 Electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JP3337118B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023037A (en) * 2010-11-24 2011-04-20 上海华强浮罗仪表有限公司 Non-full pipe electromagnetic flowmeter
CN110715694A (en) * 2018-07-11 2020-01-21 浙江大学 Multifunctional flow experiment device
CN110967074A (en) * 2018-09-28 2020-04-07 乔治费歇尔图章有限责任公司 Full aperture magnetic flowmeter subassembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793473B2 (en) * 2009-05-28 2011-10-12 横河電機株式会社 Electromagnetic flow meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023037A (en) * 2010-11-24 2011-04-20 上海华强浮罗仪表有限公司 Non-full pipe electromagnetic flowmeter
CN110715694A (en) * 2018-07-11 2020-01-21 浙江大学 Multifunctional flow experiment device
CN110967074A (en) * 2018-09-28 2020-04-07 乔治费歇尔图章有限责任公司 Full aperture magnetic flowmeter subassembly

Also Published As

Publication number Publication date
JP3337118B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
JP3263296B2 (en) Electromagnetic flow meter
EP0416866B1 (en) Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies
RU2615205C2 (en) Magnetic flowmeter with multiple coils
EP0704682B1 (en) Electromagnetic flowmeter for unfilled fluid flow conduit
US7946184B2 (en) Electromagnetic flowmeter having temperature measurement value for correcting electrical conductivity value
US5443552A (en) Electromagnetic flowmeter and method for electromagnetically measuring flow rate
JP6839635B2 (en) Error detection circuit and error detection method of electromagnetic flowmeter and electromagnetic flowmeter
JPH03235067A (en) Electromagnetic type conductivity meter and method for measuring conductivity
US20230213367A1 (en) Method of operating a magnetically-inductive flowmeter
JP3337118B2 (en) Electromagnetic flow meter
US3942377A (en) Electromagnetic flowmeter
CN113167613B (en) Magnetic inductive flowmeter
JPH01292214A (en) Electromagnetic flowmeter
JP2000028408A (en) Electromagnetic flow meter
JP3018311B2 (en) Electromagnetic flow meter
KR102616224B1 (en) Flowmeter resistant to environmental changes and flow measurement method
JP2018080966A (en) Electromagnetic flowmeter
JP2001281028A (en) Electromagnetic flowmeter
JP2005207755A (en) Electromagnetic flowmeter
US20230417586A1 (en) Magnetic-Inductive Flowmeter
JPH07286874A (en) Electromagnetic flowmeter
JPH06258113A (en) Electromagnetic flowmeter
JPH05273015A (en) Weir type electromagnetic flowmeter
JPH02103418A (en) Insertion type electromagnetic flowmeter
US20200217698A1 (en) Magnetic flowmeter with media conductivity measurement

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees