JPH06283761A - Znse blue light emitting diode element - Google Patents

Znse blue light emitting diode element

Info

Publication number
JPH06283761A
JPH06283761A JP6991293A JP6991293A JPH06283761A JP H06283761 A JPH06283761 A JP H06283761A JP 6991293 A JP6991293 A JP 6991293A JP 6991293 A JP6991293 A JP 6991293A JP H06283761 A JPH06283761 A JP H06283761A
Authority
JP
Japan
Prior art keywords
type
layer
znse
light emitting
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6991293A
Other languages
Japanese (ja)
Inventor
Yuji Hishida
有二 菱田
Mutsuyuki Yoshie
睦之 吉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6991293A priority Critical patent/JPH06283761A/en
Publication of JPH06283761A publication Critical patent/JPH06283761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To provide a ZnSe blue light emitting diode element large in light emission intensity. CONSTITUTION:This element comprises an n-type GaAs single crystalline substrate 1, an n-type ZnSe layer 2 made on that single crystalline substrate 1, and a p-type ZnSe layer 3 made on that n-type ZnSe layer 2, and this n-type ZnSe layer 2 serves as a light emitting layer, and also the concentration of that n-type carriers is larger than 1X10<17>cm<-3> and smaller than about 5X10<17>cm<-3>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ZnSe(セレン化亜
鉛)青色発光ダイオード素子に関し、特に発光強度の大
きいZnSe青色発光ダイオード素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ZnSe (zinc selenide) blue light emitting diode element, and more particularly to a ZnSe blue light emitting diode element having high emission intensity.

【0002】[0002]

【従来の技術】II−VI族化合物半導体であるZnSeは
直接遷移型の広禁制帯幅を有し、紫外光から青色、緑色
光に至る発光が可能である。現在、この材料を用いた発
光ダイオード素子の研究が活発に行われている。
2. Description of the Related Art ZnSe, which is a II-VI group compound semiconductor, has a wide bandgap of direct transition type and is capable of emitting light from ultraviolet light to blue light and green light. Currently, active research is being conducted on light emitting diode devices using this material.

【0003】斯る発光素子は、例えば特開昭63−18
5077号(H01L 33/00)公報等に開示され
ている。
Such a light emitting device is disclosed in, for example, Japanese Patent Laid-Open No. 63-18.
No. 5077 (H01L 33/00) and the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
ZnSe青色発光ダイオード素子では、十分な発光強度
が得られないといった問題があった。
However, the conventional ZnSe blue light emitting diode element has a problem that sufficient emission intensity cannot be obtained.

【0005】本発明は斯る問題点に鑑みてなされたもの
であり、発光強度の大きいZnSe青色発光ダイオード
素子を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a ZnSe blue light emitting diode element having a large emission intensity.

【0006】[0006]

【課題を解決するための手段】本発明のZnSe青色発
光ダイオード素子は、第1導電型の単結晶基板と、該単
結晶基板上に形成された第1導電型のZnSe層と、該
第1導電型のZnSe層上に形成された該第1導電型と
は逆導電型である第2導電型のZnSe層と、からなる
ZnSe青色発光ダイオード素子において、該第1、第
2導電型のZnSe層のうち導電型がn型となるZnS
e層が発光層となると共にそのn型キャリア濃度が1×
1017cm-3より大きく略5×1017cm-3以下である
ことを特徴とする。
A ZnSe blue light emitting diode device according to the present invention comprises a first conductivity type single crystal substrate, a first conductivity type ZnSe layer formed on the single crystal substrate, and a first conductivity type ZnSe layer. A ZnSe blue light emitting diode element comprising a ZnSe layer of a second conductivity type, which is a conductivity type opposite to the first conductivity type, formed on a ZnSe layer of a conductivity type, wherein the ZnSe layers of the first and second conductivity types are provided. ZnS whose conductivity type is n-type among the layers
The e layer becomes a light emitting layer and the n-type carrier concentration is 1 ×
It is characterized in that it is larger than 10 17 cm -3 and is approximately 5 × 10 17 cm -3 or less.

【0007】特に、前記第1、第2導電型のZnSe層
のうち導電型がp型となるZnSe層のキャリア濃度を
1×1017cm-3以上から4×1017cm-3以下とした
ことを特徴とする。
In particular, among the first and second conductivity type ZnSe layers, the carrier concentration of the ZnSe layer whose conductivity type is p-type is set to 1 × 10 17 cm -3 or more to 4 × 10 17 cm -3 or less. It is characterized by

【0008】[0008]

【作用】n型ZnSe層のキャリア濃度が1×1017
-3より大きく略5×1017cm-3以下とし、このn型
ZnSe層を発光層とする場合、ZnSe発光ダイオー
ド素子の発光強度が大きくなる。特に、p型ZnSe層
のキャリア濃度が1×1017cm-3以上から4×1017
cm-3以下の場合にn型ZnSe層が特に良好な発光層
となる。
Operation: The carrier concentration of the n-type ZnSe layer is 1 × 10 17 c
When the n-type ZnSe layer is used as a light emitting layer by setting it to be larger than m −3 and about 5 × 10 17 cm −3 or less, the emission intensity of the ZnSe light emitting diode element increases. Particularly, the carrier concentration of the p-type ZnSe layer is from 1 × 10 17 cm −3 to 4 × 10 17
In the case of cm −3 or less, the n-type ZnSe layer becomes a particularly favorable light emitting layer.

【0009】[0009]

【実施例】本発明の一実施例に係るZnSe青色発光ダ
イオード素子を図を用いて説明する。図1は本実施例の
ZnSe青色発光ダイオード素子の構造を模式的に示す
断面図である。
EXAMPLE A ZnSe blue light emitting diode element according to an example of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view schematically showing the structure of a ZnSe blue light emitting diode element of this example.

【0010】図中、1はキャリア濃度が1×1018cm
-3〜2×1018cm-3のn型GaAs単結晶基板、2は
この単結晶基板1上に形成された層厚が1μm以上、例
えば層厚2μmの塩素添加のn型ZnSe層(発光
層)、3はこのn型ZnSe層2上に形成された層厚1
μm以上、キャリア濃度1×1017cm-3以上、例えば
層厚2μm、キャリア濃度1×1017〜4×1017cm
-3の窒素添加のp型ZnSe層である。
In the figure, 1 indicates a carrier concentration of 1 × 10 18 cm
-3 to 2 × 10 18 cm -3 n-type GaAs single crystal substrate 2, 2 has a layer thickness of 1 μm or more formed on the single crystal substrate 1, for example, a layer thickness of 2 μm, and is a chlorine-doped n-type ZnSe layer (emission). Layer), 3 is a layer thickness 1 formed on the n-type ZnSe layer 2
μm or more, carrier concentration 1 × 10 17 cm −3 or more, for example, layer thickness 2 μm, carrier concentration 1 × 10 17 to 4 × 10 17 cm
-3 is a p-type ZnSe layer with nitrogen added.

【0011】前記p型ZnSe層3上及び前記単結晶基
板1下面上には、それぞれp型側電極4及びn型側電極
5が形成されている。
A p-type side electrode 4 and an n-type side electrode 5 are formed on the p-type ZnSe layer 3 and the lower surface of the single crystal substrate 1, respectively.

【0012】以下に、斯る素子の製造方法の一例を示
す。
An example of a method of manufacturing such an element will be shown below.

【0013】前記n型ZnSe層2及びp型ZnSe層
3のエピタキシャル成長は分子線エピタキシャル成長法
(MBE法)により行われる。
The n-type ZnSe layer 2 and the p-type ZnSe layer 3 are epitaxially grown by a molecular beam epitaxial growth method (MBE method).

【0014】最初に、n型GaAs単結晶基板1の基板
温度を240℃から350℃の間で設定し、超高真空中
でZn(金属亜鉛)分子線及びSe(金属セレン)分子
線と同時にCdCl2分子線をn型GaAs単結晶基板
1に照射して塩素添加のn型ZnSe層2を形成する。
First, the substrate temperature of the n-type GaAs single crystal substrate 1 is set between 240 ° C. and 350 ° C., and simultaneously with Zn (metal zinc) molecular beam and Se (metal selenium) molecular beam in ultrahigh vacuum. The n-type GaAs single crystal substrate 1 is irradiated with a CdCl 2 molecular beam to form a chlorine-added n-type ZnSe layer 2.

【0015】続いて、前記n型ZnSe層2上にZn分
子線及びSe分子線と同時にN2(窒素分子)ガスを高
周波放電させることによりN2分子が励起してなる窒素
(N2)ラジカルのビームを照射して窒素添加のp型Z
nSe層3を形成する。
Then, a nitrogen (N 2 ) radical is formed on the n-type ZnSe layer 2 by exciting a N 2 (nitrogen molecule) gas at the same time as a Zn molecular beam and a Se molecular beam by high-frequency discharge of the N 2 molecule. P-type Z with nitrogen added by irradiating a beam of
The nSe layer 3 is formed.

【0016】その後、真空蒸着法等を用いて、前記p型
ZnSe層3上及び前記単結晶基板1下面上に、それぞ
れp型側電極4及びn型側電極5を形成する。
Thereafter, a p-type side electrode 4 and an n-type side electrode 5 are formed on the p-type ZnSe layer 3 and the lower surface of the single crystal substrate 1, respectively, by using a vacuum evaporation method or the like.

【0017】図2は斯る素子の青色発光強度とn型Zn
Se層2のキャリア濃度の関係を示す図である。尚、印
加電流IFは3mAであり、p型ZnSe層3のキャリ
ア濃度は一例として1.5×1017cm-3の場合を示
す。
FIG. 2 shows the blue emission intensity and n-type Zn of such a device.
It is a figure which shows the relationship of the carrier concentration of Se layer 2. The applied current I F is 3 mA, and the carrier concentration of the p-type ZnSe layer 3 is 1.5 × 10 17 cm −3 as an example.

【0018】この図2から、斯る素子はn型ZnSe層
2のキャリア濃度が9×1017cm -3近傍以上では殆ど
発光しないが、略5×1017cm-3以下で発光強度が顕
著に大きくなることが判る。尚、図示していないが、前
記p型ZnSe層3のキャリア濃度がこの1.5×10
17cm-3に限らず、1×1017cm-3以上4×1017
-3以下の範囲であって、且つn型ZnSe層2のキャ
リア濃度が略5×10 17cm-3以下の範囲である場合
に、p型ZnSe層3からn型ZnSe層2へホールが
効率良く注入されるので、n型ZnSe層2が特に良好
な発光層として機能して発光強度が大きくなる。
From this FIG. 2, such a device has an n-type ZnSe layer.
Carrier concentration of 2 is 9 × 1017cm -3Almost above neighborhood
Does not emit light, but is approximately 5 × 1017cm-3The emission intensity is
It turns out that it will grow significantly. Although not shown,
The carrier concentration of the p-type ZnSe layer 3 is 1.5 × 10 5
17cm-3Not limited to 1 × 1017cm-34 × 10 or more17c
m-3Within the following range, the capacity of the n-type ZnSe layer 2 is
Rear concentration is about 5 × 10 17cm-3If the following range
Then, holes are formed from the p-type ZnSe layer 3 to the n-type ZnSe layer 2.
The n-type ZnSe layer 2 is particularly good because it is injected efficiently.
And functions as a light emitting layer to increase the emission intensity.

【0019】また、図3は斯る素子のn型ZnSe層2
のキャリア濃度を変えた場合の青色発光強度と印加電流
Fの関係を示したものである。
FIG. 3 shows the n-type ZnSe layer 2 of such a device.
3 shows the relationship between the blue emission intensity and the applied current I F when the carrier concentration of is changed.

【0020】この図3から、斯る素子はn型ZnSe層
2のキャリア濃度(n)が9×10 17cm-3近傍以上で
は印加電流IFを大きくしても殆ど発光しないが、キャ
リア濃度(n)が略5×1017cm-3以下では発光強度
と印加電流IFが略比例し、印加電流を増加することに
より大きな発光強度が得られることが判る。
From this FIG. 3, such a device has an n-type ZnSe layer.
Carrier concentration (n) of 2 is 9 × 10 17cm-3Above neighborhood
Is the applied current IFEven if it is set to a large value, it hardly emits light,
Rear concentration (n) is approximately 5 × 1017cm-3Below is the emission intensity
And applied current IFIs approximately proportional to increasing the applied current
It can be seen that a larger emission intensity can be obtained.

【0021】これら図2、図3、及びn型ZnSe層2
のキャリア濃度が1×1017cm-3以下になると素子抵
抗が大きくなることから、本実施例のn型ZnSe層2
のキャリア濃度は1×1017cm-3より大きく略5×1
17cm-3以下、好ましく3×1017cm-3以上略5×
1017cm-3以下、より好ましくは略5×1017cm -3
である。
2 and 3, and the n-type ZnSe layer 2
Carrier concentration is 1 × 1017cm-3The element resistance
Since the resistance is increased, the n-type ZnSe layer 2 of this embodiment is formed.
Carrier concentration is 1 × 1017cm-3Larger than approximately 5 x 1
017cm-3Below, preferably 3 × 1017cm-3About 5x
1017cm-3Or less, more preferably about 5 × 1017cm -3
Is.

【0022】上記実施例では、n型単結晶基板上に発光
層となるn型ZnSe層及びp型ZnSe層をこの順序
で構成したZnSe青色発光ダイオード素子について述
べたが、p型単結晶基板上にp型ZnSe層及び発光層
となるn型ZnSe層をこの順序で構成したZnSe青
色発光ダイオード素子でも同様の効果がある。
In the above embodiment, the ZnSe blue light emitting diode element in which the n-type ZnSe layer and the p-type ZnSe layer to be the light-emitting layer are formed in this order on the n-type single crystal substrate has been described. In addition, a similar effect can be obtained with a ZnSe blue light emitting diode element in which a p-type ZnSe layer and an n-type ZnSe layer to be a light emitting layer are formed in this order.

【0023】また、上述では、基板として、GaAs単
結晶基板を用いたが、ZnSeと格子定数が等しい又は
近く、且つ結晶系がZnSeと同じ閃亜鉛鉱型の単結晶
基板を適宜用いることができ、例えばZnSe単結晶基
板、InxGa1-xAs単結晶基板、ZnSxSe1-x単結
晶基板等が利用できる。
Although a GaAs single crystal substrate is used as the substrate in the above description, a zinc blende type single crystal substrate having a lattice constant equal to or close to that of ZnSe and having the same crystal system as ZnSe can be appropriately used. , for example, ZnSe single crystal substrate, In x Ga 1-x As single crystal substrate, ZnS x Se 1-x single crystal substrate or the like can be used.

【0024】[0024]

【発明の効果】本発明のZnSe青色発光ダイオード素
子は、n型ZnSe層が発光層となると共にそのn型キ
ャリア濃度が1×1017cm-3より大きく略5×1017
cm-3以下であるので、従来より発光強度が大きくな
る。
In the ZnSe blue light emitting diode element of the present invention, the n-type ZnSe layer serves as a light-emitting layer, and the n-type carrier concentration is larger than 1 × 10 17 cm −3 and is approximately 5 × 10 17
Since it is cm −3 or less, the emission intensity is higher than in the past.

【0025】特に、p型ZnSe層のキャリア濃度を1
×1017cm-3以上から4×1017cm-3以下とした場
合に、p型ZnSe層からn型ZnSe層へホールが効
率よく注入されるので、前記n型ZnSe層が特に良好
な発光層として機能する。
In particular, the carrier concentration of the p-type ZnSe layer is set to 1
When × from 10 17 cm -3 or more and 4 × 10 17 cm -3 or less, since the hole from the p-type ZnSe layer to the n-type ZnSe layer is efficiently injected, the n-type ZnSe layer is particularly good emission Functions as a layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のZnSe青色発光ダイオー
ド素子の模式断面図である。
FIG. 1 is a schematic cross-sectional view of a ZnSe blue light emitting diode element according to an embodiment of the present invention.

【図2】n型ZnSe層のキャリア濃度と発光強度の関
係を示す図である。
FIG. 2 is a diagram showing a relationship between carrier concentration and emission intensity of an n-type ZnSe layer.

【図3】発光強度と印加電流の関係を示す図である。FIG. 3 is a diagram showing a relationship between emission intensity and applied current.

【符号の説明】[Explanation of symbols]

1 n型GaAs単結晶基板 2 n型ZnSe層 3 p型ZnSe層 1 n-type GaAs single crystal substrate 2 n-type ZnSe layer 3 p-type ZnSe layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の単結晶基板と、該単結晶基
板上に形成された第1導電型のZnSe層と、該第1導
電型のZnSe層上に形成された該第1導電型とは逆導
電型である第2導電型のZnSe層と、からなるZnS
e発光ダイオード素子において、該第1、第2導電型の
ZnSe層のうち導電型がn型となるZnSe層が発光
層となると共にそのn型キャリア濃度が1×1017cm
-3より大きく略5×1017cm-3以下であることを特徴
とするZnSe青色発光ダイオード素子。
1. A first-conductivity-type single crystal substrate, a first-conductivity-type ZnSe layer formed on the single-crystal substrate, and a first-conductivity formed on the first-conductivity-type ZnSe layer. ZnS layer having a second conductivity type ZnSe layer having a conductivity type opposite to that of the ZnS layer
In the e light emitting diode element, the ZnSe layer of the first and second conductivity type ZnSe layers having a conductivity type of n-type serves as a light-emitting layer, and the n-type carrier concentration thereof is 1 × 10 17 cm 2.
ZnSe blue light emitting diode element characterized in that it is larger than -3 and is approximately 5 × 10 17 cm -3 or less.
【請求項2】 前記第1、第2導電型のZnSe層のう
ち導電型がp型となるZnSe層のキャリア濃度を1×
1017cm-3以上から4×1017cm-3以下としたこと
を特徴とする請求項1記載のZnSe青色発光ダイオー
ド素子。
2. A carrier concentration of a ZnSe layer having a p-type conductivity is 1 ×, among the first and second conductivity type ZnSe layers.
10 17 cm -3 or more from 4 × 10 17 cm -3 ZnSe blue light emitting diode element according to claim 1, characterized in that a following.
JP6991293A 1993-03-29 1993-03-29 Znse blue light emitting diode element Pending JPH06283761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6991293A JPH06283761A (en) 1993-03-29 1993-03-29 Znse blue light emitting diode element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6991293A JPH06283761A (en) 1993-03-29 1993-03-29 Znse blue light emitting diode element

Publications (1)

Publication Number Publication Date
JPH06283761A true JPH06283761A (en) 1994-10-07

Family

ID=13416384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6991293A Pending JPH06283761A (en) 1993-03-29 1993-03-29 Znse blue light emitting diode element

Country Status (1)

Country Link
JP (1) JPH06283761A (en)

Similar Documents

Publication Publication Date Title
US20020030196A1 (en) Semiconductor device having ZnO based oxide semiconductor layer and method of manufacturing the same
US5113233A (en) Compound semiconductor luminescent device
JPH05275744A (en) Hetero-superlattice p-n junction
JPH0888175A (en) Molecular beam epitaxial growth equipment and manufacture of optical semiconductor device
US6206962B1 (en) Semiconductor light emitting device and method of manufacturing same
EP0552023A1 (en) Semiconductor device
KR100693407B1 (en) Method to Make Light Emitting Devices using p-ZnO
JPH06283761A (en) Znse blue light emitting diode element
JPH0410669A (en) Semiconductor device
JPH0728097B2 (en) Semiconductor laser
JP3288480B2 (en) Method for manufacturing semiconductor light emitting device
KR100389738B1 (en) SHORT WAVELENGTH ZnO LED AND METHOD FOR PRODUCING OF THE SAME
JP2597624B2 (en) Semiconductor light emitting device
JP3288479B2 (en) Method for manufacturing semiconductor light emitting device
JP3222652B2 (en) Semiconductor light emitting device
US5382813A (en) Light emission diode comprising a pn junction of p-type and n-type A1-containing ZnS compound semiconductor layers
KR20010099146A (en) METHOD FOR CONTROLLING LUMINESCENCE PROPERTIES OF ZnO ACCORDING TO A HEAT PROCESSING
JP3288481B2 (en) Method for manufacturing semiconductor light emitting device
JP3405552B2 (en) Optical semiconductor device
JP2002076026A (en) METHOD FOR GROWING ZnO OXIDE SEMICONDUCTOR LAYER AND METHOD FOR MANUFACTURING SEMICONDUCTOR LIGHT-EMITTING DEVICE USING THE METHOD
JPH05304314A (en) Light emitting diode
JPH0653613A (en) Semiconductor element
JPH07249837A (en) Manufacture of semiconductor laser device
JP2540229B2 (en) Compound semiconductor light emitting device
JPH0621572A (en) Semiconductor laser