JPH04311079A - Manufacture of surface-emissioin semiconductor laser - Google Patents

Manufacture of surface-emissioin semiconductor laser

Info

Publication number
JPH04311079A
JPH04311079A JP7641091A JP7641091A JPH04311079A JP H04311079 A JPH04311079 A JP H04311079A JP 7641091 A JP7641091 A JP 7641091A JP 7641091 A JP7641091 A JP 7641091A JP H04311079 A JPH04311079 A JP H04311079A
Authority
JP
Japan
Prior art keywords
etching
type
layer
semiconductor laser
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7641091A
Other languages
Japanese (ja)
Other versions
JP2993167B2 (en
Inventor
Takashi Takamura
高村 孝士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3076410A priority Critical patent/JP2993167B2/en
Publication of JPH04311079A publication Critical patent/JPH04311079A/en
Application granted granted Critical
Publication of JP2993167B2 publication Critical patent/JP2993167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent the occurrence of a surface level so as to easily obtain a surface-emission semiconductor laser good enough in characteristics by a method wherein an active layer is etched with zinc compound-containing etching gas, and an etching mask is formed of insulator or metal. CONSTITUTION:An N-type GaAs buffer layer 103, a distributed reflection type multilayered film mirror 104, an N-type clad layer 105, a P-type GaAs active layer 106, a P-type clad layer 107, and a P-type contact layer 108 are epitaxially grown in succession on an N-type GaAs substrate 102. An SiO2 layer is formed on the surface through a hot CVD method, which is formed into a cylindrical SiO2 112 through photo-patterning. A cylindrical light emitting part is formed through etching. At this point, the etching gas contains dimethylzinc or diethylzinc or organic zinc compound, and the etching mask is formed of photoresist, silicon oxide, silicon nitride, molybdenum, or nickel.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、基板の垂直方向にレー
ザ光を発振する面発光半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor laser that emits laser light in a direction perpendicular to a substrate.

【0002】0002

【従来の技術】従来、面発光半導体レーザの製造方法は
次のような方法が知られていた。
2. Description of the Related Art Conventionally, the following methods have been known for manufacturing surface-emitting semiconductor lasers.

【0003】まずn型GaAs基板にn型AlGaAs
/AlAs多層反射膜、n型AlGaAsクラッド層、
p型GaAs活性層、p型AlGaAsクラッド層、p
型AlGaAsキャップ層をエピタキシャル成長する。
First, n-type AlGaAs was applied to an n-type GaAs substrate.
/AlAs multilayer reflective film, n-type AlGaAs cladding layer,
p-type GaAs active layer, p-type AlGaAs cladding layer, p-type GaAs active layer, p-type AlGaAs cladding layer,
Epitaxially grow a type AlGaAs cap layer.

【0004】次に、フォトレジストを用い半径5μm程
度の円形パターンを作製する。
Next, a circular pattern with a radius of about 5 μm is formed using photoresist.

【0005】そして反応性イオンビームエッチング法(
以下RIBE法と略称する)n型GaAs基板に達する
までエッチングした後、半絶縁性ZnSSeで埋め込む
[0005] And reactive ion beam etching method (
After etching is performed until the n-type GaAs substrate (hereinafter abbreviated as RIBE method) is reached, it is filled with semi-insulating ZnSSe.

【0006】その後、いくつかの工程を通して面発光半
導体レーザを製造する方法である。
[0006] This is a method for manufacturing a surface emitting semiconductor laser through several steps.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
このような製造方法ではエッチング後に埋め込むZnS
Se層と活性層のGaAsとの界面に多数の界面準位が
発生してしまい、デバイスとして十分なものを得ること
がきわめて困難であった。
[Problems to be Solved by the Invention] However, in this conventional manufacturing method, ZnS is buried after etching.
A large number of interface states are generated at the interface between the Se layer and the GaAs active layer, making it extremely difficult to obtain a sufficient device.

【0008】そこで、本発明は従来のこの様な問題点を
解決し、界面準位の発生を防ぎ、容易に十分な特性を持
つデバイスを得ることを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve these conventional problems, prevent the generation of interface states, and easily obtain a device with sufficient characteristics.

【0009】[0009]

【課題を解決するための手段】以上のような問題点を解
決するため、本発明の面発光半導体レーザの製造方法は
次に示す特徴を有する。
Means for Solving the Problems In order to solve the above-mentioned problems, the method for manufacturing a surface emitting semiconductor laser of the present invention has the following features.

【0010】半導体もしくは誘電体から成る基板上に該
基板の主面に対して垂直な方向にIII−V族化合物半
導体から成る基板側リフレクタと、III−V族化合物
半導体からなり一部分もしくは全体がエッチングマスク
を用いたガスエッチングにより柱状に加工をなされた活
性層と、半導体もしくは誘電体もしくは金属からなる表
面側リフレクタとを有する共振器を持つ面発光半導体レ
ーザの製造方法において、該活性層のガスエッチング時
にジメチル亜鉛またはジエチル亜鉛または有機亜鉛化合
物を含むエッチングガスを用い、かつ該エッチングマス
クの材質に、フォトレジスト、シリコン酸化物、シリコ
ン窒化物などの絶縁物またはモリブデン、ニッケルなど
の金属を用いたこと。
A substrate-side reflector made of a III-V compound semiconductor is formed on a substrate made of a semiconductor or a dielectric in a direction perpendicular to the main surface of the substrate, and a part or the whole of the reflector made of a III-V compound semiconductor is etched. In a method for manufacturing a surface emitting semiconductor laser having a resonator having an active layer processed into a columnar shape by gas etching using a mask and a surface side reflector made of a semiconductor, dielectric, or metal, gas etching of the active layer is performed. Sometimes an etching gas containing dimethylzinc, diethylzinc, or an organic zinc compound is used, and the material of the etching mask is an insulator such as photoresist, silicon oxide, or silicon nitride, or a metal such as molybdenum or nickel. .

【0011】[0011]

【実施例】次に、本発明の実施例を図面を用いて説明す
る。
Embodiments Next, embodiments of the present invention will be described with reference to the drawings.

【0012】本発明の実施例としてエッチングガスにジ
メチル亜鉛を用いた製造方法について述べる。
As an example of the present invention, a manufacturing method using dimethylzinc as the etching gas will be described.

【0013】図1は本発明の面発光半導体レーザの製造
方法を用いた場合の製造工程を説明するための製造工程
断面図である。
FIG. 1 is a cross-sectional view of the manufacturing process for explaining the manufacturing process using the method of manufacturing a surface emitting semiconductor laser of the present invention.

【0014】また、図2は本発明の、面発光半導体レー
ザの製造方法により作製された面発光半導体レーザ発光
部の断面を示す斜視図である。
FIG. 2 is a perspective view showing a cross section of a surface emitting semiconductor laser light emitting section manufactured by the method of manufacturing a surface emitting semiconductor laser according to the present invention.

【0015】次に、製造工程について説明する。Next, the manufacturing process will be explained.

【0016】(102)n型GaAs基板に、(103
)n型GaAsバッファ層、n型AlAs層とn型Al
0.1 Ga0.9 As層からなり波長870nm付
近の光に対し98%以上の反射率を持つ30ペアの(1
04)分布反射型多層膜ミラー、(105)n型Al0
.1 Ga0.9 Asクラッド層、(106)p型G
aAs活性層、(107)p型Al0.4 Ga0.6
 Asクラッド層、(108)p型Al0.1 Ga0
.9 Asコンタクト層を順次有機金属気相成長法(以
下OMVPE法と呼ぶ)でエピタキシャル成長する(図
1(a))。この時の成長温度は700℃、成長圧力は
150Torrで、III族原料にTMG(トリメチル
ガリウム)、TMA(トリメチルアルミニウム)、V族
原料にAsH3 (アルシン)、n型ドーパントにH2
 Se(セレン化水素)、p型ドーパントにDEZn(
ジエチルジンク)を用いた。
(102) n-type GaAs substrate, (103
) n-type GaAs buffer layer, n-type AlAs layer and n-type Al
0.1 Ga0.9 As layer, 30 pairs (1
04) Distributed reflection multilayer mirror, (105) n-type Al0
.. 1 Ga0.9 As cladding layer, (106) p-type G
aAs active layer, (107) p-type Al0.4 Ga0.6
As cladding layer, (108) p-type Al0.1 Ga0
.. A 9 As contact layer is sequentially grown epitaxially by metal organic vapor phase epitaxy (hereinafter referred to as OMVPE) (FIG. 1(a)). The growth temperature at this time was 700°C, the growth pressure was 150 Torr, TMG (trimethyl gallium) and TMA (trimethyl aluminum) as group III raw materials, AsH3 (arsine) as group V raw materials, and H2 as n-type dopant.
Se (hydrogen selenide), DEZn (
diethyl zinc) was used.

【0017】成長後、表面に熱CVD法によりSiO2
 層を形成した後、通常のフォトパターニング工程によ
り直径5μmの(112)SiO2 パターンを作成す
る。
After growth, SiO2 is deposited on the surface by thermal CVD method.
After forming the layer, a (112) SiO2 pattern with a diameter of 5 μm is created by a normal photopatterning process.

【0018】次に、円柱状の発光部を、ガスエッチング
法によって作成する。
Next, a cylindrical light emitting section is created by gas etching.

【0019】エッチングの条件は次に示す条件を用いた
The following etching conditions were used.

【0020】ジメチル亜鉛      100μmol
/min 水素              1000SCCM基
板温度          550℃エッチング室圧力
  6000Pa 以上の条件で(102)n型GaAs基板の所までエッ
チングを行なう。
[0020] Dimethylzinc 100μmol
/min Hydrogen 1000 SCCM Substrate temperature 550° C. Etching chamber pressure 6000 Pa Under the above conditions, etching is performed up to the (102) n-type GaAs substrate.

【0021】続いて、OMVPE法で(109)ZnS
0.06Se0.94層を選択埋め込み成長する。
[0021] Next, (109)ZnS was obtained by OMVPE method.
A 0.06Se0.94 layer is selectively buried and grown.

【0022】成長条件は次に示す条件を用いた。The following growth conditions were used.

【0023】ジメチルセレン    140μmol/
min ジメチル硫黄      70  μmol/minジ
メチル亜鉛      100μmol/min水素 
             1    LSM基板温度
          550℃エッチング室圧力  1
×104 Paこの選択埋め込み成長はガスエッチング
を行なったチャンバー内で、かつ外気にさらす事なく行
なった。
[0023] Dimethyl selenium 140 μmol/
min dimethyl sulfur 70 μmol/min dimethyl zinc 100 μmol/min hydrogen
1 LSM substrate temperature 550℃ Etching chamber pressure 1
×10 4 Pa This selective buried growth was performed in a chamber where gas etching was performed without exposing it to the outside air.

【0024】この選択埋め込み成長後、チャンバーから
取り出す。
After this selective implantation growth, it is taken out from the chamber.

【0025】さらに、表面に4ペアのSiO2 /α−
Si(アモルファスシリコン)からなる(111)誘電
体多層膜を電子ビーム蒸着により形成し、ウエットエッ
チングで、発光部の径よりやや小さい領域を残して取り
去る(図1(d))。波長870nmでの誘電体多層膜
の反射率は94%である。
Furthermore, 4 pairs of SiO2/α-
A (111) dielectric multilayer film made of Si (amorphous silicon) is formed by electron beam evaporation and removed by wet etching, leaving a region slightly smaller than the diameter of the light emitting part (FIG. 1(d)). The reflectance of the dielectric multilayer film at a wavelength of 870 nm is 94%.

【0026】しかる後、(111)誘電体多層膜以外の
表面に(110)p型オーミック電極を蒸着し、次に(
101)n型オーミック電極を蒸着しN2雰囲気中で4
20℃でアロイングし面発光半導体レーザを完成する(
図1(e))。
After that, a (110) p-type ohmic electrode is deposited on the surface other than the (111) dielectric multilayer film, and then (
101) N-type ohmic electrode was evaporated and 4
Alloying at 20°C completes the surface emitting semiconductor laser (
Figure 1(e)).

【0027】本実施例の製造方法により作られた面発光
半導体レーザは、従来III−V族化合物半導体とII
−VI族化合物半導体との界面では避けられなかった多
数の界面準位の発生を大幅に抑えることができる。
The surface-emitting semiconductor laser manufactured by the manufacturing method of this example is different from conventional III-V compound semiconductors and II-V compound semiconductors.
-The generation of a large number of interface states that would otherwise be unavoidable at the interface with the Group VI compound semiconductor can be significantly suppressed.

【0028】そのため、界面準位に起因する光学的損失
やキャリアの注入損失が抑えられる。
[0028] Therefore, optical loss and carrier injection loss caused by interface states can be suppressed.

【0029】また、図3は本発明の面発光半導体レーザ
の製造方法により製造された面発光半導体レーザの駆動
電流と発振光出力の関係を示す図である。室温において
連続発振が達成され、しきい値1mAと極めて低い値を
得た。また外部微分量子効率も高く、界面準位に起因す
る光学的損失やキャリアの注入損失の抑制がレーザの特
性向上に貢献している。
Further, FIG. 3 is a diagram showing the relationship between the driving current and the oscillation light output of a surface emitting semiconductor laser manufactured by the method for manufacturing a surface emitting semiconductor laser of the present invention. Continuous oscillation was achieved at room temperature, and an extremely low threshold value of 1 mA was obtained. The external differential quantum efficiency is also high, and suppression of optical loss caused by interface states and carrier injection loss contributes to improved laser characteristics.

【0030】また、界面準位の抑制により信頼性が大幅
に向上したため、温度条件60℃においても十分な信頼
性を確保することができた。
Furthermore, since the reliability was greatly improved by suppressing the interface states, sufficient reliability could be ensured even under the temperature condition of 60°C.

【0031】なお、今までに述べた実施例では活性層に
GaAsを用いている。これはもちろん活性層にAlx
 Ga1−x As(0≦X≦0.4)を用いた場合に
も十分な効果が得られる。
Note that in the embodiments described so far, GaAs is used for the active layer. Of course, this is Alx in the active layer.
Sufficient effects can also be obtained when Ga1-x As (0≦X≦0.4) is used.

【0032】特に、Al混晶比Xが大きいときの界面準
位抑制や界面欠陥抑制には効果的である。
It is particularly effective in suppressing interface states and interface defects when the Al mixed crystal ratio X is large.

【0033】またその他のIII−V族化合物半導体、
特にInGaAsP系など光通信用に用いられる化合物
半導体を用いた場合には面発光半導体レーザの単色性も
有効に作用し高度な光通信技術にも対応するものになる
[0033] Also, other III-V compound semiconductors,
In particular, when a compound semiconductor used for optical communication such as InGaAsP is used, the monochromaticity of the surface emitting semiconductor laser also works effectively, making it compatible with advanced optical communication technology.

【0034】もちろん、他のIII−V族化合物半導体
を用いても有効な結果が得られる。
Of course, effective results can also be obtained using other III-V compound semiconductors.

【0035】また、埋め込み層もZnS0.06Se0
.94混晶やZnS−ZnSe超格子に限らず適当なI
I−VI族化合物半導体例えばZnSeやZnSやCd
Te及びその混晶またはこれらの材料系による超格子を
埋め込み層に選んでも同様の効果が得られる。
[0035] Furthermore, the buried layer is also made of ZnS0.06Se0
.. Suitable I, not limited to 94 mixed crystals and ZnS-ZnSe superlattices.
I-VI group compound semiconductors such as ZnSe, ZnS, and Cd
A similar effect can be obtained by selecting Te, its mixed crystal, or a superlattice made of these materials as the buried layer.

【0036】また、基板もGaAsにこだわる必要はな
く、SiやInP等の半導体基板やサファイア基板のよ
うな誘電体基板でも同様な効果が得られる。
Further, the substrate need not be limited to GaAs; similar effects can be obtained with semiconductor substrates such as Si or InP, or dielectric substrates such as sapphire substrates.

【0037】[0037]

【発明の効果】(1)塩素ガスやテトラフロロカーボン
ガス(CF4 )を用いたガスエッチング方法と違い、
反応性の強いハロゲンラジカルを生成することがない。
[Effects of the invention] (1) Unlike gas etching methods using chlorine gas or tetrafluorocarbon gas (CF4),
Does not generate highly reactive halogen radicals.

【0038】そのため、反応装置内部への異常吸着現象
等による処理プロセスへの悪影響などの問題を引き起こ
す事なく、空気を遮断した状態でガスエッチングとエピ
タキシャル結晶成長とを連続的に行えるため空気、特に
酸素に起因した界面不純物の混入を避けることができる
Therefore, gas etching and epitaxial crystal growth can be performed continuously while air is blocked, without causing problems such as abnormal adsorption phenomena inside the reactor that adversely affect the treatment process. Mixing of interfacial impurities caused by oxygen can be avoided.

【0039】また、反応性イオンビームエッチング(R
IBE)法等と異なり低エネルギーでエッチングが行え
るため、試料に与えるダメージを小さく抑えることがで
きる。
In addition, reactive ion beam etching (R
Unlike the IBE) method, etc., etching can be performed with low energy, so damage to the sample can be kept to a minimum.

【0040】そのためIII−V族化合物半導体とII
−VI族化合物半導体との間の成長界面での界面準位の
発生を抑えることができ、界面準位に起因する光学的損
失を抑えることができる。
Therefore, III-V compound semiconductors and II
- Generation of interface states at the growth interface with the Group VI compound semiconductor can be suppressed, and optical loss caused by the interface states can be suppressed.

【0041】また、界面準位に起因する電子−正孔の無
効再結合をも抑えることができる。
[0041] In addition, invalid recombination of electrons and holes caused by interface states can also be suppressed.

【0042】つまり、面発光半導体レーザに注入された
電流はほとんど損失なく光に変換されることとなるため
高能率特性が得られる。
In other words, the current injected into the surface emitting semiconductor laser is converted into light with almost no loss, resulting in high efficiency characteristics.

【0043】そのため、1mAという低しきい値電流で
かつ高微分量子効率を持つ面発光半導体レーザが容易に
得られる。
Therefore, a surface emitting semiconductor laser having a low threshold current of 1 mA and a high differential quantum efficiency can be easily obtained.

【0044】また、欠陥を起点として生じるダークライ
ンディフェクトの発生を抑えることが可能となり、寿命
特性が向上する。
[0044] Furthermore, it is possible to suppress the occurrence of dark line defects that originate from defects, and the life characteristics are improved.

【0045】特に、活性層にAl0.15Ga0.85
Asを用いた場合では従来のものに比べ10倍以上の寿
命特性を得られる。 (2)処理方法が容易であり、大がかりな製造ラインの
作成や改造を必要とせず、巨額になりがちな半導体製造
ラインの初期投資を抑えることができる。
In particular, the active layer contains Al0.15Ga0.85
When As is used, a life characteristic that is 10 times longer than that of the conventional one can be obtained. (2) The processing method is easy, does not require the creation or modification of a large-scale production line, and the initial investment for a semiconductor production line, which tends to be huge, can be suppressed.

【0046】また、処理方法が容易であるということは
再現性にも優れており、安定した高い歩留まりを得るこ
とができる。 (3)従来のガスエッチングに比べ、基板とマスクとの
選択比をきわめて大きくすることができる。
[0046] Furthermore, the fact that the processing method is easy means that reproducibility is excellent and a stable and high yield can be obtained. (3) Compared to conventional gas etching, the selection ratio between the substrate and the mask can be significantly increased.

【0047】そのため、マスクの厚さに起因するパター
ン誤差をなくすことができ、精密なパターンを作ること
ができる。
Therefore, pattern errors caused by the thickness of the mask can be eliminated, and precise patterns can be created.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の面発光半導体レーザの製造方法を用い
た場合の製造工程を説明するための製造工程断面図。
FIG. 1 is a manufacturing process cross-sectional view for explaining the manufacturing process when using the method for manufacturing a surface emitting semiconductor laser of the present invention.

【図2】本発明の面発光半導体レーザの製造方法により
作製された面発光半導体レーザ発光部の断面を示す斜視
図。
FIG. 2 is a perspective view showing a cross section of a surface emitting semiconductor laser light emitting section manufactured by the surface emitting semiconductor laser manufacturing method of the present invention.

【図3】本発明の面発光半導体レーザの製造方法により
製造された面発光半導体レーザの駆動電流と発振光出力
の関係を示す図。
FIG. 3 is a diagram showing the relationship between driving current and oscillation light output of a surface emitting semiconductor laser manufactured by the method for manufacturing a surface emitting semiconductor laser of the present invention.

【符号の説明】[Explanation of symbols]

(101)n型オーミック電極 (102)n型GaAs基板 (103)n型GaAsバッファ層 (104)分布反射型多層膜ミラー (105)n型Al0.1 Ga0.9 Asクラッド
層(106)p型GaAs活性層 (107)p型Al0.4 Ga0.6 Asクラッド
層(108)p型Al0.1 Ga0.9 Asコンタ
クト層(109)ZnS0.06Se0.94層(11
0)p型オーミック電極 (111)誘電体多層膜 (112)SiO2 パターン
(101) n-type ohmic electrode (102) n-type GaAs substrate (103) n-type GaAs buffer layer (104) distributed reflection multilayer mirror (105) n-type Al0.1 Ga0.9 As cladding layer (106) p-type GaAs active layer (107) p-type Al0.4 Ga0.6 As cladding layer (108) p-type Al0.1 Ga0.9 As contact layer (109) ZnS0.06Se0.94 layer (11
0) P-type ohmic electrode (111) Dielectric multilayer film (112) SiO2 pattern

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体もしくは誘電体から成る基板上に該
基板の主面に対して垂直な方向にIII−V族化合物半
導体から成る基板側リフレクタと、III−V族化合物
半導体からなり一部分もしくは全体がエッチングマスク
を用いたガスエッチングにより柱状に加工をなされた活
性層と、半導体もしくは誘電体もしくは金属からなる表
面側リフレクタとを有する共振器を持つ面発光半導体レ
ーザの製造方法において、該活性層のガスエッチング時
にジメチル亜鉛またはジエチル亜鉛または有機亜鉛化合
物を含むエッチングガスを用い、かつ該エッチングマス
クの材質に、フォトレジスト、シリコン酸化物、シリコ
ン窒化物などの絶縁物またはモリブデン、ニッケルなど
の金属を用いたことを特徴とする面発光半導体レーザの
製造方法。
1. A substrate-side reflector made of a III-V compound semiconductor on a substrate made of a semiconductor or dielectric in a direction perpendicular to the main surface of the substrate, and a part or whole made of a III-V compound semiconductor. In a method for manufacturing a surface-emitting semiconductor laser having a resonator having an active layer processed into a columnar shape by gas etching using an etching mask and a surface-side reflector made of a semiconductor, dielectric, or metal, the active layer is An etching gas containing dimethylzinc, diethylzinc, or an organic zinc compound is used during gas etching, and the material of the etching mask is an insulator such as photoresist, silicon oxide, or silicon nitride, or a metal such as molybdenum or nickel. A method of manufacturing a surface emitting semiconductor laser, characterized in that:
JP3076410A 1991-04-09 1991-04-09 Manufacturing method of surface emitting semiconductor laser Expired - Fee Related JP2993167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3076410A JP2993167B2 (en) 1991-04-09 1991-04-09 Manufacturing method of surface emitting semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3076410A JP2993167B2 (en) 1991-04-09 1991-04-09 Manufacturing method of surface emitting semiconductor laser

Publications (2)

Publication Number Publication Date
JPH04311079A true JPH04311079A (en) 1992-11-02
JP2993167B2 JP2993167B2 (en) 1999-12-20

Family

ID=13604474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3076410A Expired - Fee Related JP2993167B2 (en) 1991-04-09 1991-04-09 Manufacturing method of surface emitting semiconductor laser

Country Status (1)

Country Link
JP (1) JP2993167B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283478A (en) * 1993-03-30 1994-10-07 Nec Corp Method of etching semiconductor crystal
US5805629A (en) * 1995-12-28 1998-09-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283478A (en) * 1993-03-30 1994-10-07 Nec Corp Method of etching semiconductor crystal
US5805629A (en) * 1995-12-28 1998-09-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser

Also Published As

Publication number Publication date
JP2993167B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
US4963508A (en) Method of making an epitaxial gallium arsenide semiconductor wafer using a strained layer superlattice
US8502238B2 (en) Nitride-composite semiconductor laser element, its manufacturing method, and semiconductor optical device
JPH08316573A (en) Shortwave longitudinal cavity surface radiation laser and its manufacture
WO2021212597A1 (en) Quaternary system tensile strain semiconductor laser epitaxial wafer and preparation method therefor
KR100274283B1 (en) Surface-emitting semiconductor laser and its manufacturing method
US5404369A (en) Surface emission type semiconductor laser
US5625637A (en) Surface emitting semiconductor laser and its manufacturing process
US5479427A (en) Semiconductor laser and method of manufacturing the same
US7295586B2 (en) Carbon doped GaAsSb suitable for use in tunnel junctions of long-wavelength VCSELs
KR20000071054A (en) Ⅱ-Ⅵ SEMICONDUCTOR DEVICE WITH BeTe BUFFER LAYER
JPH03116796A (en) Method of forming hetero-epitaxial struc- ture and device manufactured by the same
JPH04311079A (en) Manufacture of surface-emissioin semiconductor laser
JP3298137B2 (en) Manufacturing method of surface emitting semiconductor laser
JPH08264901A (en) Epitaxial wafer, semiconductor laser element using it, and manufacture of laser element
JP2000031596A (en) Semiconductor laser and its manufacture
JP2002158403A (en) Semiconductor laser diode
US6275515B1 (en) Semiconductor laser device and method of producing the same
JP2002158401A (en) Manufacturing method of surface light-emission type semiconductor laser
JP2000138414A (en) Manufacture of surface emission laser array
JPH06181362A (en) Semiconductor device and manufacture thereof
US20050243881A1 (en) InAlAs having enhanced oxidation rate grown under very low V/III ratio
JPH05129721A (en) Semiconductor laser and manufacture thereof
JPH08125285A (en) Semiconductor light-emitting device
JPH09186391A (en) Compound semiconductor device and manufacture thereof
JPH04275479A (en) Semiconductor laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees