JPH0210438Y2 - - Google Patents

Info

Publication number
JPH0210438Y2
JPH0210438Y2 JP1822683U JP1822683U JPH0210438Y2 JP H0210438 Y2 JPH0210438 Y2 JP H0210438Y2 JP 1822683 U JP1822683 U JP 1822683U JP 1822683 U JP1822683 U JP 1822683U JP H0210438 Y2 JPH0210438 Y2 JP H0210438Y2
Authority
JP
Japan
Prior art keywords
suspension
circuit
signal
thermistor element
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1822683U
Other languages
Japanese (ja)
Other versions
JPS58153350U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1822683U priority Critical patent/JPS58153350U/en
Publication of JPS58153350U publication Critical patent/JPS58153350U/en
Application granted granted Critical
Publication of JPH0210438Y2 publication Critical patent/JPH0210438Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は粒子計数装置に関し、粒子を浮懸する
液体の温度変化による粒子検出パルス信号の変動
の補償を広い温度範囲にわたつて、かつ分極等の
影響なしに行うような装置を提供することを目的
とするものである。
[Detailed description of the invention] The present invention relates to a particle counting device that compensates for fluctuations in a particle detection pulse signal due to temperature changes in a liquid in which particles are suspended over a wide temperature range and without the effects of polarization, etc. The purpose of this system is to provide a device that is easy to use.

従来、懸濁液中に浮遊する微小粒子の検出には
懸濁粒子が同時に二個以上通過できない程度に狭
あいに形成された微細孔を通過させ粒子と懸濁液
との電気インピーダンスの相違に基づくインピー
ダンス変化をとらえ、これを電気的な出力信号と
して取り出して計測する方式の粒子検出装置にあ
つては、試料中の粒子が検出孔である微細孔を通
過する際に生ずる微小なインピーダンスの変化が
パルス信号に変換され、そのパルス信号の高さは
通過した粒子の容積に相関するため、例えば血球
測定の場合従来からの遠心分離法によつていたヘ
マトクリツト値の測定が前記パルス信号の高さを
積分することによつて求められる。
Conventionally, the detection of microparticles suspended in a suspension involves passing through micropores that are so narrow that two or more suspended particles cannot pass through at the same time, and detecting the difference in electrical impedance between the particles and the suspension. For particle detection devices that capture and measure impedance changes based on electrical output signals, particle detection devices detect minute impedance changes that occur when particles in a sample pass through a microscopic detection hole. is converted into a pulse signal, and the height of the pulse signal is correlated to the volume of the particles that have passed through it. It can be found by integrating the

しかるに、前記パルス信号の高さは希釈液の温
度変化に起因する浸透圧や電気インピーダンスの
変化によつて変動を生じ、また血球自体も温度に
よつて容積変化を生ずるために、これらの温度に
よる影響を除去する必要がある。
However, the height of the pulse signal fluctuates due to changes in osmotic pressure and electrical impedance caused by changes in the temperature of the diluent, and blood cells themselves also change in volume due to temperature. Effects need to be removed.

例えば特公昭47−1677号公報などに開示されて
いる装置においては粒子信号の高さを粒子信号と
は別のパルス信号の幅に変換し、サーミスタで測
定された温度に応じ、上記幅を調節することによ
つて温度補償を行つているが、弁別レベル以上の
パルスの計数の温度影響を補償するもので、ヘマ
トクリツト補償等には使えない欠点や、ほぼ連続
して2個以上の粒子が検出された場合、はじめの
粒子信号についての処理が行われないうちに、次
の粒子信号が送られて来るために、誤差が生ずる
という欠点があつた。
For example, in the device disclosed in Japanese Patent Publication No. 47-1677, the height of a particle signal is converted into the width of a pulse signal different from the particle signal, and the width is adjusted according to the temperature measured by a thermistor. However, it compensates for the temperature effect on the number of pulses above the discrimination level, and has the drawback that it cannot be used for hematocrit compensation, or when two or more particles are detected almost continuously. In this case, the next particle signal is sent before the first particle signal is processed, resulting in an error.

又、上記方法あるいはサーミスタ等を用いずに
補償を行うものとして、例えば特開昭49−2583号
公報に開示されたものなどがあるが、直接に温度
を測定せずに間接的に温度に起因する希釈液のイ
ンピーダンスの変化などによつて増幅度の調整を
行うものは補償可能な温度範囲がせまく、いずれ
も粒子検出用電極表面の分極等の影響を完全に無
視することができず、又、検出用微細孔の汚れや
ツマリ等によつても、みかけ上の補償が行われる
ことになり、むしろ不正確な出力信号を生ずると
いう欠点があつた。
In addition, as a method for performing compensation without using the above method or a thermistor, for example, there is a method disclosed in Japanese Patent Application Laid-open No. 49-2583. Methods that adjust the amplification degree by changing the impedance of the diluent used for particle detection have a narrow compensable temperature range, and cannot completely ignore the effects of polarization on the surface of the particle detection electrode. Also, apparent compensation is performed even if the detection microhole is dirty or clogged, which has the disadvantage of producing an inaccurate output signal.

本考案装置は、上記欠点を解消するものであ
り、サーミスタ素子を用い、希釈液とは電気的に
隔絶された状態で温度検出のみを行い、かつサー
ミスタ自体を検出回路の出力に接続された分圧回
路の一部として用い、温度変化に応じ粒子信号の
高さを直接的に補償することにより、温度に起因
する変動を分極等の影響なしに、より簡単にかつ
正確にしかも広い温度範囲にわたつて補償するよ
うな装置を提供するものである。
The device of the present invention eliminates the above-mentioned drawbacks, and uses a thermistor element that only detects temperature while electrically isolated from the diluent, and the thermistor itself is connected to the output of the detection circuit. By using it as part of a pressure circuit and directly compensating the height of the particle signal according to temperature changes, it is possible to easily and accurately compensate for temperature-induced fluctuations over a wide temperature range without the effects of polarization, etc. The present invention provides a device that provides compensation across the board.

以下図面に基づいて説明する。 This will be explained below based on the drawings.

第1図は本考案の実施例を示す説明図であり、
サンプルビーカ1に収容した粒子懸濁液2に浸漬
された微細孔3を有する検出器4と、微細孔3か
ら前記懸濁液2をパイプ5を通じて定量吸引する
装置6と、粒子が前記微細孔3を通過する際に発
生する検出信号を線路7から伝達され、検出信号
を電気パルス信号に変換する検出回路8と、懸濁
液2の温度を検出するサーミスタ素子9と、前記
サーミスタ素子9の抵抗値と、抵抗10,11の
分圧比によつて出力電圧の温度補償を行う回路
と、高入力インピーダンス増幅器12と、信号処
理装置13等で構成されている。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention,
a detector 4 having a micropore 3 immersed in a particle suspension 2 contained in a sample beaker 1; a device 6 for suctioning a fixed amount of the suspension 2 from the micropore 3 through a pipe 5; 3, a detection circuit 8 which converts the detection signal into an electric pulse signal; a thermistor element 9 which detects the temperature of the suspension 2; It is comprised of a circuit that performs temperature compensation of the output voltage based on the resistance value and the voltage division ratio of the resistors 10 and 11, a high input impedance amplifier 12, a signal processing device 13, and the like.

第2図は本考案実施例の装置の温度変化に対す
る特性図である。
FIG. 2 is a characteristic diagram of the device according to the embodiment of the present invention with respect to temperature changes.

懸濁液2の温度が上昇すると粒子と希釈液との
電気インピーダンス差が小さくなり、検出器のゲ
インがグラフAで示すように温度と共に低下す
る。そのため、検出回路8の粒子による信号パル
スの高さに影響を与える。この影響を解消するた
めに第3図に示されているような温度特性を有す
るサーミスタ素子9を抵抗10と並列に結線し、
素子自体をサンプルビーカ1の懸濁液2に浸漬さ
せて懸濁液2の温度を測定させる。抵抗10,1
1及びサーミスタの抵抗値をそれぞれR10、R11
RTとすると、前記抵抗及びサーミスタで構成さ
れる分圧回路の伝達定数Gは、 G=R11/RT×R10/RT+R10+R11 式で求められる。
As the temperature of the suspension 2 increases, the electrical impedance difference between the particles and the diluent decreases, and the gain of the detector decreases with temperature, as shown in graph A. Therefore, the height of the signal pulse due to particles in the detection circuit 8 is affected. In order to eliminate this effect, a thermistor element 9 having temperature characteristics as shown in FIG. 3 is connected in parallel with the resistor 10.
The element itself is immersed in the suspension 2 in the sample beaker 1, and the temperature of the suspension 2 is measured. Resistance 10,1
The resistance values of 1 and thermistor are R 10 , R 11 , respectively.
Assuming RT, the transfer constant G of the voltage dividing circuit composed of the resistor and thermistor is determined by the following formula: G=R 11 /RT×R 10 /RT+R 10 +R 11 .

本実施例に於いて、R11=4.7KΩ、R10=20KΩ
に設定すると、その伝達定数G、すなわちゲイン
はグラフBで与えられ、結果として、その出力信
号はグラフCで示されるごとく10℃〜40℃の温度
範囲ではほぼ数パーセントの誤差の間に入つてい
る。
In this example, R 11 = 4.7KΩ, R 10 = 20KΩ
When set to There is.

抵抗10,11の値を適当に設定することによ
つて第2図グラフBの傾きや曲がり具合を変える
ことができるため、温度変化による血球以外の粒
子、例えばプラスチツク粒子のようなものの容積
の膨張変化に対する補償等も可能である。
By appropriately setting the values of resistors 10 and 11, the slope and degree of curvature of graph B in Figure 2 can be changed, so that the volume expansion of particles other than blood cells, such as plastic particles, due to temperature changes can be changed. Compensation for changes is also possible.

さらに、サーミスタ素子を第1図に示されてい
るように直接抵抗10と並列に結線せずに、
FET等を介して用いれば、サーミスタ素子自体
に検出回路の出力信号が乗らず、素子の片側を接
地させることができ、対ノイズ等の面からは効果
的である。又、サーボ機構等を組み込み、温度測
定と信号の伝達制御とを切りはなすことも可能で
ありノイズ対策の面からは効果的であるが、いず
れも広い温度範囲にわたつての調整がめんどうで
あり、特に後者は回路装置が複雑となり、高価な
ものとなる。サーミスタ素子を直結しても、実用
上は何らさしつかえない。
Furthermore, instead of directly connecting the thermistor element in parallel with the resistor 10 as shown in FIG.
If used through an FET or the like, the output signal of the detection circuit will not be applied to the thermistor element itself, and one side of the element can be grounded, which is effective in terms of noise resistance. It is also possible to incorporate a servo mechanism or the like to separate temperature measurement and signal transmission control, which is effective in terms of noise countermeasures, but in both cases adjustment over a wide temperature range is troublesome. Especially in the latter case, the circuit device becomes complicated and expensive. Even if the thermistor element is directly connected, there is no practical problem.

以上のごとく本考案は、サーミスタ素子9の特
性と、並列抵抗10と抵抗11の値を適切に設定
してやることにより、少ない回路素子でより大き
な効果が得られ、コスト的にも安価に回路を構成
することができ、実用上非常に有効な装置を提供
する。
As described above, by appropriately setting the characteristics of the thermistor element 9 and the values of the parallel resistor 10 and resistor 11, the present invention can achieve a greater effect with fewer circuit elements and configure the circuit at a lower cost. This provides a device that is extremely effective in practice.

また、本考案においては希釈液の温度によつて
生ずるゲインの変動を最小限におさえ、かつ温度
変化にのみ限定しているので、他の物理的条件の
変動や、細孔のツマリや汚れによる出力電圧の変
動は、それぞれ顕著に出力に生ずるために、的確
に判断し処置を取ることが可能であり、誤つたデ
ータを提供することを未然に防止することができ
る。
In addition, in this invention, gain fluctuations caused by the temperature of the diluent are minimized and are limited to temperature changes, so changes in other physical conditions, pore clogging, and dirt Since fluctuations in the output voltage significantly occur in the output, it is possible to accurately judge and take measures, and it is possible to prevent the provision of erroneous data.

なお、高入力インピーダンス増幅器12は、前
記サーミスタ素子9の抵抗値と、抵抗10,11
で決定される分圧比を変化させることなく信号を
伝達させる効果を有するものである。
Note that the high input impedance amplifier 12 has a resistance value of the thermistor element 9 and resistors 10 and 11.
This has the effect of transmitting a signal without changing the voltage division ratio determined by .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例の構成図であり、第2
図にはその特性図であり、第3図は当実施例に用
いたサーミスタ素子の特性図である。 1……サンプルビーカ、4……検出器、8……
検出回路、9……サーミスタ素子、12……高入
力インピーダンス増幅器、13……信号処理装
置。
FIG. 1 is a configuration diagram of an embodiment of the present invention, and the second
The figure shows its characteristic diagram, and FIG. 3 shows the characteristic diagram of the thermistor element used in this example. 1... Sample beaker, 4... Detector, 8...
Detection circuit, 9... Thermistor element, 12... High input impedance amplifier, 13... Signal processing device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] サンプルビーカ1に収容した粒子懸濁液2に浸
漬された微細孔3を有する検出器4と、前記微細
孔3から前記懸濁液パイプ5を通じて定量吸引す
る装置6と、粒子が前記微細孔3を通過する際に
発生する検出信号を電気パルス信号に変換する検
出回路8と、前記懸濁液の温度を検出するサーミ
スタ素子9と、前記サーミスタ素子9の抵抗値を
検出し前記検出回路8の出力信号を抵抗分圧比に
より温度補償を行う回路と温度補償を行う回路の
分圧比を変化させずに出力信号を受ける高入力イ
ンピーダンス増幅器12とを具え、懸濁液の温度
変化による検出回路の出力信号の変動を補償する
ことを特徴とする粒子計測装置。
A detector 4 having a fine hole 3 immersed in a particle suspension 2 contained in a sample beaker 1; a device 6 for sucking a fixed amount of liquid from the fine hole 3 through the suspension pipe 5; a detection circuit 8 that converts a detection signal generated when passing through the suspension into an electric pulse signal; a thermistor element 9 that detects the temperature of the suspension; and a thermistor element 9 that detects the resistance value of the thermistor element 9 and The circuit includes a circuit that performs temperature compensation on the output signal using a resistor voltage division ratio, and a high input impedance amplifier 12 that receives the output signal without changing the voltage division ratio of the circuit that performs temperature compensation. A particle measuring device characterized by compensating for signal fluctuations.
JP1822683U 1983-02-10 1983-02-10 Particle measurement device Granted JPS58153350U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1822683U JPS58153350U (en) 1983-02-10 1983-02-10 Particle measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1822683U JPS58153350U (en) 1983-02-10 1983-02-10 Particle measurement device

Publications (2)

Publication Number Publication Date
JPS58153350U JPS58153350U (en) 1983-10-13
JPH0210438Y2 true JPH0210438Y2 (en) 1990-03-15

Family

ID=30030491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1822683U Granted JPS58153350U (en) 1983-02-10 1983-02-10 Particle measurement device

Country Status (1)

Country Link
JP (1) JPS58153350U (en)

Also Published As

Publication number Publication date
JPS58153350U (en) 1983-10-13

Similar Documents

Publication Publication Date Title
EP0136248B1 (en) Capacitive pressure transducer signal conditioning circuit
US4190804A (en) Signal-conditioning circuits
GB1603038A (en) Signal processors utilizing tuneable band pass filters and trigger circuits
US5046053A (en) Acoustic signal detection circuit
JPH0210438Y2 (en)
US4795971A (en) Device for detecting voltage fluctuation
CN106908800B (en) Method for improving pulse ranging precision and pulse ranging equipment
US4164143A (en) Ultrasonic amplifier detector
JPH0628681Y2 (en) Abnormality detection device for particle detection device
JP4540301B2 (en) Radiation monitor
JPH0442771Y2 (en)
US7499556B2 (en) Integrating apparatus
US3852666A (en) Method and apparatus for compensation of the temperature-dependency of the conductivity of a fluid with suspended particles
JP2513457B2 (en) Voltage fluctuation detection circuit
CN112526169B (en) MEMS capacitive accelerometer signal readout circuit
JPS6032567Y2 (en) Flow rate/flow rate detection device
RU2042934C1 (en) Device for measuring non-electric values
JPS649581B2 (en)
SU1578605A1 (en) Instrument unit for photoelectric flaw detector
SU1045011A1 (en) Non-stationary thermal flux measuring method
JPH02266230A (en) Frequency measuring instrument
JPS638675B2 (en)
SU872984A1 (en) Noise thermometer
SU628617A2 (en) Arrangement for automatic checking of amplitude-frequency characteristics of pulsed receivers
CN117630503A (en) Wide-range capacitance detection circuit and detection method