JPH06283478A - Method of etching semiconductor crystal - Google Patents

Method of etching semiconductor crystal

Info

Publication number
JPH06283478A
JPH06283478A JP7140093A JP7140093A JPH06283478A JP H06283478 A JPH06283478 A JP H06283478A JP 7140093 A JP7140093 A JP 7140093A JP 7140093 A JP7140093 A JP 7140093A JP H06283478 A JPH06283478 A JP H06283478A
Authority
JP
Japan
Prior art keywords
etching
gas
dmzn
crystal
semiconductor crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7140093A
Other languages
Japanese (ja)
Inventor
Yoshitake Katou
芳健 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7140093A priority Critical patent/JPH06283478A/en
Publication of JPH06283478A publication Critical patent/JPH06283478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To make an etching surface a mirror surface without using corrosive gas, and have excellent controllability of an etching speed, and further use a prior art MOCVD, MBE device as it is, when etching a semiconductor crystal. CONSTITUTION:An organic metal gas is used as etching gas. Dimethyl zinc (DMZn) received within a bubbler 1a is bubbled with H2 and flows at 50mumol/ min within a reaction tube 11. All carrier flux is set at 5000sccm. A GaAs substrate 12 is etched at 0.11mum for 20min, and an etching speed is 5.6nm/min with excellent controllability. An etching surface is a mirror surface with no damages. It is presumed that this is because DMZn is resolved on the GaAs substrate to obtain methylradical CH3*, which reacts to Ga or As on the uppermost crystal surface to evaporate as Ga(CH3)n or As(CH3)n. Also, the organic metal gas is not corrosive.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体結晶のガスエッ
チング方法に関する。
FIELD OF THE INVENTION The present invention relates to a gas etching method for semiconductor crystals.

【0002】[0002]

【従来の技術】半導体結晶のエッチングは、電子デバイ
ス、光デバイスに拘らず、それらの製造過程でほとんど
の場合用いられる工程である。エッチング方法には、大
別すると溶液を用いるウエットエッチングと、ガスもし
くは、イオン化したガスやラジカルガスなどを用いるド
ライエッチングがある。ところで、近年の半導体素子の
製造工程は非常に複雑であり、エッチングによる加工と
結晶成長が順次取り入れられている。特に、近年の極微
細半導体素子では、均一性、極微細加工精度や制御性の
観点からドライエッチングが主流となっており、結晶成
長も同様な観点から気相成長や分子線エピタキシーとい
った結晶成長手法が多く用いられている。
2. Description of the Related Art Etching of semiconductor crystals is a process which is used in most cases in the manufacturing process of electronic devices and optical devices regardless of whether they are electronic devices or optical devices. The etching methods are roughly classified into wet etching using a solution and dry etching using a gas or an ionized gas or a radical gas. By the way, the manufacturing process of a semiconductor device in recent years is very complicated, and processing by etching and crystal growth are sequentially introduced. In particular, in recent ultrafine semiconductor devices, dry etching has become the mainstream from the viewpoints of uniformity, ultrafine processing accuracy, and controllability, and crystal growth methods such as vapor phase growth and molecular beam epitaxy are also used from the same viewpoint. Is often used.

【0003】エッチングを行った後、再度結晶成長を行
うような工程を考えた場合、結晶成長を開始する直前に
は半導体表面がまったく汚染されていないことが重要で
ある。例えば、半導体結晶を一旦空気中にさらした場合
には、大気中に浮遊する様々な不純物や有機物などが結
晶表面に付着し、再成長界面に不純物が蓄積されたり結
晶欠陥が導入されたりする。
Considering the step of performing crystal growth again after etching, it is important that the semiconductor surface is not contaminated at all immediately before the start of crystal growth. For example, when a semiconductor crystal is once exposed to the air, various impurities and organic substances floating in the air adhere to the crystal surface, and impurities are accumulated at the regrowth interface or crystal defects are introduced.

【0004】これを避けるには、成長装置内でエッチン
グと結晶成長を行うことが可能な手法を用いるか、もし
くは大気に暴露しないようなローディングチャンバによ
ってエッチング装置と成長装置を結合させる手法を用い
ることが考えられる。
To avoid this, a method capable of performing etching and crystal growth in the growth apparatus is used, or a method in which the etching apparatus and the growth apparatus are coupled by a loading chamber that is not exposed to the atmosphere. Can be considered.

【0005】従来の成長装置内でエッチングと結晶成長
を行うことが可能な手法としては、アプライド・フィジ
ックス・レターズ(Appl.Phys.Lett.)
1991年 第59巻 2019頁〜2021頁に詳述
されている。従来のエッチング方法とは、有機金属気相
成長装置(MOCVD装置)にInPやGaAsなどの
半導体結晶を設置し、高周波加熱による局所加熱によっ
て基板を加熱する。その後、装置内にHCIを導入し、
結晶をエッチングしていた。
As a method capable of performing etching and crystal growth in a conventional growth apparatus, there is Applied Physics Letters (Appl. Phys. Lett.).
1991, 59, pp. 2021-201. In the conventional etching method, a semiconductor crystal such as InP or GaAs is installed in a metal organic chemical vapor deposition apparatus (MOCVD apparatus), and the substrate is heated by local heating by high frequency heating. After that, HCI was introduced into the device,
The crystals were etching.

【0006】[0006]

【発明が解決しようとする課題】従来のエッチング方法
には、HCIに代表されるような非常に反応性、腐食性
が高いガスが用いられてきた。このようなガスを用いた
場合には、用いる装置自身が腐食されるという大きな問
題が生じていた。特に、分子線エピタキシー装置(MB
E装置)のような超高真空を必要とするような装置にお
いては、HCIガスがチャンバー内面をエッチングする
ことによる真空汚染が問題であり、さらにターボ分子ポ
ンプやクライオポンプなどの真空排気装置が故障するな
どの問題が生じた。また、HCIなどの腐食性ガスを用
いるエッチング方法では、InPなどのような特にHC
Iに対しエッチングされやすい材料は、鏡面性を保持し
ながらエッチングすることが非常に難しく、結晶表面近
傍に結晶欠陥などのダメージが導入されやすいという欠
点があった。更に、このような材料に対してはエッチン
グ速度の制御性がないなどの問題があった。
In the conventional etching method, a gas such as HCI having a very high reactivity and a high corrosiveness has been used. When such a gas is used, there is a big problem that the apparatus used is corroded. In particular, molecular beam epitaxy equipment (MB
In a device that requires an ultra-high vacuum, such as the E device), there is a problem of vacuum contamination due to etching of the inner surface of the chamber by HCI gas, and the vacuum exhaust device such as a turbo molecular pump or a cryopump fails. There was a problem such as doing. In addition, in an etching method using a corrosive gas such as HCI, especially an HC such as InP is used.
A material that is easily etched with respect to I has a drawback that it is very difficult to etch it while maintaining its specularity, and damage such as crystal defects is likely to be introduced near the crystal surface. Furthermore, there is a problem with such materials that the etching rate is not controllable.

【0007】他方、大気に暴露しないようなローディン
グチャンバによってエッチング装置と成長装置を結合さ
せる手法においては、結合された装置自身が大変大掛か
りであり、かつこの装置を設置するためのフロアも大き
な面積が必要であるなどコスト面で大きな問題があっ
た。
On the other hand, in the method of connecting the etching apparatus and the growth apparatus by a loading chamber that is not exposed to the atmosphere, the combined apparatus itself is very large, and the floor for installing this apparatus has a large area. There was a big problem in terms of cost such as being necessary.

【0008】本発明の目的は、従来一般に用いられてい
るMOCVD装置やMBE装置を改造することなく用い
ることが可能で、腐食性がないために装置自身を腐食す
ることがなく、さらにエッチング面の鏡面性に優れ、エ
ッチング速度の制御性も極めて高いエッチング方法を提
供することにある。
The object of the present invention is that it is possible to use the MOCVD equipment or MBE equipment which has been generally used in the past without modification, and since it is not corrosive, it does not corrode the equipment itself. An object of the present invention is to provide an etching method which has excellent mirror surface properties and extremely high controllability of etching rate.

【0009】[0009]

【課題を解決するための手段】本発明は、以上の目的を
達成するために、半導体のエッチングガスとして、有機
金属ガスを用いることを特徴とするものである。
In order to achieve the above object, the present invention is characterized in that an organic metal gas is used as a semiconductor etching gas.

【0010】[0010]

【作用】有機金属ガスは、MOCVDやMBEで利用さ
れており、腐食性がないことが分かっている。従って、
装置を損傷する問題はない。また、有機金属ガスはそれ
自身、半導体結晶と強い反応性があるわけではない。
FUNCTION The organometallic gas is used in MOCVD and MBE, and it is known that it is not corrosive. Therefore,
There is no problem of damaging the device. Further, the organometallic gas itself does not have strong reactivity with the semiconductor crystal.

【0011】本発明の手法によるエッチング機構は、明
確に分かっているわけではない。しかし、有機金属ガス
としてジメチル亜鉛(DMZn;Zn(CH3 2 )を
用い、半導体結晶としてGaAsを用いた本発明者らの
実験からの推測では、GaAs基板上でDMZnが分解
し、分解によって生じたメチルラジカルCH3 * が結晶
最表面のGaやAsと反応し、(Ga(CH3 n やA
s(CH3 n となって蒸発するものと考えられる。得
られたエッチング面は鏡面であるが、これはメチルラジ
カルの反応が最表面の原子との反応によっていると考え
られる。同様の理由で、ダメージ層の導入はない。
The etching mechanism according to the method of the present invention is not clearly known. However, dimethylzinc (DMZn; Zn (CH 3 ) 2 ) is used as the organometallic gas, and GaAs is used as the semiconductor crystal. It is inferred from the experiments by the present inventors that DMZn is decomposed on the GaAs substrate and The generated methyl radical CH 3 * reacts with Ga or As on the outermost surface of the crystal to produce (Ga (CH 3 ) n or A
It is considered that it becomes s (CH 3 ) n and evaporates. Although the obtained etched surface is a mirror surface, it is considered that the reaction of the methyl radical is due to the reaction with the atom on the outermost surface. For the same reason, no damage layer is introduced.

【0012】また、InPのようなHCIと反応性が高
い材料においても、まったく同様なエッチング機構によ
るエッチングが生じ、エッチングの制御性も高い。
Further, even in a material having a high reactivity with HCI such as InP, etching by a completely similar etching mechanism occurs and the controllability of etching is high.

【0013】ところで、有機金属ガスを構成する有機化
学基にはメチル基(CH3 −),エチル基(C2
5 −),ターシャルブチル基(t−C3 7 −),nブ
チル基(n−C3 7 −),その他多くのものがある。
エッチングがスムースに進行するには、半導体結晶のエ
ッチング過程で生じる、例えば前述の例ではGa(CH
3n やAs(CH3 n が結晶に再付着しない方がよ
り良い。この観点から、メチル基を有する有機金属は、
他の化学基を有するものに比べ一般的に熱的に安定であ
ることから、エッチング生成物の再付着が少ないといえ
る。もちろん、有機金属ガスを構成する金属が亜鉛の
他、硫黄、セレン、など他の元素でも良いことから、使
用条件によりエチル基、その他の化学基でも良い。
By the way, the organic chemical groups constituting the organometallic gas include methyl group (CH 3 —) and ethyl group (C 2 H).
5 -), tertiary butyl group (t-C 3 H 7 - ), n -butyl group (n-C 3 H 7 - ), there are many others.
In order for the etching to proceed smoothly, it occurs during the etching process of the semiconductor crystal.
It is better that 3 ) n and As (CH 3 ) n do not redeposit on the crystal. From this viewpoint, the organic metal having a methyl group is
Since it is generally more thermally stable than those having other chemical groups, it can be said that the redeposition of etching products is less. Of course, the metal constituting the organic metal gas may be other elements such as sulfur and selenium in addition to zinc, and thus may be an ethyl group or another chemical group depending on the use conditions.

【0014】[0014]

【実施例】(実施例1)以下、本発明の一実施例を図面
を用いて説明する。図1は本実施例を説明するために用
いたMOCVD装置の概略図である。用いた成長装置
は、反応管11内に設置されたGaAs基板12を高周
波コイル13の誘導加熱によって加熱するようになって
いる。また、反応管11には、H2 をキャリアガスとし
てAsH3やPH3 、および複数の有機金属がH2 のバ
ブリングによって供給されるようになっている。本実施
例では有機金属としてジメチル亜鉛(DMZn)を、半
導体結晶として半絶縁性アンドープGaAs基板を用い
た場合について説明する。また、エッチング深さが測定
できるように、20μm幅で300μmピッチのSiO
2 選択マスクが形成されたGaAs基板も同時に準備し
た。エッチングの手順は以下のようである。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of an MOCVD apparatus used for explaining this embodiment. The growth apparatus used is adapted to heat the GaAs substrate 12 installed in the reaction tube 11 by induction heating of the high frequency coil 13. Further, the reaction tube 11, AsH 3 and PH 3 and H 2 as a carrier gas, and a plurality of organometallic are supplied by bubbling H 2. In this embodiment, a case where dimethylzinc (DMZn) is used as an organic metal and a semi-insulating undoped GaAs substrate is used as a semiconductor crystal will be described. Further, in order to measure the etching depth, SiO of 20 μm width and 300 μm pitch
A GaAs substrate on which two selective masks were formed was also prepared at the same time. The etching procedure is as follows.

【0015】反応管内の圧力を76Torrに設定した
後、AsH3 を反応管11に供給しながら基板12を5
80℃まで昇温し、基板の表面クリーニングを10分間
行なった。バブラーlaに納められたジメチル亜鉛(D
MZn)をH2 でバブリングし、基板温度を450℃に
設定した。AsH3 の供給を停止した後、DMZnを反
応管11に供給した。この時のDMZnの流量は50μ
mol/minであり、全キャリア流量は5000sc
cmとした。エッチング時間を5分、10分、20分の
場合でそれぞれエッチング実験を行なった。その結果、
エッチング表面は全ての試料で鏡面であること、エッチ
ング深さは時間に比例することが確認できた。また、こ
の条件でのエッチング速度は、5.6nm/minであ
った。
After the pressure inside the reaction tube is set to 76 Torr, AsH 3 is supplied to the reaction tube 11 and the substrate 12 is heated to 5%.
The temperature was raised to 80 ° C., and the surface of the substrate was cleaned for 10 minutes. Dimethyl zinc contained in bubbler la (D
MZn) was bubbled with H 2 and the substrate temperature was set to 450 ° C. After stopping the supply of AsH 3 , DMZn was supplied to the reaction tube 11. The flow rate of DMZn at this time is 50μ.
mol / min, total carrier flow rate is 5000 sc
cm. An etching experiment was performed when the etching time was 5 minutes, 10 minutes, and 20 minutes, respectively. as a result,
It was confirmed that the etching surface was a mirror surface for all the samples and the etching depth was proportional to the time. The etching rate under this condition was 5.6 nm / min.

【0016】有機金属としてDMZnを用いたため、Z
nによるGaAs基板の汚染が心配される。これを調べ
るため、20分エッチングした基板(エッチング量;
0.11μm)に対し、電気的、光学的測定を行なっ
た。電気的測定では、エッチング面に金属針をたててそ
の電流−電圧測定を行なった。その結果、500V印加
時においてもまったく電流は流れず(電流検出下限界1
nA)、Znによるp型GaAs層の形成はまったくな
いことが分かった。また、4.2Kにおけるフォトルミ
ネッセンス測定の結果からも、エッチングなしの基板と
比較してもフォトルミ強度、スペクトルとも完全に一致
した。このスペクトルの一致からZnの汚染はないこ
と、強度の一致からダメージが導入されていないことが
確認できた。
Since DMZn was used as the organic metal, Z
There is concern about contamination of the GaAs substrate by n. To investigate this, the substrate etched for 20 minutes (etching amount;
0.11 μm), electrical and optical measurements were performed. In the electrical measurement, a metal needle was set on the etched surface to measure the current-voltage. As a result, no current flows even when 500 V is applied (current detection lower limit 1
It was found that no p-type GaAs layer was formed by nA) and Zn. Further, from the result of the photoluminescence measurement at 4.2K, the photoluminescence intensity and the spectrum were completely in agreement even when compared with the substrate without etching. From the agreement of the spectra, it was confirmed that there was no Zn contamination, and from the agreement of the intensities, no damage was introduced.

【0017】(実施例2)有機金属ガスとしてDMZn
を用い、半導体結晶として半絶縁性FeドープInP基
板を用いた場合について説明する。使用した成長装置
は、実施例1と同一である。
(Example 2) DMZn as an organometallic gas
And a case of using a semi-insulating Fe-doped InP substrate as a semiconductor crystal will be described. The growth apparatus used is the same as in Example 1.

【0018】反応管内の圧力を76Torrに設定した
後、PH3 を反応管11に供給しながら基板12を50
0℃まで昇温し、基板の表面クリーニングを10分間行
なった。バブラー1aに納められたジメチル亜鉛(DM
Zn)をH2 でバブリングし、基板温度を380℃に設
定した。PH3 の供給を停止した後、DMZnを反応管
11に供給した。この時のDMZnの流量は100μm
ol/minであり、全キャリア流量は5000scc
mとした。エッチングを20分行なった後、DMZnの
供給を停止し、再度PH3 を供給した後、基板温度を6
00℃に設定した。バブラー1bに納められたトリメチ
ルインジウム(TMIn)をH2 でバブリングし、反応
管11に供給した.この時のTMInおよびPH3 の流
量はそれぞれ20μmol/min、および6mmol
/minであった。InPの成長は1時間行なった。こ
の試料におけるエッチング量は、この条件でのエッチン
グ速度から40nmと推定できる。
After the pressure inside the reaction tube is set to 76 Torr, the substrate 12 is heated to 50 while supplying PH 3 to the reaction tube 11.
The temperature was raised to 0 ° C., and the surface of the substrate was cleaned for 10 minutes. Dimethyl zinc contained in bubbler 1a (DM
Zn) was bubbled with H 2 and the substrate temperature was set to 380 ° C. After stopping the supply of PH 3 , DMZn was supplied to the reaction tube 11. The flow rate of DMZn at this time is 100 μm
ol / min, total carrier flow rate is 5000 scc
m. After etching for 20 minutes, the supply of DMZn was stopped, PH 3 was supplied again, and then the substrate temperature was adjusted to 6
It was set to 00 ° C. Trimethylindium (TMIn) contained in the bubbler 1b was bubbled with H 2 and supplied to the reaction tube 11. The flow rates of TMIn and PH 3 at this time are 20 μmol / min and 6 mmol, respectively.
It was / min. InP was grown for 1 hour. The etching amount in this sample can be estimated to be 40 nm from the etching rate under this condition.

【0019】得られた試料は鏡面であり、HBrとH3
PO4 の混合液によるエッチピット密度も初期の基板と
同一であり、転位の増殖はみられなかった。また、深さ
方向の二次イオン質量分析測定(SIMS測定)を行な
った結果、再成長界面にはZn,C,Oなどの不純物は
いっさい検出されず、良好な界面であることが確認でき
た。
The obtained sample was a mirror surface, and had HBr and H 3
The etch pit density with the mixed solution of PO 4 was also the same as that of the initial substrate, and dislocation growth was not observed. Further, as a result of secondary ion mass spectrometry measurement (SIMS measurement) in the depth direction, no impurities such as Zn, C, and O were detected at the regrowth interface, and it was confirmed that the interface was good. .

【0020】本実施例では、有機金属ガスとしてジメチ
ル亜鉛を用いたが、本発明はこれに限定されずジエチル
亜鉛、ジメチルイオウなど他の有機金属でもよい。
In the present embodiment, dimethylzinc was used as the organic metal gas, but the present invention is not limited to this and other organic metals such as diethylzinc and dimethylsulfur may be used.

【0021】本実施例では、半導体結晶としてGaA
s、InPを用いたが、本発明はこれに限定されず他の
III−V族化合物半導体、あるいはII−VI族化合
物半導体やSiなどでもよい。
In this embodiment, GaA is used as the semiconductor crystal.
Although s and InP are used, the present invention is not limited to this, and other III-V group compound semiconductors, II-VI group compound semiconductors, Si or the like may be used.

【0022】本実施例では、成長装置として,有機金属
気相成長装置を用いたが、本発明はこれに限定されず、
分子線エピタキシー装置などにも適応可能なのは明らか
である。
In this embodiment, an organometallic vapor phase epitaxy apparatus was used as the growth apparatus, but the present invention is not limited to this.
Obviously, it can be applied to a molecular beam epitaxy apparatus and the like.

【0023】[0023]

【発明の効果】従来一般に用いられているMOCVD装
置やMBE装置を改造することなく用いることが可能な
ので非常に経済的である。使用する原料には腐食性がな
いために装置自身を腐食することがなく、装置の故障や
修理を特に考える必要がない。使用する原料の反応性は
HCI等に比べ非常に低いためにエッチング面の鏡面性
に優れ、エッチング速度の制御性も極めて高い。本手法
は非常に簡便であるため、工業的に広く用いることがで
きる。
The MOCVD apparatus and MBE apparatus which have been generally used in the past can be used without modification, which is very economical. Since the raw material used is not corrosive, it does not corrode the device itself, and it is not necessary to consider failure or repair of the device. Since the reactivity of the raw material used is much lower than that of HCI and the like, the etching surface is excellent in specularity and the controllability of the etching rate is also very high. Since this method is very simple, it can be widely used industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法に用いられる成長装置の一例の概
略構成図である。
FIG. 1 is a schematic configuration diagram of an example of a growth apparatus used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1a〜1c バブラー 11 反応管 12 基板 13 高周波コイル 1a-1c Bubbler 11 Reaction tube 12 Substrate 13 High frequency coil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体のエッチングガスとして、有機金
属ガスを用いることを特徴とする半導体結晶のエッチン
グ方法。
1. A method for etching a semiconductor crystal, wherein an organometallic gas is used as a semiconductor etching gas.
【請求項2】 有機金属ガスを構成する化学基の中に、
少なくともメチル基が含まれていることを特徴とする請
求項1記載の半導体結晶のエッチング方法。
2. Among the chemical groups constituting the organometallic gas,
2. The method for etching a semiconductor crystal according to claim 1, wherein the etching method includes at least a methyl group.
JP7140093A 1993-03-30 1993-03-30 Method of etching semiconductor crystal Pending JPH06283478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7140093A JPH06283478A (en) 1993-03-30 1993-03-30 Method of etching semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7140093A JPH06283478A (en) 1993-03-30 1993-03-30 Method of etching semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH06283478A true JPH06283478A (en) 1994-10-07

Family

ID=13459435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7140093A Pending JPH06283478A (en) 1993-03-30 1993-03-30 Method of etching semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH06283478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507884A (en) * 1993-10-21 1996-04-16 Henkel Corporation Process for forming a sparingly soluble chromate coating on zinciferous metal coated steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04311079A (en) * 1991-04-09 1992-11-02 Seiko Epson Corp Manufacture of surface-emissioin semiconductor laser
JPH04352328A (en) * 1991-05-29 1992-12-07 Seiko Epson Corp Method of gas-etching semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04311079A (en) * 1991-04-09 1992-11-02 Seiko Epson Corp Manufacture of surface-emissioin semiconductor laser
JPH04352328A (en) * 1991-05-29 1992-12-07 Seiko Epson Corp Method of gas-etching semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507884A (en) * 1993-10-21 1996-04-16 Henkel Corporation Process for forming a sparingly soluble chromate coating on zinciferous metal coated steel

Similar Documents

Publication Publication Date Title
US8338273B2 (en) Pulsed selective area lateral epitaxy for growth of III-nitride materials over non-polar and semi-polar substrates
EP0380815B1 (en) Integration of GaAs on Si substrate
US20070141814A1 (en) Process for producing a free-standing iii-n layer, and free-standing iii-n substrate
KR100569796B1 (en) Recovery of surface-ready silicon carbide substrates
JP3764792B2 (en) Nitride semiconductor etching method
US5869398A (en) Etching of indium phosphide materials for microelectronics fabrication
JPH06283478A (en) Method of etching semiconductor crystal
US20220356602A1 (en) In-situ and selective area etching of surfaces or layers, and high-speed growth of gallium nitride, by organometallic chlorine precursors
JP2006240895A (en) Method for producing aluminum-based nitride crystal and laminated substrate
Pearton HYDROGEN IN CRYSTALLINE SEMICONDUCTORS: PART II–III–V COMPOUNDS
JP2528912B2 (en) Semiconductor growth equipment
US20230407468A1 (en) Defect free germanium oxide gap fill
JP2656029B2 (en) Crystal growth equipment
JP2661977B2 (en) Identification of trace impurities in semiconductor crystals.
JP2865130B2 (en) Semiconductor substrate etching method and semiconductor thin film manufacturing method
KR0141417B1 (en) Method of dry dtching for semiconductor compound the periodic table iii-v
JP3077876B2 (en) Surface treatment method for III-V compound semiconductor
Li et al. Correlation of surface morphology and optical properties of GaN by conventional and selective-area MOCVD
JPH08325100A (en) Pretreatment of compound semiconductor substrate
JPS5965434A (en) Vapor phase etching of compound semiconductor
JP2729866B2 (en) Compound semiconductor epitaxial growth method
JPH07254565A (en) Compound semiconductor epitaxial growth method, its growth equipment and formation of compound semiconductor device
JP3353876B2 (en) Method and apparatus for vapor-phase growth of compound semiconductor thin film
Sahafi A study of reactive ion etching of gallium arsenide in mixtures of methane and hydrogen plasmas
JPH0243720A (en) Molecular beam epitaxial growth method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19951003