JPH0621572A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPH0621572A JPH0621572A JP20052092A JP20052092A JPH0621572A JP H0621572 A JPH0621572 A JP H0621572A JP 20052092 A JP20052092 A JP 20052092A JP 20052092 A JP20052092 A JP 20052092A JP H0621572 A JPH0621572 A JP H0621572A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- bonding layer
- contact resistance
- composition
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はII−VI族化合物半導
体レーザに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a II-VI compound semiconductor laser.
【0002】[0002]
【従来の技術】II−VI族化合物半導体レーザは赤色
発光が限界であるIII−V族化合物半導体レーザに比
べより材料の禁制帯幅が大きいため短波長の緑青色で発
光し、光記録等の応用上から有用である。このような半
導体レーザの従来例がアプライドフィジクスレターズ
誌、1991年、59巻、11号、1272−1274
ページに報告されている。本半導体レーザは砒化ガリウ
ム基板上に塩素(Cl)ドープのZnSe,ZnSS
e,及びZnSeを積層したn形クラッド層、CdZn
Seからなる発光層、及び、窒素ドープのZnSe,Z
nSSe,及びZnSeを積層したp形クラッド層から
なり、上側のp形クラッド層を構成するp形ZnSeに
金電極を形成した構造になっている。この従来例では室
温でパルス発振が報告されている。2. Description of the Related Art A II-VI group compound semiconductor laser emits light of short wavelength green-blue because of a wider band gap of a material than a III-V group compound semiconductor laser, which emits red light only at a limit. It is useful from the application. A conventional example of such a semiconductor laser is the Applied Physics Letters magazine, 1991, Volume 59, No. 11, 1272-1274.
Reported on the page. This semiconductor laser is composed of chlorine (Cl) -doped ZnSe, ZnSS on a gallium arsenide substrate.
n-type clad layer in which e and ZnSe are laminated, CdZn
Se emitting layer and nitrogen-doped ZnSe, Z
The p-type cladding layer is formed by stacking nSSe and ZnSe, and a gold electrode is formed on the p-type ZnSe forming the upper p-type cladding layer. In this conventional example, pulse oscillation is reported at room temperature.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
半導体レーザは室温連続発振が得られていない。この主
な原因の一つはp形クラッド層、p形電極間の高い接触
抵抗である。この高い接触抵抗のため発熱が大きく発光
層の温度上昇による発光効率低下、素子破壊という問題
が生じる。However, the conventional semiconductor laser has not been able to obtain continuous oscillation at room temperature. One of the main causes of this is a high contact resistance between the p-type cladding layer and the p-type electrode. Due to this high contact resistance, a large amount of heat is generated, which causes problems such as a decrease in luminous efficiency due to a rise in the temperature of the light emitting layer and element destruction.
【0004】本発明は以上述べた様な従来の事情に鑑み
てなされたもので、p形クラッド層と電極との間に接触
抵抗の小さくできる接合層を有するために、接触抵抗に
よる発熱の問題のない半導体レーザを提供することにあ
る。The present invention has been made in view of the conventional circumstances as described above, and has a bonding layer between the p-type clad layer and the electrode, which can reduce the contact resistance. The purpose is to provide a semiconductor laser that does not have the above.
【0005】[0005]
【課題を解決するための手段】本発明になる半導体レー
ザは、発光層並びにこの発光層を挟む下側の第1導電形
クラッド層及び上側の第2導電形クラッド層がカドミウ
ム、亜鉛、硫黄及びセレンの4種類の元素からなるII
−VI族化合物半導体レーザにおいて、前記第2導電形
クラッド層と電極との間に亜鉛、カドミウム及び硫黄か
らなる第1接合層、亜鉛、水銀及び硫黄からなる第2接
合層を有することを特徴としている。また、前記第1接
合層と前記第2接合層の間に、亜鉛及び硫黄の組成を一
定に保ち、かつ、残る組成を前記第1接合層に接する部
分でカドミウム、前記第2接合層で水銀になるようカド
ミウム及び水銀の組成を徐々に変化させた傾斜組成接合
層を有することを特徴としている。さらに、前記第2接
合層と電極の間に、10nm以下の層厚の硫化水銀層を
有することを特徴としている。In a semiconductor laser according to the present invention, a light emitting layer, a lower first conductivity type clad layer and an upper second conductivity type clad layer sandwiching the light emitting layer are cadmium, zinc, sulfur and II consisting of 4 elements of selenium
In the group VI compound semiconductor laser, a first bonding layer made of zinc, cadmium and sulfur and a second bonding layer made of zinc, mercury and sulfur are provided between the second conductivity type clad layer and the electrode. There is. Further, between the first bonding layer and the second bonding layer, the composition of zinc and sulfur is kept constant, and the remaining composition is cadmium at a portion in contact with the first bonding layer and mercury at the second bonding layer. Is characterized by having a graded composition bonding layer in which the compositions of cadmium and mercury are gradually changed. Further, it is characterized by having a mercury sulfide layer having a layer thickness of 10 nm or less between the second bonding layer and the electrode.
【0006】[0006]
【作用】一般に、半導体層と電極との間の接触抵抗を小
さくするには、半導体層のドーピング濃度を高くする
か、禁制帯幅を小さくしてトンネル電流を大きくするこ
とが有効である。前者の方法は高濃度ドーピングが困難
なII−VI族化合物半導体においては有効ではない。
本発明の半導体レーザでは後者の方法として禁制帯幅を
小さくでき、しかも、基板の格子定数との不整合による
欠陥が生じない材料を接合層にする事によって接触抵抗
を低減する。まず、クラッド層とほぼ同じ禁制帯幅のZ
nCdS層からなる第1接合層を設け、この上により小
さい禁制帯幅のZnHgSからなる第2接合層を積層
し、この第2接合層の上に電極を形成する。第2接合層
の禁制帯幅が基板の砒化ガリウムに近いため1018cm
-3程度のドーピング濃度でも10-4Ωcm程度の接触抵
抗が期待できる。この場合、第1接合層、第2接合層と
もにII族成分組成の亜鉛割合が約25%で基板に格子
整合した組成を得ることができるため、格子歪による転
位欠陥が生じない。また、第1接合層と第2接合層間に
亜鉛及び硫黄の組成を一定に保ち、かつ、残る組成を前
記第1接合層に接する部分でカドミウム、前記第2接合
層で水銀になるようカドミウム及び水銀の組成を徐々に
変化させた傾斜組成接合層を設けることによって、第1
接合層と第2接合層間のヘテロ接合バリアによる抵抗増
大を抑制することができるため接触抵抗をより低減する
ことができる。さらに、第2接合層と電極の間に、10
nm以下の層厚の硫化水銀層を設けることによって、接
触抵抗は極めて小さくすることができる。これは、硫化
水銀層の禁制帯幅が負の値を取る半金属であるためであ
り、10nm以下の層厚を用いることによって約4%の
格子不整による欠陥の生成を抑制できる。In general, in order to reduce the contact resistance between the semiconductor layer and the electrode, it is effective to increase the doping concentration of the semiconductor layer or decrease the forbidden band width to increase the tunnel current. The former method is not effective in II-VI group compound semiconductors in which high-concentration doping is difficult.
In the semiconductor laser of the present invention, as the latter method, the forbidden band width can be reduced, and the contact resistance can be reduced by using a material that does not cause a defect due to a mismatch with the lattice constant of the substrate as the bonding layer. First, Z with almost the same forbidden band width as the clad layer
A first bonding layer made of an nCdS layer is provided, a second bonding layer made of ZnHgS having a smaller forbidden band width is stacked on the first bonding layer, and an electrode is formed on the second bonding layer. 10 18 cm because the forbidden band width of the second bonding layer is close to the gallium arsenide of the substrate
Even with a doping concentration of about -3, a contact resistance of about 10 -4 Ωcm can be expected. In this case, since the composition of the group II component zinc in the first bonding layer and the second bonding layer is approximately 25% and lattice-matched to the substrate, dislocation defects due to lattice strain do not occur. In addition, the composition of zinc and sulfur is kept constant between the first bonding layer and the second bonding layer, and the remaining composition is cadmium at the portion in contact with the first bonding layer and cadmium at the portion bonding to the second bonding layer so as to be mercury. By providing a graded composition bonding layer in which the composition of mercury is gradually changed,
Since the resistance increase due to the heterojunction barrier between the junction layer and the second junction layer can be suppressed, the contact resistance can be further reduced. Further, between the second bonding layer and the electrode, 10
The contact resistance can be made extremely small by providing the mercury sulfide layer having a layer thickness of nm or less. This is because the forbidden band width of the mercury sulfide layer is a semimetal having a negative value, and by using a layer thickness of 10 nm or less, it is possible to suppress the generation of defects due to a lattice mismatch of about 4%.
【0007】[0007]
【実施例】以下、図面を用いて本発明の実施例を説明す
る。図1は本発明の第1の実施例を説明するための摸式
図である。基板10はSiドープ(100)面GaAs
基板を用いる。ダブルヘテロ構造は厚さ2μmの塩素ド
ープZnS0.05Se0.95からなる第1導電形クラッド層
11、厚さ50nmのCdZnSeからなる発光層1
0、厚さ2μmの窒素ドープZnS0.05Se0. 95からな
る第2導電形クラッド層13からなる。第2導電形電極
15との間に接触抵抗低減のために、第1接合層17
(窒素ドープZn0.25Cd0.75S、厚さ0.1μm)及
び第2接合層18(窒素ドープZn0.25Hg0.75S、厚
さ0.1μm)を設けている。正孔電流は電極15から
絶縁層(SiO2 )14で狭窄され、第2接合層18、
第1接合層17、第2導電形クラッド層13を経て発光
層12に注入される。また、電子電流は第1導電形電極
16、基板10、第1導電形クラッド層11を経て発光
層12に注入される。第2接合層18の禁制帯幅が基板
10の砒化ガリウムに近いため1018cm-3程度のドー
ピング濃度でも10-4Ωcm程度の接触抵抗が期待でき
る。また、第1接合層17、第2接合層18ともにII
族成分組成の亜鉛割合が約25%で基板10に格子整合
した組成を得ることができるため、格子歪による転位欠
陥が生じない。さらに、第1接合層17、第2接合層1
8とも、VI族元素はSのみで組成制御しやすく格子整
合がより正確にとれる。以上の結果、接触抵抗が低減さ
れたため発熱が小さく発光層の温度上昇による発光効率
低下、素子破壊という問題のない半導体レーザを得るこ
とができる。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram for explaining a first embodiment of the present invention. Substrate 10 is Si-doped (100) plane GaAs
A substrate is used. The double heterostructure has a first conductivity type clad layer 11 made of chlorine-doped ZnS 0.05 Se 0.95 having a thickness of 2 μm and a light emitting layer 1 made of CdZnSe having a thickness of 50 nm.
0, and a second conductivity type cladding layer 13 made of nitrogen doped ZnS 0.05 Se 0. 95 having a thickness of 2 [mu] m. In order to reduce the contact resistance with the second conductivity type electrode 15, the first bonding layer 17
(Nitrogen-doped Zn 0.25 Cd 0.75 S, thickness 0.1 μm) and the second bonding layer 18 (nitrogen-doped Zn 0.25 Hg 0.75 S, thickness 0.1 μm) are provided. The hole current is confined from the electrode 15 by the insulating layer (SiO 2 ) 14 and the second bonding layer 18,
It is injected into the light emitting layer 12 through the first bonding layer 17 and the second conductivity type cladding layer 13. The electron current is injected into the light emitting layer 12 through the first conductivity type electrode 16, the substrate 10, and the first conductivity type clad layer 11. Since the forbidden band width of the second bonding layer 18 is close to that of gallium arsenide of the substrate 10, a contact resistance of about 10 −4 Ωcm can be expected even at a doping concentration of about 10 18 cm −3 . In addition, both the first bonding layer 17 and the second bonding layer 18 are II
Since the composition in which the zinc content of the group component composition is approximately 25% is lattice-matched to the substrate 10, dislocation defects due to lattice strain do not occur. Furthermore, the first bonding layer 17 and the second bonding layer 1
In No. 8, since the group VI element is only S, the composition can be easily controlled and the lattice matching can be more accurately obtained. As a result, it is possible to obtain a semiconductor laser in which heat generation is small because the contact resistance is reduced, and there are no problems such as a decrease in light emission efficiency due to a rise in the temperature of the light emitting layer and element destruction.
【0008】図2は本発明の第2の実施例を説明するた
めの摸式図である。起算10はSiドープ(100)面
GaAs基板を用いる。ダブルヘテロ構造は厚さ2μm
の塩素ドープZnS0.05Se0.95からなる第1導電形ク
ラッド層11、厚さ50nmのCdZnSeからなる発
光層10、厚さ2μmの窒素ドープZnS0.05Se0. 95
からなる第2導電形クラッド層13からなる。第2導電
形電極15との間に接触抵抗低減のために、第1接合層
17(窒素ドープZn0.25Cd0.75S、厚さ0.1μ
m)及び第2接合層18(窒素ドープZn0.25Hg0.75
S、厚さ0.1μm)を設け、さらに、第1接合層17
と第2接合層18間に亜鉛及び硫黄の組成を一定に保
ち、かつ、残る組成を第1接合層17に接する部分でカ
ドミウム、第2接合層18で水銀になるようカドミウム
及び水銀の組成を徐々に変化させた傾斜組成接合層19
(Zn0.25Hg0.75xCd0.75(1-x)S、x=0〜1)を
設けている。その結果、第1接合層17と第2接合層1
8間のヘテロ接合バリアによる抵抗増大を抑制すること
ができるため接触抵抗をより低減することができる。第
1接合層17、第2接合層18、傾斜組成接合層19と
もにII族成分組成の亜鉛割合が約25%で基板に格子
整合した組成を得ることができるため、格子歪による転
位欠陥が生じない。さらに、第1接合層17、第2接合
層18、傾斜組成接合層19でも、VI族元素はSのみ
で組成制御しやすく格子整合がより正確にとれる。以上
の結果、接触抵抗がより低減され、発熱が小さく発光層
の温度上昇による発光効率低下、素子破壊という問題の
ない半導体レーザを得ることができる。FIG. 2 is a schematic diagram for explaining the second embodiment of the present invention. For calculation 10, a Si-doped (100) plane GaAs substrate is used. Double hetero structure has a thickness of 2 μm
Chlorine doped ZnS 0.05 Se 0.95, first conductivity-type cladding layer 11 made of, light emitting layer 10, a thickness of 2μm nitrogen-doped ZnS 0.05 Se 0. 95 consisting of CdZnSe thickness 50nm
The second conductivity type cladding layer 13 is formed of. In order to reduce contact resistance with the second conductivity type electrode 15, the first bonding layer 17 (nitrogen-doped Zn 0.25 Cd 0.75 S, thickness 0.1 μm).
m) and the second bonding layer 18 (nitrogen-doped Zn 0.25 Hg 0.75
S, thickness 0.1 μm), and further the first bonding layer 17
The composition of zinc and sulfur is kept constant between the second bonding layer 18 and the second bonding layer 18, and the composition of cadmium and mercury is adjusted so that the remaining composition becomes cadmium at the portion in contact with the first bonding layer 17 and mercury at the second bonding layer 18. Gradient composition graded bonding layer 19
(Zn 0.25 Hg 0.75x Cd 0.75 (1-x) S, x = 0 to 1) is provided. As a result, the first bonding layer 17 and the second bonding layer 1
Since the increase in resistance due to the heterojunction barrier between 8 can be suppressed, the contact resistance can be further reduced. Since the first bonding layer 17, the second bonding layer 18, and the graded composition bonding layer 19 can have a composition in which the proportion of the group II component zinc is approximately 25% and which is lattice-matched to the substrate, dislocation defects due to lattice strain occur. Absent. Further, also in the first bonding layer 17, the second bonding layer 18, and the graded composition bonding layer 19, the composition of the VI group element is only S, and the composition can be easily controlled and the lattice matching can be more accurately obtained. As a result, it is possible to obtain a semiconductor laser in which the contact resistance is further reduced, the heat generation is small, the luminous efficiency is lowered due to the temperature rise of the light emitting layer, and the element is not destroyed.
【0009】図3は本発明の第3の実施例を説明するた
めの摸式図である。基板10はSiドープ(100)面
GaAs基板を用いる。ダブルヘテロ構造は厚さ2μm
の塩素ドープZnS0.05Se0.95からなる第1導電形ク
ラッド層11、厚さ50nmのCdZnSeからなる発
光層10、厚さ2μmの窒素ドープZnS0.05Se0. 95
からなる第2導電形クラッド層13からなる。第2導電
形電極15との間に接触抵抗低減のために、第1接合層
17(窒素ドープZn0.25Cd0.75S、厚さ0.1μ
m)及び第2接合層18(窒素ドープZn0.25Hg0.75
S、厚さ0.1μm)を設け、さらに、第2接合層18
と第2導電形電極15の間に、10nm以下の層厚の硫
化水銀層20を設けている。その結果、接触抵抗は極め
て小さくすることができる。これは、硫化水銀の禁制帯
幅が負の値を取る半金属であるためである。硫化水銀層
20は、基板10に対して約4%の格子不整を有するが
10nm以下の極めて薄い層厚を用いることによって格
子不整による転位欠陥の発生を抑制できる。FIG. 3 is a schematic diagram for explaining a third embodiment of the present invention. As the substrate 10, a Si-doped (100) plane GaAs substrate is used. Double hetero structure has a thickness of 2 μm
Chlorine doped ZnS 0.05 Se 0.95, first conductivity-type cladding layer 11 made of, light emitting layer 10, a thickness of 2μm nitrogen-doped ZnS 0.05 Se 0. 95 consisting of CdZnSe thickness 50nm
The second conductivity type cladding layer 13 is formed of. In order to reduce contact resistance with the second conductivity type electrode 15, the first bonding layer 17 (nitrogen-doped Zn 0.25 Cd 0.75 S, thickness 0.1 μm).
m) and the second bonding layer 18 (nitrogen-doped Zn 0.25 Hg 0.75
S, thickness 0.1 μm), and further the second bonding layer 18
A mercury sulfide layer 20 having a layer thickness of 10 nm or less is provided between the second conductivity type electrode 15 and the second conductivity type electrode 15. As a result, the contact resistance can be made extremely small. This is because the forbidden band width of mercury sulfide is a semimetal having a negative value. The mercury sulfide layer 20 has a lattice mismatch of about 4% with respect to the substrate 10, but by using an extremely thin layer thickness of 10 nm or less, generation of dislocation defects due to the lattice mismatch can be suppressed.
【0010】本発明になる上記実施例の半導体レーザの
エピタキシャル成長層は、分子線エピタキシャル成長方
法で、硫黄、セレン、亜鉛、カドミウム、及び水銀をク
ヌーセンセルで蒸発させ、各層の組成を分子線シャッタ
及びクヌーセンセル温度で制御して形成した。また、塩
素ドープ及び窒素ドープは塩素及び窒素ラジカルを用い
た。The epitaxial growth layer of the semiconductor laser of the above-mentioned embodiment according to the present invention is a molecular beam epitaxial growth method in which sulfur, selenium, zinc, cadmium, and mercury are evaporated in a Knudsen cell, and the composition of each layer is adjusted to the molecular beam shutter and Knudsen. It was formed by controlling the cell temperature. In addition, chlorine and nitrogen radicals used chlorine and nitrogen radicals.
【0011】上記実施例では電流狭窄方法に絶縁層を用
いたが埋め込み成長等を用いた他の電流狭窄方法でもよ
く、本発明はこれに限定されるものではない。In the above embodiment, the insulating layer was used as the current confinement method, but other current confinement methods using buried growth or the like may be used, and the present invention is not limited to this.
【0012】[0012]
【発明の効果】本発明による半導体レーザはクラッド層
と電極との間に接触抵抗の小さくできる接合層を有する
ために、接触抵抗による発熱の問題のない半導体レーザ
を提供することにある。The semiconductor laser according to the present invention has a bonding layer between the clad layer and the electrode, which can reduce the contact resistance, and therefore it is an object of the present invention to provide a semiconductor laser free from the problem of heat generation due to the contact resistance.
【図1】本発明の半導体レーザの第1の実施例を説明す
るための摸式的な断面図である。FIG. 1 is a schematic cross-sectional view for explaining a first embodiment of a semiconductor laser of the present invention.
【図2】本発明の半導体レーザの第2の実施例を説明す
るための摸式的な断面図である。FIG. 2 is a schematic cross-sectional view for explaining a second embodiment of the semiconductor laser of the present invention.
【図3】本発明の半導体レーザの第3の実施例を説明す
るための摸式的な断面図である。FIG. 3 is a schematic cross-sectional view for explaining a third embodiment of the semiconductor laser of the present invention.
10 基板 11 第1導電形クラッド層 12 発光層 13 第2導電形クラッド層 14 絶縁層 15 第2導電形電極 16 第1導電形電極 17 第1接合層 18 第2接合層 19 傾斜組成接合層 20 硫化水銀層 Reference Signs List 10 substrate 11 first conductivity type clad layer 12 light emitting layer 13 second conductivity type cladding layer 14 insulating layer 15 second conductivity type electrode 16 first conductivity type electrode 17 first bonding layer 18 second bonding layer 19 gradient composition bonding layer 20 Mercury sulfide layer
Claims (3)
1導電形クラッド層及び上側の第2導電形クラッド層が
カドミウム、亜鉛、硫黄及びセレンの4種類の元素から
なるII−VI族化合物半導体レーザにおいて、前記第
2導電形クラッド層と電極との間に亜鉛、カドミウム及
び硫黄からなる第1接合層、亜鉛、水銀及び硫黄からな
る第2接合層を有することを特徴とする半導体レーザ。1. A light emitting layer, a lower first conductivity type cladding layer and an upper second conductivity type cladding layer sandwiching the light emitting layer, the group II-VI comprising four kinds of elements of cadmium, zinc, sulfur and selenium. A compound semiconductor laser comprising a first bonding layer made of zinc, cadmium and sulfur and a second bonding layer made of zinc, mercury and sulfur between the second conductivity type clad layer and the electrode. .
に、亜鉛及び硫黄の組成を一定に保ち、かつ、残る組成
を前記第1接合層に接する部分でカドミウム、前記第2
接合層に接する部分で水銀になるようカドミウム及び水
銀の組成を徐々に変化させた傾斜組成接合層を有するこ
とを特徴とする請求項1に記載の半導体レーザ。2. The composition of zinc and sulfur is kept constant between the first bonding layer and the second bonding layer, and the remaining composition is cadmium and the second composition at a portion in contact with the first bonding layer.
2. The semiconductor laser according to claim 1, further comprising a graded composition junction layer in which the composition of cadmium and mercury is gradually changed so that the portion in contact with the junction layer becomes mercury.
以下の層厚の硫化水銀層を有することを特徴とする請求
項1に記載の半導体レーザ。3. A gap between the second bonding layer and the electrode is 10 nm.
The semiconductor laser according to claim 1, further comprising a mercury sulfide layer having the following layer thickness.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20052092A JPH0621572A (en) | 1992-07-02 | 1992-07-02 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20052092A JPH0621572A (en) | 1992-07-02 | 1992-07-02 | Semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0621572A true JPH0621572A (en) | 1994-01-28 |
Family
ID=16425681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20052092A Withdrawn JPH0621572A (en) | 1992-07-02 | 1992-07-02 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0621572A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5432810A (en) * | 1993-06-18 | 1995-07-11 | Sony Corporation | Semiconductor layer having first and second cladding layers and an active layer formed of a II-VI group compound and a current confinement layer comprising a metal oxide |
JP2010251804A (en) * | 2001-12-21 | 2010-11-04 | Xerox Corp | Structure of semiconductor laser |
-
1992
- 1992-07-02 JP JP20052092A patent/JPH0621572A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5432810A (en) * | 1993-06-18 | 1995-07-11 | Sony Corporation | Semiconductor layer having first and second cladding layers and an active layer formed of a II-VI group compound and a current confinement layer comprising a metal oxide |
JP2010251804A (en) * | 2001-12-21 | 2010-11-04 | Xerox Corp | Structure of semiconductor laser |
JP2014207476A (en) * | 2001-12-21 | 2014-10-30 | ゼロックス コーポレイションXerox Corporation | Semiconductor laser structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5821555A (en) | Semicoductor device having a hetero interface with a lowered barrier | |
US5294833A (en) | Integrated heterostructure of Group II-VI semiconductor materials including epitaxial ohmic contact and method of fabricating same | |
JP3243768B2 (en) | Semiconductor light emitting device | |
JP3270476B2 (en) | Ohmic contacts, II-VI compound semiconductor devices, and methods of manufacturing these devices | |
JP2890390B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JPH09293936A (en) | Semiconductor device | |
JPH09139523A (en) | Multilayer structure semiconductor device | |
JPH06237039A (en) | Semiconductor laser | |
JPH07231142A (en) | Semiconductor light emitting element | |
JPH07202340A (en) | Visible-light semiconductor laser | |
JP2586349B2 (en) | Semiconductor light emitting device | |
JP2007042771A (en) | P-type wide gap semiconductor | |
US5091758A (en) | Semiconductor light-emitting devices | |
JPH06350204A (en) | Semiconductor light emitting device | |
US6005263A (en) | Light emitter with lowered heterojunction interface barrier | |
JPH0621572A (en) | Semiconductor laser | |
JPH11220172A (en) | Gallium nitride compound semiconductor light-emitting element | |
JPH065920A (en) | Light emitting element | |
JPH07235723A (en) | Semiconductor laser element | |
JP3315378B2 (en) | Semiconductor laser device | |
JPH0410669A (en) | Semiconductor device | |
JPH0864908A (en) | Semiconductor device | |
JP3302790B2 (en) | Semiconductor light emitting device | |
JP3445433B2 (en) | Semiconductor device | |
JP3373706B2 (en) | Multilayer semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991005 |