JPH0628239B2 - Continuous plasma CVD equipment - Google Patents

Continuous plasma CVD equipment

Info

Publication number
JPH0628239B2
JPH0628239B2 JP27835387A JP27835387A JPH0628239B2 JP H0628239 B2 JPH0628239 B2 JP H0628239B2 JP 27835387 A JP27835387 A JP 27835387A JP 27835387 A JP27835387 A JP 27835387A JP H0628239 B2 JPH0628239 B2 JP H0628239B2
Authority
JP
Japan
Prior art keywords
chamber
substrate
vacuuming
plasma cvd
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27835387A
Other languages
Japanese (ja)
Other versions
JPH01120809A (en
Inventor
幸夫 香村
禎則 石田
卓矢 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP27835387A priority Critical patent/JPH0628239B2/en
Publication of JPH01120809A publication Critical patent/JPH01120809A/en
Publication of JPH0628239B2 publication Critical patent/JPH0628239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はプラズマCVD(Chemical Vapour Depositio
n)法により、基板上に薄膜を形成する連続式プラズマ
CVD装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention is directed to plasma CVD (Chemical Vapor Depositio).
The present invention relates to a continuous plasma CVD apparatus for forming a thin film on a substrate by the method n).

[従来技術] 従来のプラズマCVD装置は、第4図に示すように、真
空反応容器1内の基板ヒータ2の上に処理すべき基板3
を寝かせて設置し、基板3の上方には基板ヒータ2に対
向させて電極4を設置し、該電極4と基板ヒータ2との
間に高周波電源5から高周波電力を印加し、また真空反
応容器1内にはパイプよりなる原料ガス供給手段6で原
料ガスを供給し、プラズマCVD法で基板4の表面に薄
膜を形成していた。
[Prior Art] In a conventional plasma CVD apparatus, as shown in FIG. 4, a substrate 3 to be processed is placed on a substrate heater 2 in a vacuum reaction container 1.
Is laid down, an electrode 4 is installed above the substrate 3 so as to face the substrate heater 2, high frequency power is applied from a high frequency power source 5 between the electrode 4 and the substrate heater 2, and a vacuum reaction container is also installed. A raw material gas supply means 6 made of a pipe was used to supply the raw material gas into the chamber 1, and a thin film was formed on the surface of the substrate 4 by the plasma CVD method.

[発明が解決しようとする問題点] しかしながら、このような従来のプラズマCVD装置で
は、基板3の片面(上側となった面)にしか薄膜を形成
できないので、もう一方の面にも薄膜を形成する作業を
もう一度行わなければならず、能率が悪い問題点があっ
た。また、従来のプラズマCVD装置では、真空反応容
器1内に基板3をセットしてから真空引きして、所定の
真空度に達した後に該真空反応容器1内でプラズマCV
D処理をし、次に該真空反応容器1内で後処理をするの
で、前処理や後処理に時間を要し、この面でも能率が悪
い問題点があった。
[Problems to be Solved by the Invention] However, in such a conventional plasma CVD apparatus, since a thin film can be formed only on one surface (upper surface) of the substrate 3, a thin film is formed on the other surface. I had to do the work to do it again, and there was a problem of inefficiency. Further, in the conventional plasma CVD apparatus, the substrate 3 is set in the vacuum reaction container 1 and then evacuated, and after reaching a predetermined vacuum degree, the plasma CV is generated in the vacuum reaction container 1.
Since the D treatment is performed and then the post-treatment is performed in the vacuum reaction container 1, it takes time for the pre-treatment and the post-treatment, and in this respect, there is a problem of poor efficiency.

本発明の目的は、基板の両面に同時に薄膜を形成でき、
しかも能率良く前処理や後処理を行える連続式プラズマ
CVD装置を提供することにある。
The object of the present invention is to form a thin film on both sides of a substrate at the same time,
Moreover, it is an object of the present invention to provide a continuous plasma CVD apparatus capable of efficiently performing pretreatment and posttreatment.

[問題点を解決するための手段] 上記の目的を達成するための本発明の構成を説明する
と、本発明の連続式プラズマCVD装置は、内部に第1
室を有する第1室容器と、前記第1室に連通する第2室
を内部に有する第2室容器と、前記第2室に連通する第
3室を内部に有する第3室容器とが隣接して順次設けら
れ、前記第1室の入口と隣接する前記第1,第2室の境
界と隣接する第2,第3室の境界と前記第3室の出口と
がそれぞれゲートバルブで仕切られ、前記第1室容器に
は前記第1室内で処理すべき基板を加熱するための加熱
手段と前記第1室内を真空引きするための真空引き手段
とが設けられ、前記第2室容器には前記第2室内を真空
引きするための真空引き手段と前記第1室から送られて
来た前記基板を1対の原料ガス流出電極の間に置いて該
基板の両側にプラズマを形成して該プラズマを通して前
記基板の両面に前記両原料ガス流出電極から原料ガスを
供給することにより前記基板の両面に同時に膜を形成す
るプラズマCVD手段とが設けられ、前記第3室容器に
は前記第3室内を真空引きするための真空引き手段と前
記第2室から送られて来た前記基板の両面の膜を安定化
させる膜安定化ガスを該第3室に供給する膜安定化ガス
供給手段とが設けられて構成されていることを特徴とす
る。
[Means for Solving Problems] To explain the configuration of the present invention for achieving the above object, the continuous plasma CVD apparatus of the present invention has a first internal structure.
A first chamber container having a chamber, a second chamber container internally having a second chamber communicating with the first chamber, and a third chamber container internally having a third chamber communicating with the second chamber are adjacent to each other. And a boundary between the first and second chambers adjacent to the inlet of the first chamber, a boundary between the second and third chambers adjacent to the inlet of the first chamber, and an outlet of the third chamber are separated by gate valves. The first chamber container is provided with a heating unit for heating a substrate to be processed in the first chamber and a vacuuming unit for vacuuming the first chamber, and the second chamber container is Vacuuming means for vacuuming the second chamber and the substrate sent from the first chamber are placed between a pair of source gas outflow electrodes to form plasma on both sides of the substrate. By supplying a source gas from both source gas outflow electrodes to both sides of the substrate through plasma. Plasma CVD means for simultaneously forming a film on both surfaces of the substrate is provided, and the third chamber container is evacuated to evacuate the third chamber and the second chamber is sent from the second chamber. A film stabilizing gas supply means for supplying a film stabilizing gas for stabilizing the films on both surfaces of the substrate to the third chamber is provided and configured.

[作用] このようにすると、第2室でプラズマCVD処理を行っ
ているとき、第1室と第3室で前処理と後処理とを並行
して行うことができ、能率良く作業を行うことができ
る。また、第2室では、両原料ガス流出電極の間に基板
を配置し、該基板の両側にプラズマを発生させ、両原料
ガス流出電極から原料ガスを各プラズマを横切って基板
の両面に供給するようにしたので、基板の両面に同時に
薄膜を形成できる。
[Operation] With this configuration, when the plasma CVD process is performed in the second chamber, the pretreatment and the posttreatment can be performed in parallel in the first chamber and the third chamber, and the work can be performed efficiently. You can Further, in the second chamber, a substrate is arranged between both source gas outflow electrodes, plasma is generated on both sides of the substrate, and source gas is supplied from both source gas outflow electrodes across each plasma to both sides of the substrate. Since it did in this way, a thin film can be simultaneously formed on both surfaces of a board | substrate.

[実施例] 以下、本発明の実施例を図面を参照して詳細に説明す
る。第1図乃至第3図に示すように、本実施例の連続式
プラズマCVD装置においては、内部に第1室7Aを有
する第1室容器7と、前記第1室7Aに連通する第2室
8Aを内部に有する第2室容器8と、前記第2室8Aに
連通する第3室9Aを内部に有する第3室容器9とが隣
接して順次設けられている。第1室7Aの入口にはゲー
トバルブ10が設けられ、隣接する第1,第2室7A,
8Aの境界にはゲートバルブ11が設けられ、隣接する
第2,第3室8A,9Aの境界にはゲートバルブ12が
設けられ、第3室9Aの出口にはゲートバルブ13が設
けられてそれぞれ仕切られている。
Embodiments Embodiments of the present invention will be described in detail below with reference to the drawings. As shown in FIGS. 1 to 3, in the continuous plasma CVD apparatus of the present embodiment, a first chamber container 7 having a first chamber 7A inside and a second chamber communicating with the first chamber 7A. A second chamber container 8 having 8A therein and a third chamber container 9 having a third chamber 9A communicating with the second chamber 8A therein are provided adjacently to each other. A gate valve 10 is provided at the inlet of the first chamber 7A, and the adjacent first and second chambers 7A,
A gate valve 11 is provided at the boundary of 8A, a gate valve 12 is provided at the boundary between adjacent second and third chambers 8A and 9A, and a gate valve 13 is provided at the outlet of the third chamber 9A. It is partitioned.

第1室容器7には、第1室7A内で処理すべき基板3を
加熱するためのヒータの如き加熱手段14と、第1室7
A内を真空引きするための真空引き手段15と、第1室
7A内にArの如き不活性ガスを供給する不活性ガス供
給手段16とが設けられている。
The first chamber 7 has a heating means 14 such as a heater for heating the substrate 3 to be processed in the first chamber 7A, and the first chamber 7
A vacuuming means 15 for vacuuming the inside of A and an inert gas supplying means 16 for supplying an inert gas such as Ar into the first chamber 7A are provided.

第2室容器8には、第2室8A内を真空引きするための
真空引き手段17と、第1室7Aから送られて来た基板
3を1対の原料ガス流出電極18の間に置いて該基板3
の両側にプラズマを形成して該プラズマを通して該基板
3の両面に両原料ガス流出電極18から原料ガスを供給
することにより該基板3の両面に同時に膜を形成するプ
ラズマCVD手段19とが設けられている。即ち、この
プラズマCVD手段19においては、第2室8A内に垂
直向きで向かい合せにして互いに平行に配置された1対
の原料ガス流出電極18を有している。各原料ガス流出
電極18は、金属製であって多数のガス流出孔18Aが
分散して設けられている原料ガス流出電極本体18B
と、その裏側に一体に設けられた金属製で漏斗状をした
分配室形成体18Cとで構成されている。原料ガス流出
電極18には原料ガス供給部20から配管21を介して
原料ガスが供給されるようになっている。また、原料ガ
ス流出電極18は、配管21を介して接地されている。
向い合せの原料ガス流出電極18間には、網目状なす1
対のメッシュ電極22が垂直向きで向い合せにして原料
ガス流出電極18に対して平行に配置されている。各メ
ッシュ電極22は、高周波電源5からマッチングボック
ス23を介して高周波電力が印加されるようになってい
る。両メッシュ電極22間には、処理用の基板3を通過
させる空間が設けられている。なお、第1図では、原料
ガス流出電極18及びメッシュ電極22は、図示の関係
上90度向きを変えて示している。
In the second chamber container 8, a vacuuming means 17 for vacuuming the inside of the second chamber 8A and the substrate 3 sent from the first chamber 7A are placed between a pair of source gas outflow electrodes 18. The substrate 3
Plasma CVD means 19 for forming a plasma on both sides of the substrate 3 and simultaneously forming a film on both sides of the substrate 3 by supplying a source gas from both source gas outflow electrodes 18 to both sides of the substrate 3 through the plasma. ing. That is, the plasma CVD means 19 has a pair of source gas outflow electrodes 18 which are arranged in parallel in the second chamber 8A so as to face each other in the vertical direction. Each raw material gas outflow electrode 18 is made of metal and has a large number of gas outflow holes 18A dispersedly provided in the raw material gas outflow electrode body 18B.
And a funnel-shaped distribution chamber forming body 18C made of metal and integrally provided on the back side thereof. A raw material gas is supplied from the raw material gas supply unit 20 to the raw material gas outflow electrode 18 through a pipe 21. The source gas outflow electrode 18 is grounded via a pipe 21.
A mesh is formed between the facing source gas outflow electrodes 18.
A pair of mesh electrodes 22 are arranged vertically and face each other in parallel with the source gas outflow electrode 18. High frequency power is applied to each mesh electrode 22 from the high frequency power supply 5 through the matching box 23. A space for passing the processing substrate 3 is provided between the mesh electrodes 22. Note that, in FIG. 1, the source gas outflow electrode 18 and the mesh electrode 22 are shown by changing their directions by 90 degrees for the sake of illustration.

第3室容器9には、第3室9A内を真空引きするための
真空引き手段24と、第2室8Aから送られて来た基板
3の両面の膜を安定化させる酸素の如き膜安定化ガスを
該第3室9Aに供給する膜安定化ガス供給手段25と、
第3室9A内にArの如き不活性ガスを供給する不活性
ガス供給手段26が設けられている。
The third chamber container 9 has a vacuuming means 24 for vacuuming the inside of the third chamber 9A, and a film-stabilizing film such as oxygen for stabilizing the films on both surfaces of the substrate 3 sent from the second chamber 8A. A film stabilizing gas supply means 25 for supplying a stabilizing gas to the third chamber 9A,
An inert gas supply means 26 for supplying an inert gas such as Ar is provided in the third chamber 9A.

基板3は基板支持台車27に垂直向きに搭載されて、第
1室7A,第2室8A,第3室9Aと順次移動されるよ
うになっている。
The substrate 3 is vertically mounted on the substrate supporting carriage 27 and is sequentially moved to the first chamber 7A, the second chamber 8A, and the third chamber 9A.

次に、このようなプラズマCVD装置を用いて行う薄膜
形成方法について説明する。
Next, a method for forming a thin film using such a plasma CVD apparatus will be described.

ゲートバルブ10を開き、基板3を基板支持台車27に
よって第1室7Aに入れ、ゲートバルブ10を閉じる。
第1室7A内の加熱手段14によって基板3を200℃
位にし加熱する。次に、真空引き手段15によって第1
室7A内を10-3〜10-4Torr台に真空引きし、不純物
を排除して室内条件を一定にする。基板3が200℃位
に加熱できたら、不活性ガス供給手段16によってAr
の如き不活性ガスを第1室7A内に入れて該第1室7を
10-2Torr台に調圧する。かかる状態になったらゲート
バルブ11を開いて基板3を第2室8Aに入れ、ゲート
バルブ11を閉じる。なお、第2室8Aは予め10-1To
rrに真空引き手段17で真空引きしておく。第2室8A
では、基板3を両メッシュ電極22間に位置させる。か
かる状態で、各メッシュ電極22に高周波電源5からマ
ッチングボックス23を介して高周波電力(13.56MHz×
150W)を印加し、各メッシュ電極22とこれに対向する
原料ガス流出電極18との間にプラズマを発生させる。
また、各原料ガス流出電極18からは、プラズマを横切
って基板3の両面に原料ガスを供給し、該原料ガスをプ
ラズマで活性化させ、これにより基板3の両面に同時に
成膜を行わせる。成膜は約30秒行う。基板3への成膜
が終了したら、ゲートバルブ9Aを開け、基板3を第3
室9Aに送り、ゲートバルブ9Aを閉じる。なお、第3
室9Aは予め10-3Torr台に真空引き手段24で真空引
きし、不純物を排除した後、不活性ガス供給手段25か
らArの如き不活性ガスを供給して室内を10-2Torr台
に調圧しておく。第3室9A内に入って来た基板3に対
し膜安定化ガス供給手段26から酸素の如き膜安定化ガ
スを供給して基板3の両面の膜を安定化させる。膜安定
化処理後、ゲートバルブ13を開き、基板3を外に取り
出し、ゲートバルブ13と閉じる。
The gate valve 10 is opened, the substrate 3 is put into the first chamber 7A by the substrate supporting carriage 27, and the gate valve 10 is closed.
The substrate 3 is heated to 200 ° C. by the heating means 14 in the first chamber 7A.
Place and heat. Next, the first evacuation means 15
The inside of the chamber 7A is evacuated to a level of 10 −3 to 10 −4 Torr to remove impurities and keep the indoor conditions constant. When the substrate 3 can be heated to about 200 ° C., the inert gas supply means 16 is used for Ar.
Such an inert gas is put into the first chamber 7A to regulate the pressure of the first chamber 7 to the level of 10 -2 Torr. In such a state, the gate valve 11 is opened, the substrate 3 is put in the second chamber 8A, and the gate valve 11 is closed. In addition, the second chamber 8A is previously set to 10 -1 To
The rr is evacuated by the evacuation means 17. 2nd chamber 8A
Then, the substrate 3 is positioned between the mesh electrodes 22. In this state, high-frequency power (13.56 MHz ×
150 W) is applied to generate plasma between each mesh electrode 22 and the source gas outflow electrode 18 facing the mesh electrode 22.
Further, from each raw material gas outflow electrode 18, a raw material gas is supplied across both sides of the substrate 3 across the plasma, and the raw material gas is activated by the plasma, whereby simultaneous film formation is performed on both sides of the substrate 3. The film formation is performed for about 30 seconds. After the film formation on the substrate 3 is completed, the gate valve 9A is opened to set the substrate 3 to the third position.
Send to chamber 9A and close gate valve 9A. The third
The chamber 9A is evacuated to a level of 10 -3 Torr in advance by the vacuuming means 24 to remove impurities, and then an inert gas such as Ar is supplied from the inert gas supply means 25 to bring the room to a level of 10 -2 Torr. Adjust the pressure. A film stabilizing gas such as oxygen is supplied from the film stabilizing gas supply means 26 to the substrate 3 having entered the third chamber 9A to stabilize the films on both sides of the substrate 3. After the film stabilization process, the gate valve 13 is opened, the substrate 3 is taken out, and the gate valve 13 is closed.

このように第2室8Aは10-1Torr台とし、第1,第3
室7A,9Aは10-2Torr台とすると、ゲートバルブ1
1を開けたとき気流は第2室8Aから第1室7Aに流
れ、ゲートバルブ12を開けたとき気流は第2室8Aか
ら第3室9Aに流れ、第2室8Aに不純物が入らないよ
うになる。
In this way, the second chamber 8A is set at the level of 10 -1 Torr, and the first and third chambers are
If the chambers 7A and 9A are on the order of 10 -2 Torr, the gate valve 1
When 1 is opened, the airflow flows from the second chamber 8A to the first chamber 7A, and when the gate valve 12 is opened, the airflow flows from the second chamber 8A to the third chamber 9A so that impurities do not enter the second chamber 8A. become.

第1室容器7〜第3室容器9は、いずれも例えばステン
レススチールで形成する。また、この装置では、一定時
間後に基板3が移動し、所定の処理を受けるようにシー
ケンスを作り、自動化されている。
The first chamber container 7 to the third chamber container 9 are all formed of, for example, stainless steel. Further, in this apparatus, the substrate 3 is moved after a predetermined time and a sequence is formed so as to receive a predetermined process, and the sequence is automated.

なお、上記実施例では、メッシュ電極22に高周波電力
を印加するようにしたが、メッシュ電極22を省略して
基板3に高周波電力を直接印加するようにしてもよい。
このようにすると、基板3と原料ガス供給電極18との
間にプラズマが発生するようになる。
Although the high frequency power is applied to the mesh electrode 22 in the above embodiment, the high frequency power may be directly applied to the substrate 3 by omitting the mesh electrode 22.
By doing so, plasma is generated between the substrate 3 and the source gas supply electrode 18.

第2室8Aにおいては、室内の構成部品にもハイドロカ
ーボン系の付着物が付くので、定期的にクリーニングす
る必要がある。クリーニングは、例えばOを供給しな
がらプラズマをかけることにより、プラズマエッチング
により行う。
In the second chamber 8A, hydrocarbon-based deposits are attached to the components inside the chamber as well, so it is necessary to regularly clean the components. The cleaning is performed by plasma etching by applying plasma while supplying O 2 , for example.

[発明の効果] 以上説明したように本発明の連続式プラズマCVD装置
では、第1,第2,第3室を連続させて設け、各室をゲ
ートバルブで独立させたので、第2室でプラズマCVD
処理を行っているとき、第1室と第3室で前処理と後処
理とを並行して行うことができ、能率良く作業を行うこ
とができる利点がある。また、第2室では、両原料ガス
流出電極の間に基板を配置し、該基板の両側にプラズマ
を発生させ、両原料ガス流出電極から原料ガスを各プラ
ズマを横切って基板の両面に供給するようにしたので、
基板の両面に同時に薄膜を形成できる。従って本発明に
よれば、プラズマCVD法による成膜を能率良く行なう
ことができる。
[Effects of the Invention] As described above, in the continuous plasma CVD apparatus of the present invention, the first, second, and third chambers are continuously provided, and each chamber is independent by the gate valve. Plasma CVD
During processing, pre-processing and post-processing can be performed in parallel in the first chamber and the third chamber, and there is an advantage that work can be performed efficiently. Further, in the second chamber, a substrate is arranged between both source gas outflow electrodes, plasma is generated on both sides of the substrate, and source gas is supplied from both source gas outflow electrodes across each plasma to both sides of the substrate. I did so,
Thin films can be formed on both sides of the substrate at the same time. Therefore, according to the present invention, the film formation by the plasma CVD method can be efficiently performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る連続式プラズマCVD装置の一実
施例を示す概略縦断面図、第2図及び第3図は本実施例
で用いている原料ガス流出電極の正面図及び縦断面図、
第4図は従来のプラズマCVD装置の概略縦断面図であ
る。。 3……基板、5……高周波電源、7……第1室容器、7
A……第1室、8……第2室容器、8A……第2室、9
……第3室容器、9A……第3室、10〜13……ゲー
トバルブ、14……加熱手段、15,17,24……真
空引き手段、18……原料ガス電極、19……プラズマ
CVD手段、25……不活性ガス供給手段、26……膜
安定化ガス供給手段。
FIG. 1 is a schematic vertical sectional view showing an embodiment of a continuous plasma CVD apparatus according to the present invention, and FIGS. 2 and 3 are front views and vertical sectional views of a source gas outflow electrode used in this embodiment. ,
FIG. 4 is a schematic vertical sectional view of a conventional plasma CVD apparatus. . 3 ... Substrate, 5 ... High-frequency power source, 7 ... First chamber container, 7
A: first chamber, 8: second chamber container, 8A: second chamber, 9
...... Third chamber container, 9A ...... Third chamber, 10 to 13 ...... Gate valve, 14 ...... Heating means, 15, 17, 24 ...... Vacuating means, 18 ...... Material gas electrode, 19 ...... Plasma CVD means, 25 ... Inert gas supply means, 26 ... Membrane stabilizing gas supply means.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内部に第1室を有する第1室容器と、前記
第1室に連通する第2室を内部に有する第2室容器と、
前記第2室に連通する第3室を内部に有する第3室容器
とが隣接して順次設けられ、前記第1室の入口と隣接す
る前記第1,第2室の境界と隣接する第2,第3室の境
界と前記第3室の出口とがそれぞれゲートバルブで仕切
られ、前記第1室容器には前記第1室内で処理すべき基
板を加熱するための加熱手段と前記第1室内を真空引き
するための真空引き手段とが設けられ、前記第2室容器
には前記第2室内を真空引きするための真空引き手段と
前記第1室から送られて来た前記基板を1対の原料ガス
流出電極の間に置いて該基板の両側にプラズマを形成し
て該プラズマを通して前記基板の両面に前記両原料ガス
流出電極から原料ガスを供給することにより前記基板の
両面に同時に膜を形成するプラズマCVD手段とが設け
られ、前記第3室容器には前記第3室内を真空引きする
ための真空引き手段と前記第2室から送られて来た前記
基板の両面の膜を安定化させる膜安定化ガスを該第3室
に供給する膜安定化ガス供給手段とが設けられて構成さ
れていることを特徴とする連続式プラズマCVD装置。
1. A first chamber container having a first chamber therein, and a second chamber container having a second chamber communicating with the first chamber therein.
A third chamber container having a third chamber therein, which communicates with the second chamber, is adjacently provided in sequence, and a second chamber is adjacent to the boundary between the first and second chambers adjacent to the inlet of the first chamber. The boundary of the third chamber and the outlet of the third chamber are each partitioned by a gate valve, and the first chamber container has a heating means for heating a substrate to be processed in the first chamber and the first chamber. And a vacuuming means for vacuuming the second chamber, and a pair of the vacuuming means for vacuuming the second chamber and the pair of substrates sent from the first chamber in the second chamber container. Plasma is formed on both sides of the substrate by being placed between the source gas outflow electrodes and the source gas is supplied from both source gas outflow electrodes to both sides of the substrate through the plasma to simultaneously form a film on both sides of the substrate. Plasma CVD means for forming the third chamber A vacuuming means for vacuuming the third chamber and a film for supplying a film stabilizing gas for stabilizing the films on both surfaces of the substrate sent from the second chamber to the third chamber. A continuous plasma CVD apparatus comprising a stabilizing gas supply means.
JP27835387A 1987-11-05 1987-11-05 Continuous plasma CVD equipment Expired - Fee Related JPH0628239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27835387A JPH0628239B2 (en) 1987-11-05 1987-11-05 Continuous plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27835387A JPH0628239B2 (en) 1987-11-05 1987-11-05 Continuous plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH01120809A JPH01120809A (en) 1989-05-12
JPH0628239B2 true JPH0628239B2 (en) 1994-04-13

Family

ID=17596152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27835387A Expired - Fee Related JPH0628239B2 (en) 1987-11-05 1987-11-05 Continuous plasma CVD equipment

Country Status (1)

Country Link
JP (1) JPH0628239B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334014A (en) * 1991-05-09 1992-11-20 Kawasaki Steel Corp Epitaxial growth device

Also Published As

Publication number Publication date
JPH01120809A (en) 1989-05-12

Similar Documents

Publication Publication Date Title
TWI704635B (en) Methods and systems to enhance process uniformity
US4430547A (en) Cleaning device for a plasma etching system
KR20210035769A (en) Film formation method and film formation apparatus
JPH03203317A (en) Plasma processor
US6277235B1 (en) In situ plasma clean gas injection
US20080047489A1 (en) Chemical vapor deposition reactor that pre-heats applied gas and substrate before reaction
JP2003174012A5 (en)
JPH05315268A (en) Plasma cvd apparatus
US5164017A (en) Method for cleaning reactors used for gas-phase processing of workpieces
JPH0628239B2 (en) Continuous plasma CVD equipment
JPH0456770A (en) Method for cleaning plasma cvd device
KR101596329B1 (en) Apparatus and method for performing plasma enhanced atomic layer deposition employing very high frequency
JP2020150014A (en) Manufacturing method of semiconductor device
JPS6210308B2 (en)
JPH01298169A (en) Film formation
US9896762B1 (en) Method of depositing and etching film in one processing apparatus
JPH09289179A (en) Cleaning method of cvd-ti film forming chamber
JPH07110996B2 (en) Plasma CVD equipment
JPS6295828A (en) Plasma processor
JPH04211115A (en) Rf plasma cvd apparatus and thin film forming method
JPS6223106A (en) Processor
JPH05156454A (en) Film forming device
JP2001185494A (en) Equipment for magnetron plasma treatment and method of plasma treatment
JPH04329626A (en) Processor of semiconductor device
JPH10189461A (en) Plasma treating apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees