JPH0628246B2 - Method for producing silicon-germanium alloy - Google Patents

Method for producing silicon-germanium alloy

Info

Publication number
JPH0628246B2
JPH0628246B2 JP63168836A JP16883688A JPH0628246B2 JP H0628246 B2 JPH0628246 B2 JP H0628246B2 JP 63168836 A JP63168836 A JP 63168836A JP 16883688 A JP16883688 A JP 16883688A JP H0628246 B2 JPH0628246 B2 JP H0628246B2
Authority
JP
Japan
Prior art keywords
silicon
germanium alloy
gas
germanium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63168836A
Other languages
Japanese (ja)
Other versions
JPH0219467A (en
Inventor
新治 丸谷
通 高橋
淳二 井沢
吉文 八釼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP63168836A priority Critical patent/JPH0628246B2/en
Priority to GB8912077A priority patent/GB2221923A/en
Priority to FR898909045A priority patent/FR2633943B1/en
Priority to DE3922270A priority patent/DE3922270A1/en
Publication of JPH0219467A publication Critical patent/JPH0219467A/en
Publication of JPH0628246B2 publication Critical patent/JPH0628246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/8556Thermoelectric active materials comprising inorganic compositions comprising compounds containing germanium or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱エネルギーと電気エネルギーとを直接変換
する材料、即ち、熱電材料のうち特にシリコン−ゲルマ
ニウム合金の製造及び、この合金を用いた素子加工に好
適な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a material for directly converting heat energy and electric energy, that is, to manufacture a silicon-germanium alloy among thermoelectric materials, and to use the alloy. The present invention relates to a method suitable for element processing.

[従来技術] 熱電材料シリコン−ゲルマニウム合金の製造方法として
は、例えば、アール.エー.レフェーバー,ジー.エ
ル.マクベー アンド アール.ジェー.バウマン:”
プレパレーション オブ ホット プレスド シリコン
ゲルマニウム インゴット;パートIII バキューム
ホットプレッシング”,マテリアルズ リサーチ ブ
ラチン,9863(1974)(Lefever,G.L.McVay and R.J.Baugh
man:”Preparation of Hot-Pressed Silicon-Germanium
Ingot: Part III-Vacuum HotPresing”,Mat.Res.Bul
l.9 863 (1974))及びそのシリーズ(パートI及びパー
トII)に示されている様な粉末焼結法がある。この文献
によれば粉末焼結法は 金属シリコン,金属ゲルマニウム及びドープ材を溶
融する工程。
[Prior Art] As a method for producing a thermoelectric material silicon-germanium alloy, for example, R.I. A. Referer, Gee. Elle. Macbe and R. J. Baumann: ”
Preparation of Hot Pressed Silicon Germanium Ingot; Part III Vacuum Hot Pressing ”, Materials Research Brachin, 9863 (1974) (Lefever, GLMcVay and RJBaugh
man: ”Preparation of Hot-Pressed Silicon-Germanium
Ingot: Part III-Vacuum HotPresing ”, Mat.Res.Bul
l. 9 863 (1974)) and its series (Part I and Part II). According to this document, the powder sintering method is a process of melting metallic silicon, metallic germanium and a doping material.

の工程で得た融液を冷却する工程。 The step of cooling the melt obtained in the step of.

の工程で得たシリコン−ゲルマニウム合金を10メ
ッシュ程度まで破砕する工程。
The step of crushing the silicon-germanium alloy obtained in the step of to about 10 mesh.

の工程で得たシリコン−ゲルマニウム合金粒をさ
らに細かくすりつぶす(粉砕)工程。
The step of further finely grinding (grinding) the silicon-germanium alloy particles obtained in the step of.

の工程で得たシリコン−ゲルマニウム合金粉末を
10-5torr以下の真空容器中、約1300℃、約2000kg/cm2
高圧力下でホットプレスする工程。
The silicon-germanium alloy powder obtained in the step of
Hot pressing in a vacuum container of 10 -5 torr or less at a high pressure of approximately 1300 ° C. and approximately 2000 kg / cm 2 .

等の工程を有する。And the like.

その他、特開昭58-190077号公報には、多元非単結晶体
でなる熱電材料に関する発明が開示されるが、この中の
実施例でSixGeyBz(x+y+z=1)の製造方法が延べられて
いる。これによればSiH4,GeH4,B26を原料ガ
スとしてH2キャリアーガスでこれを真空容器内に導
入、分解せしめSi,Ge及びBでなる3元アモルファス
結晶体を50Å/min.の成長速度で得ている。この様にガ
ス状化合物を原料とし、これを真空容器中で気相分解さ
せ熱電材料を得る方法もある。
In addition, Japanese Patent Application Laid-Open No. 58-190077 discloses an invention relating to a thermoelectric material composed of a multi-element non-single crystal body. In the examples therein, a method for producing SixGeyBz (x + y + z = 1) is disclosed. Has been deferred. According to this, SiH 4 , GeH 4 , and B 2 H 6 are used as a source gas and introduced into a vacuum container by a H 2 carrier gas and decomposed to obtain a ternary amorphous crystal composed of Si, Ge and B at 50 Å / min. Is gaining at the growth rate of. There is also a method of obtaining a thermoelectric material by using a gaseous compound as a raw material in this manner and vapor-decomposing this as a raw material.

こうして得られた熱電材料は、PN一対の素子とする場
合には、従来はP型シリコン−ゲルマニウムとN型シリ
コン−ゲルマニウムを用途に合せ加工成形し、ホットシ
ュー及びコールドシューを接着していた。
When the thermoelectric material thus obtained is used as a pair of PN elements, conventionally, P-type silicon-germanium and N-type silicon-germanium were processed and molded according to the intended use, and a hot shoe and a cold shoe were bonded.

[発明が解決しようとする課題] 前記従来の熱電材料の製造方法のうち、前者の粉末焼結
法は、すでに述べた様な複雑なプロセスを有し、原料の
溶融工程で1400℃以上の高温、ホットプレスの工程で13
00℃近い高温と約2000kg/cm2の高圧、10-5torr以下の高
真空度等の特殊な製造条件、あるいはそれを達成するた
めの高度な技術水準を必要とした。
[Problems to be Solved by the Invention] Among the conventional methods for producing a thermoelectric material, the former powder sintering method has a complicated process as described above, and a high temperature of 1400 ° C. or higher in the melting step of the raw material. , In the process of hot pressing 13
Special manufacturing conditions such as high temperature near 00 ℃, high pressure of about 2000 kg / cm 2 , high vacuum degree of 10 -5 torr or less, or high technical level to achieve it were required.

また後者の特開昭58-190077号公報の実施例のような、
SiH4、GeH4、B26を原料とし、これを真空容器
内に導いた成膜法では成長速度が50Å/min.と遅く、工
業的に成り立たつにはまだ問題がある。
Also, as in the latter example of JP-A-58-190077,
A film-forming method using SiH 4 , GeH 4 , and B 2 H 6 as raw materials and introducing them into a vacuum container has a slow growth rate of 50 Å / min., Which is still problematic for industrial success.

さらに、こうして作られたシリコン−ゲルマニウム合金
を熱電素子として用いる際にはたとえば、第6図のよう
な構造に加工しなければならないが、第6図のP型とN
型との橋渡しの形成には、一般にはメタライズ工程、ろ
う付け等のいわゆる接着工程を経なければならない。し
かし、これは、工程が複雑な上、融点、接着性において
適当な接着用のろう剤の選択が難しい。
Furthermore, when the silicon-germanium alloy thus produced is used as a thermoelectric element, it must be processed into a structure as shown in FIG. 6, for example.
To form a bridge with the mold, generally a so-called adhesion process such as metallization process and brazing must be performed. However, in this method, the process is complicated and it is difficult to select an appropriate brazing agent for adhesion in terms of melting point and adhesiveness.

[問題点を解決するための手段] 本発明は前記従来法の持つ問題点、即ち高温、高圧、高
真空度等の特殊製造条件を解決する方法を提供し、か
つ、工業化容易な手段を与え、高収率、高成長速度等で
製造可能にすると共に、素子形成に従来のような反対導
電型間の橋渡し形成のための別工程を必要としない新規
な熱電素子形成方法を提供する。
[Means for Solving Problems] The present invention provides a method for solving the problems of the above-mentioned conventional method, that is, special manufacturing conditions such as high temperature, high pressure, and high vacuum degree, and provides a means for easy industrialization. Provided is a novel thermoelectric element forming method which enables production at a high yield and a high growth rate and does not require a separate step for forming a bridge between opposite conductivity types as in the conventional device formation.

即ち、初めにSiH4ガスとGeCl4ガス及び、一導電型の
ドーピングガスを反応容器内に導入し、反応容器内の75
0℃以上に加温された基体上にシリコン−ゲルマニウム
合金を堆積してさらに、このシリコン−ゲルマニウム合
金上に、SiH4ガスとGeCl4ガス及び、前記ドーピング
ガスと反対導電型のドーピングガスを導入して、先に堆
積したシリコン−ゲルマニウム合金とは反対導電型にな
るように別のシリコン−ゲルマニウム合金を堆積させる
一連の工程を一回以上繰り返すことを特徴とするもので
ある。
That is, first, SiH 4 gas, GeCl 4 gas, and one conductivity type doping gas are introduced into the reaction vessel, and
A silicon-germanium alloy is deposited on a substrate heated to 0 ° C. or higher, and SiH 4 gas and GeCl 4 gas and a doping gas having a conductivity type opposite to that of the doping gas are introduced onto the silicon-germanium alloy. Then, a series of steps of depositing another silicon-germanium alloy so as to have a conductivity type opposite to that of the previously deposited silicon-germanium alloy is repeated one or more times.

さらに、本発明では、基体の材質を初めから一導電型の
シリコン−ゲルマニウム合金で構成し、その上にこの基
体と反対導電型のシリコン−ゲルマニウム合金を堆積さ
せ、前記と同様の一連の工程を採用して製造することも
できる。
Further, in the present invention, the material of the substrate is composed of a silicon-germanium alloy of one conductivity type from the beginning, and a silicon-germanium alloy of the conductivity type opposite to the substrate is deposited thereon, and a series of steps similar to those described above is performed. It can also be adopted and manufactured.

以下、第1図に基づいて本発明を詳説する。Hereinafter, the present invention will be described in detail with reference to FIG.

本発明に使用されるガスのうち窒素(N2)ガス、SiH4
ガス、ドーピングガス、水素(H2)ガスはそれぞれライ
ン1、ライン2、ライン3、ライン4により供給され
る。11、12、13は各ガスの流量コントローラーである。
ライン4により供給されるH2は装置の置換用及び容器4
0に貯えられたGeCl4のキャリアガスとして使用される。
Of the gases used in the present invention, nitrogen (N 2 ) gas, SiH 4
Gas, doping gas, and hydrogen (H 2 ) gas are supplied through line 1, line 2, line 3, and line 4, respectively. 11, 12, and 13 are flow controllers for each gas.
The H 2 supplied by line 4 is used for replacement of the device and the container 4
Used as a carrier gas for GeCl 4 stored at 0.

まず、反応容器32には基体31がセットされる。成長に先
立ち、反応容器内は真空ポンプ23によって真空に引かれ
た後H2で置換し、その後所定量のH2が流される。この
2は保圧装置24で所定圧にされ放出される。この操作
の間並行して、初期成長条件と同量のSiH4、一導電
型のドーピングガス、それにH2キャリアのGeCl4が、パ
ージライン50より除害装置27に流される。基体は電源35
より電力が供給され所定の温度に上げられる。のぞき窓
33を通し温度制御用パイロメーター34で、基体31は一定
温度で制御される。成長は、H2を止めると同時にパー
ジラインに流されていた原料ガスを、反応容器内に導い
て行なわれる。引き続き反対導電型のシリコン−ゲルマ
ニウム合金の堆積に入るが、これは、初めの堆積が終っ
た時点で一旦原料ガスを止め、H2を流してパージして
から、前記のような操作で反対導電型のシリコン−ゲル
マニウム合金を堆積していく。
First, the base 31 is set in the reaction container 32. Prior to the growth, the inside of the reaction vessel is evacuated by a vacuum pump 23 and then replaced with H 2 , and then a predetermined amount of H 2 is flown. This H 2 is discharged at a predetermined pressure by the pressure keeping device 24. In parallel with this operation, the same amount of SiH 4 , one conductivity type doping gas, and GeCl 4 of H 2 carrier as in the initial growth conditions are flown into the abatement device 27 through the purge line 50. Base is power supply 35
More power is supplied and the temperature is raised to a predetermined temperature. Peep window
The substrate 31 is controlled at a constant temperature by a temperature control pyrometer 34 through 33. The growth is carried out by stopping the H 2 and at the same time introducing the raw material gas flowing through the purge line into the reaction vessel. Then, the deposition of the silicon-germanium alloy of the opposite conductivity type is started. This is because once the first deposition is finished, the raw material gas is once stopped and H 2 is flown to purge it, and then the opposite conductivity is obtained by the above operation. The mold silicon-germanium alloy is deposited.

あるいは、GeCl4、SiH4はそのまま流しつづけ、ドー
ピングガスのみを一旦止め、しばらくのちに反対導電型
のドーピングガスを通じて、堆積していく。
Alternatively, GeCl 4 and SiH 4 are kept flowing as they are, only the doping gas is once stopped, and after a while, the doping gas of the opposite conductivity type is used to deposit.

さらに、これらの操作を繰り返せば、交互に反対導電型
で構成された複数層から成るシリコン−ゲルマニウム合
金を得ることができる。
Further, by repeating these operations, a silicon-germanium alloy composed of a plurality of layers alternately having opposite conductivity types can be obtained.

成長終了後は、原料ガスを止めH2のみとする。所定時
間経過後に基体の温度を下げ、温度が完全に下がってか
ら反応容器内にN2を流し、内部をN2で置換する。さら
に置換を完全にするため、真空ポンプを使い反応容器内
をN2で置換し、製品を取出す。
After the growth is completed, the source gas is stopped and only H 2 is supplied. After a lapse of a predetermined time, the temperature of the substrate is lowered, and after the temperature is completely lowered, N 2 is flown into the reaction vessel to replace the inside with N 2 . Further, in order to complete the replacement, the inside of the reaction vessel is replaced with N 2 using a vacuum pump, and the product is taken out.

[作用] 本発明による熱電材料シリコン−ゲルマニウム合金の製
造方法によれば、次の様な作用により、均質なシリコン
−ゲルマニウム合金を得ることができる。
[Operation] According to the method for producing a thermoelectric material silicon-germanium alloy of the present invention, a homogeneous silicon-germanium alloy can be obtained by the following operations.

即ち、まず原料としてガス状化合物を用いていること、
そしてこの原料が反応容器内の自然対流により充分撹拌
されることから、反応容器内のガスが均質となる。次い
で、これらの原料ガスは基体表面に達してここで基体の
持つ熱エネルギーを受けて分解し、目的とするシリコン
−ゲルマニウム合金が、基体表面につぎつぎと堆積して
いく。このときシリコン−ゲルマニウム合金が溶融状態
を経ないので編析作用を受けず、その結果均質な組成の
シリコン−ゲルマニウム合金を得ることができる。反応
容器内の圧力が特に大気圧以上である場合は、反応容器
内で自然対流が生じやすく、このため原料ガスが有効に
消費され、高成長速度や高収率を達成することができ
る。
That is, first, a gaseous compound is used as a raw material,
Since this raw material is sufficiently agitated by natural convection in the reaction vessel, the gas in the reaction vessel becomes homogeneous. Next, these raw material gases reach the surface of the substrate and are decomposed by receiving the thermal energy of the substrate there, and the desired silicon-germanium alloy is successively deposited on the surface of the substrate. At this time, since the silicon-germanium alloy does not go through a molten state, it is not subjected to the segregation action, and as a result, a silicon-germanium alloy having a homogeneous composition can be obtained. When the pressure in the reaction container is particularly higher than atmospheric pressure, natural convection is likely to occur in the reaction container, so that the raw material gas is effectively consumed and a high growth rate and a high yield can be achieved.

ところで、SiH4の熱分解で半導体用の多結晶シリコ
ンを製造する場合には、基体表面が750〜850℃が適当と
されているが、これは堆積層の表面の滑らかさ(以下モ
ホロジーと称す)が、温度が高くなるにつれて悪くなる
と考えられているからである。従って外形加工時の歩留
等の問題で、基体温度はあまり上げることができない。
しかしながら、本発明によるシリコン−ゲルマニウム合
金の製造方法では、GeCl4ガスを使用することによって
SiH4単体の熱分解時の基体表面温度より高い温度で
も、モホロジーはいたって良好なことが実験によって確
かめられた。したがって更に基体温度を高くあげること
で成長速度を速くすることができた。
By the way, in the case of producing polycrystalline silicon for semiconductors by thermal decomposition of SiH 4 , the substrate surface is said to be suitable at 750 to 850 ° C. This is the smoothness of the surface of the deposited layer (hereinafter referred to as morphology). ) Is believed to worsen with increasing temperature. Therefore, the substrate temperature cannot be raised so much due to a problem such as a yield at the time of outer shape processing.
However, in the method for producing a silicon-germanium alloy according to the present invention, by using GeCl 4 gas, it has been confirmed by experiments that the morphology is very good even at a temperature higher than the substrate surface temperature at the time of thermal decomposition of SiH 4 simple substance. . Therefore, the growth rate could be increased by further raising the substrate temperature.

[実施例1] 内径約200mm、高さ1300mmの反応容器内で、23×20×940
mmのグラファイト製の基体60を直接通電して加熱し、87
0℃に保持した。ドーピングガスとしてフォスフィン(P
3)及びジボラン(B26)を選んだ。
Example 1 In a reaction vessel having an inner diameter of about 200 mm and a height of 1300 mm, 23 × 20 × 940
87 mm graphite substrate 60 is directly energized and heated to 87
Hold at 0 ° C. Phosphine as a doping gas (P
H 3) and chose diborane (B 2 H 6).

初め、モノシラン(SiH4)、四塩化ゲルマニウム(Ge
Cl4)及びB26をそれぞれ、210Nml/min.,620mg/mi
n.,0.10Nml/min.の割合で反応容器内に導いた。GeC
4は常温で液体であるため、キャリアガス(H2)の流量
とGeCl4の蒸気圧で流量を調整した。その後、シリ
コン−ゲルマニウムの堆積に伴い、生成したシリコン−
ゲルマニウム合金の表面積と同じ割合でこのSiH4
GeCl4及びB26の流量を増加させた。反応容器内
へのガス導入開始後18時間ののち、B26の供給を止
め、PH3供給を開始した。PH3はB26の1.8倍の割
合で供給した。この間、反応容器内は1.4気圧に保持し
た。全反応時間は36時間とした。成長速度は、2.4μmm
/min.であった。
First, monosilane (SiH 4 ) and germanium tetrachloride (Ge
Cl 4 ) and B 2 H 6 respectively at 210 Nml / min., 620 mg / mi
n., 0.10 Nml / min. was introduced into the reaction vessel. GeC
Since l 4 is a liquid at room temperature, the flow rate was adjusted by the flow rate of carrier gas (H 2 ) and the vapor pressure of GeCl 4 . After that, silicon-silicon generated by the deposition of germanium-
This SiH 4 , in the same proportion as the surface area of the germanium alloy,
The flow rates of GeCl 4 and B 2 H 6 were increased. 18 hours after starting the introduction of gas into the reaction vessel, the supply of B 2 H 6 was stopped and the supply of PH 3 was started. PH 3 was supplied at a rate 1.8 times that of B 2 H 6 . During this time, the pressure inside the reaction vessel was maintained at 1.4 atm. The total reaction time was 36 hours. Growth rate is 2.4 μm
It was / min.

得られた合金は、内層がP型(B:5.2×1013atoms/cc)
Si0.83Ge0.17、外層がN型(P:4.8×1019atoms/c
c)Si0.83Ge0.17であった。
The obtained alloy has a P-type inner layer (B: 5.2 × 10 13 atoms / cc)
Si 0.83 Ge 0.17 , N-type outer layer (P: 4.8 × 10 19 atoms / c
c) Si 0.83 Ge 0.17 .

ここで得られた合金から第2図に示した工程で、PN一
対の素子を切りだし、第3図に示すようにこれを17対低
温側でつないでテストモジュール83を作製し、性能をみ
たところ、温度差600℃で2.4Wの出力であった。
From the alloy obtained here, a pair of PN elements were cut out in the process shown in FIG. 2 and, as shown in FIG. 3, a test module 83 was produced by connecting 17 elements to the low temperature side, and the performance was examined. However, the output was 2.4 W at a temperature difference of 600 ° C.

[実施例2] 内径約200mm、高さ1300mmの反応容器内で、23×3×940
mmのグラファイト製の基体61を直接通電して加熱し、87
0℃に保持した。ドーピングガスとしてフォスフイン(P
3)及びジボラン(B26)を選んだ。
Example 2 In a reaction vessel having an inner diameter of about 200 mm and a height of 1300 mm, 23 × 3 × 940
87 mm mm of graphite substrate 61 is directly energized and heated to
Hold at 0 ° C. Phosphine as a doping gas (P
H 3) and chose diborane (B 2 H 6).

初め、モノシラン(SiH4)、四塩化ゲルマニウム(Ge
Cl4)及びB26をそれぞれ、210Nml/min.,620mg/mi
n.,0.10Nml/min.の割合で反応容器内に導いた。GeC
4は常温で液体であるため、キャリアガス(H2)の流量
とGeCl4の蒸気圧で流量を調整した。その後、シリ
コン−ゲルマニウムの堆積に伴い、生成したシリコン−
ゲルマニウム合金の表面積と同じ割合でこのSiH4
GeCl4及びB26の流量を増加させた。反応容器内
へのガス導入開始後18時間ののち、B26の供給を止
め、PH3供給を開始した。PH3はB26の1.8倍の割
合で18時間供給した。
First, monosilane (SiH 4 ) and germanium tetrachloride (Ge
Cl 4 ) and B 2 H 6 respectively at 210 Nml / min., 620 mg / mi
n., 0.10 Nml / min. was introduced into the reaction vessel. GeC
Since l 4 is a liquid at room temperature, the flow rate was adjusted by the flow rate of carrier gas (H 2 ) and the vapor pressure of GeCl 4 . After that, silicon-silicon generated by the deposition of germanium-
This SiH 4 , in the same proportion as the surface area of the germanium alloy,
The flow rates of GeCl 4 and B 2 H 6 were increased. 18 hours after starting the introduction of gas into the reaction vessel, the supply of B 2 H 6 was stopped and the supply of PH 3 was started. PH 3 was supplied at a rate 1.8 times that of B 2 H 6 for 18 hours.

この上記の一連の工程を繰り返すことにより、交互に反
対導電型のシリコン−ゲルマニウム合金を堆積し、多層
構造のものを得た。全反応時間は144時間とした。この
間、反応容器内は1.4気圧に保持した。成長速度は、2.4
μm/min.であった。
By repeating the series of steps described above, silicon-germanium alloys having opposite conductivity types were alternately deposited to obtain a multilayer structure. The total reaction time was 144 hours. During this time, the pressure inside the reaction vessel was maintained at 1.4 atm. Growth rate is 2.4
It was μm / min.

得られた合金は、P型層が(B:5.2×1013atoms/cc)
Si0.83Ge0.17、N型層が、(P:4.8×1019atoms/c
c)Si0.83Ge0.17であった。
The obtained alloy has a P-type layer (B: 5.2 × 10 13 atoms / cc)
Si 0.83 Ge 0.17 , N-type layer, (P: 4.8 × 10 19 atoms / c
c) Si 0.83 Ge 0.17 .

ここで得られた合金から第4図に示した工程で、PN一
対の素子を切りだし、第5図に示すテストモジュール84
を作製し、性能をみたところ、温度差600℃で540mWの出
力であった。
In the process shown in FIG. 4, a pair of PN elements are cut out from the alloy obtained here, and the test module 84 shown in FIG.
Was manufactured, and the performance was examined, and the output was 540 mW at a temperature difference of 600 ° C.

[発明の効果] 本発明の熱電材料シリコン−ゲルマニウム合金の製造方
法により、以下の様な効果がもたらされる。
[Effects of the Invention] The following effects are brought about by the method for producing a thermoelectric material silicon-germanium alloy of the present invention.

1)気相成長によるから、導電型の変更は、供給するド
ーピングガスを変えれば簡単にできる。このため、素子
に加工するとき、PN間のいわゆる橋渡し加工のための
高温側電極のメタライズ化、接着等の工程が不要にな
り、簡単に素子を作ることができ、しかも接着剤等で汚
染されることもなくなる。
1) Because of vapor phase growth, the conductivity type can be easily changed by changing the supplied doping gas. Therefore, when the element is processed, steps such as metallization of the high temperature side electrode and adhesion for so-called bridging processing between PNs are not required, the element can be easily manufactured, and the element is contaminated with an adhesive or the like. It will not happen.

2)偏析作用を受けないので、極めて均質なシリコン−
ゲルマニウム合金を得ることが出来る。
2) Since it is not affected by the segregation effect, it is extremely homogeneous silicon.
A germanium alloy can be obtained.

3)破砕や粉砕工程を有さないため、あるいは溶融工程
を有さないため、破砕や粉砕用の治具やるつぼ等からの
汚染がなくなる。
3) Since there is no crushing or crushing process or no melting process, there is no contamination from a crushing or crushing jig or crucible.

4)高温や高圧、高真空度等の特殊条件や、それを得る
ための高度な技術を必要としないため、製造設備は小規
模ですみ、消耗部材も少なくなる。
4) It does not require special conditions such as high temperature, high pressure, and high vacuum degree, or advanced technology to obtain it, so the manufacturing equipment can be small scale and the consumable parts can be reduced.

5)製造工程が簡略化され、従って各工程における検査
項目や製造条件等の管理項目を少なくすることが出来
る。
5) The manufacturing process is simplified, so that the control items such as inspection items and manufacturing conditions in each process can be reduced.

6)特に大気圧以上の圧力下では、自然対流が有効に利
用できるため、高成長速度と、高収率が得られる。従っ
て、バルクを利用する熱電発電用シリコン−ゲルマニウ
ム合金の製造方法として特に有用である。
6) Especially under a pressure of atmospheric pressure or higher, natural convection can be effectively utilized, so that a high growth rate and a high yield can be obtained. Therefore, it is particularly useful as a method for producing a silicon-germanium alloy for thermoelectric power generation using a bulk.

7)製造中、排ガスをガスクロマトグラフ等でモニター
することで、容易にシリコン−ゲルマニウム合金の製造
条件が管理できる。
7) During production, by monitoring the exhaust gas with a gas chromatograph or the like, the production conditions of the silicon-germanium alloy can be easily controlled.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明を実施するための装置の概略図であ
る。 第2図は、本発明により製作したシリコン−ゲルマニウ
ム合金。 第3図は、本発明により製作したシリコン−ゲルマニウ
ム合金熱電素子。 第4図は、本発明により製作した他のシリコン−ゲルマ
ニウム合金。 第5図は、本発明により製作した他のシリコン−ゲルマ
ニウム合金熱電素子。 第6図は、従来の熱電素子。 1……N2ガス 2……SiH4ガス 3……ドーピングガス 4……H2ガス 11……流量コントローラ 12……流量コントローラ 13……流量コントローラ 21……圧力計 23……真空ポンプ 24……保圧装置 27……除害装置 31……基体 32……反応容器 33……覗き窓 34……放射温度計 35……電源 40……容器 41……ヒータ 50……パージライン 60,61……基体 64……ホットシュー 65……コールドシュー 71,72,73……P型シリコン−ゲルマニウム合金 77,78,79……N型シリコン−ゲルマニウム合金 83,84……テストモジュール
FIG. 1 is a schematic diagram of an apparatus for carrying out the present invention. FIG. 2 is a silicon-germanium alloy produced according to the present invention. FIG. 3 is a silicon-germanium alloy thermoelectric device manufactured according to the present invention. FIG. 4 is another silicon-germanium alloy made according to the present invention. FIG. 5 shows another silicon-germanium alloy thermoelectric element manufactured according to the present invention. FIG. 6 shows a conventional thermoelectric element. 1 …… N 2 gas 2 …… SiH 4 gas 3 …… Doping gas 4 …… H 2 gas 11 …… Flow controller 12 …… Flow controller 13 …… Flow controller 21 …… Pressure gauge 23 …… Vacuum pump 24 …… … Pressure-retaining device 27 …… Detoxification device 31 …… Substrate 32 …… Reaction vessel 33 …… Viewing window 34 …… Radiation thermometer 35 …… Power supply 40 …… Vessel 41 …… Heater 50 …… Purge line 60, 61 …… Substrate 64 …… Hot shoe 65 …… Cold shoe 71,72,73 …… P-type silicon-germanium alloy 77,78,79 …… N-type silicon-germanium alloy 83,84 …… Test module

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】初めにSiH4ガスとGeCl4ガス及び、一導
電型のドーピングガスを反応容器内に導入し、反応容器
内の750℃以上に加温された基体上にシリコン−ゲルマ
ニウム合金を堆積し、さらに該シリコン−ゲルマニウム
合金上にSiH4ガスとGeCl4ガス及び、前記ドーピング
ガスと反対導電型のドーピングガスを導入して前記シリ
コン−ゲルマニウム合金と反対導電型のシリコン−ゲル
マニウム合金を堆積させる一連の工程を一回以上繰り返
すことを特徴とするシリコン−ゲルマニウム合金の製造
方法。
1. A SiH 4 gas, a GeCl 4 gas, and a doping gas of one conductivity type are first introduced into a reaction vessel, and a silicon-germanium alloy is deposited on a substrate heated to 750 ° C. or higher in the reaction vessel. Then, SiH 4 gas and GeCl 4 gas and a doping gas having a conductivity type opposite to that of the doping gas are introduced onto the silicon-germanium alloy to deposit a silicon-germanium alloy having a conductivity type opposite to the silicon-germanium alloy. A method of manufacturing a silicon-germanium alloy, characterized in that the series of steps is performed once or more.
【請求項2】前記基体の材質が、一導電型のシリコン−
ゲルマニウム合金であって、該基体に初めに堆積される
シリコン−ゲルマニウム合金が該基体と反対導電型であ
ることを特徴とする請求項1記載のシリコン−ゲルマニ
ウム合金の製造方法。
2. The material of the base is one conductivity type silicon.
The method for producing a silicon-germanium alloy according to claim 1, wherein the germanium alloy is a silicon-germanium alloy initially deposited on the substrate and has a conductivity type opposite to that of the substrate.
JP63168836A 1988-07-08 1988-07-08 Method for producing silicon-germanium alloy Expired - Lifetime JPH0628246B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63168836A JPH0628246B2 (en) 1988-07-08 1988-07-08 Method for producing silicon-germanium alloy
GB8912077A GB2221923A (en) 1988-07-08 1989-05-25 Process for manufacturing silicon-germanium alloys
FR898909045A FR2633943B1 (en) 1988-07-08 1989-07-05 PROCESS FOR THE MANUFACTURE OF SILICON-GERMANIUM ALLOYS
DE3922270A DE3922270A1 (en) 1988-07-08 1989-07-06 METHOD FOR PRODUCING SILICIUM-GERMANIUM ALLOYS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63168836A JPH0628246B2 (en) 1988-07-08 1988-07-08 Method for producing silicon-germanium alloy

Publications (2)

Publication Number Publication Date
JPH0219467A JPH0219467A (en) 1990-01-23
JPH0628246B2 true JPH0628246B2 (en) 1994-04-13

Family

ID=15875425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63168836A Expired - Lifetime JPH0628246B2 (en) 1988-07-08 1988-07-08 Method for producing silicon-germanium alloy

Country Status (4)

Country Link
JP (1) JPH0628246B2 (en)
DE (1) DE3922270A1 (en)
FR (1) FR2633943B1 (en)
GB (1) GB2221923A (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1118183A (en) * 1964-05-01 1968-06-26 Plessey Uk Ltd Improvements in or relating to thermoelectric devices
NL6803816A (en) * 1967-04-01 1968-10-02
US4032363A (en) * 1975-01-27 1977-06-28 Syncal Corporation Low power high voltage thermopile
US4442449A (en) * 1981-03-16 1984-04-10 Fairchild Camera And Instrument Corp. Binary germanium-silicon interconnect and electrode structure for integrated circuits
US4728528A (en) * 1985-02-18 1988-03-01 Canon Kabushiki Kaisha Process for forming deposited film
US4726963A (en) * 1985-02-19 1988-02-23 Canon Kabushiki Kaisha Process for forming deposited film

Also Published As

Publication number Publication date
FR2633943B1 (en) 1992-02-07
JPH0219467A (en) 1990-01-23
FR2633943A1 (en) 1990-01-12
GB2221923A (en) 1990-02-21
DE3922270A1 (en) 1990-01-11
GB8912077D0 (en) 1989-07-12

Similar Documents

Publication Publication Date Title
US4131659A (en) Process for producing large-size, self-supporting plates of silicon
CA1074428A (en) Process for producing large-size substrate-based semiconductor material
US7977220B2 (en) Substrates for silicon solar cells and methods of producing the same
US7572334B2 (en) Apparatus for fabricating large-surface area polycrystalline silicon sheets for solar cell application
US4237151A (en) Thermal decomposition of silane to form hydrogenated amorphous Si film
JP2965094B2 (en) Deposition film formation method
JPH0639357B2 (en) Method for growing element semiconductor single crystal thin film
US4857270A (en) Process for manufacturing silicon-germanium alloys
JP3728464B2 (en) Method for manufacturing substrate for vapor phase synthesis of single crystal diamond film
JP2691378B2 (en) Silicon-germanium alloy thermoelectric element and method for manufacturing silicon-germanium alloy for thermoelectric element
JPH0628246B2 (en) Method for producing silicon-germanium alloy
JPH0688866B2 (en) Boron nitride coated crucible and method of manufacturing the same
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JP2002053395A (en) METHOD FOR PRODUCING alpha-SiC WAFER
JP3932017B2 (en) Method for producing iron silicide crystal
JP2675174B2 (en) Solar cell manufacturing method
US20100314804A1 (en) Method for the production of semiconductor ribbons from a gaseous feedstock
JPH0510425B2 (en)
JPS6077118A (en) Method for producing thin silicon film and apparatus therefor
JP2790843B2 (en) Thin film vapor deposition equipment
JPS6120517B2 (en)
JPH04365868A (en) Production of silicon-germanium alloy
JPS5812238B2 (en) Method for manufacturing silicon carbide crystal layer
JPH09315891A (en) Production of plate silicon crystal and solar cell manufactured with the plate crystal
JPH04293763A (en) Production of silicide film