JPH01120809A - Continuous plasma cvd equipment - Google Patents

Continuous plasma cvd equipment

Info

Publication number
JPH01120809A
JPH01120809A JP27835387A JP27835387A JPH01120809A JP H01120809 A JPH01120809 A JP H01120809A JP 27835387 A JP27835387 A JP 27835387A JP 27835387 A JP27835387 A JP 27835387A JP H01120809 A JPH01120809 A JP H01120809A
Authority
JP
Japan
Prior art keywords
chamber
substrate
plasma cvd
container
sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27835387A
Other languages
Japanese (ja)
Other versions
JPH0628239B2 (en
Inventor
Yukio Komura
幸夫 香村
Sadanori Ishida
禎則 石田
Takuya Nishimoto
卓矢 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP27835387A priority Critical patent/JPH0628239B2/en
Publication of JPH01120809A publication Critical patent/JPH01120809A/en
Publication of JPH0628239B2 publication Critical patent/JPH0628239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve an operation efficiency by a method wherein first, second and third chambers are successively provided and the respective chambers are separated from each other by gate valves and, while a plasma CVD treatment is carried out in the second chamber, a pretreatment and a posttreatment are carried out simultaneously in the first chamber and the third chamber respectively. CONSTITUTION:A first chamber container 7 which contains a first chamber 7A, a second chamber container 8 which is linked with the first chamber container 7 and contains a second chamber 8A and a third chamber container 9 which is linked with the second chamber container 8 and contains a third chamber 9A are successively provided adjoining to each other. A gate valve 10, a gate valve 11, a gate valve 12 and a gate valve 13 are provided at the entrance of the first chamber 7A, at the boundary of adjoining first and second chambers 7A and 8A, at the boundary of adjoining second and third chambers 8A and 9A and at the exit of the third chamber 9A respectively to separate the chambers from each other. With this constitution, while a plasma CVD treatment is carried out in the second chamber, a pretreatment and a posttreatment can be carried out simultaneously in the first chamber and the third chamber so that the operation can be performed efficiently.

Description

【発明の詳細な説明】 [f集土の利用分野] 本発明はプラズマCV D (Chemical Va
pour DepO8itiOn)法により、基板上に
薄膜を形成する連続式プラズマCVD装置に関するもの
である。
[Detailed description of the invention] [Field of application of soil collection] The present invention is based on plasma CVD (Chemical Va
The present invention relates to a continuous plasma CVD apparatus that forms a thin film on a substrate using a continuous plasma CVD method.

[従来技術] 従来のプラズマCVD装置は、第4図に示すように、真
空反応容器1内の基板ヒータ2の上に処理すべき基板3
を寝かせて設置し、基板3の上方には基板ヒータ2に対
向させて電極4を設置し、該電極4と基板ヒータ2との
間に高周波電源5から高周波電力を印加し、また真空反
応容器1内にはパイプよりなる原料ガス供給手段6で原
料ガスを供給し、プラズマCVD法で基板4の表面に薄
膜を形成していた。
[Prior Art] As shown in FIG. 4, in a conventional plasma CVD apparatus, a substrate 3 to be processed is placed on a substrate heater 2 in a vacuum reaction vessel 1.
An electrode 4 is placed above the substrate 3 facing the substrate heater 2, and high frequency power is applied from a high frequency power source 5 between the electrode 4 and the substrate heater 2. A source gas was supplied into the substrate 1 by a source gas supply means 6 made of a pipe, and a thin film was formed on the surface of the substrate 4 by plasma CVD.

し発明が解決しようとする問題点] しかしながら、このような従来のプラズマCVD装置で
は、基板3の片面(上側となった面)にしか薄膜を形成
できないので、もう一方の面にも薄膜を形成する作業を
もう一度行わなければならず、能率が悪い問題点があっ
た。また、従来のプラズマCVD装置では、真空反応容
器1内に基板3をセットしてから真空引きして、所定の
具空度に達した後に該真空反応容器1内でプラズマCV
D処理をし、次に該真空反応容器1内で後処理をするの
で、前処理や後処理に時間を要し、この面でも能率が悪
い問題点があった。
[Problems to be Solved by the Invention] However, in such a conventional plasma CVD apparatus, a thin film can only be formed on one side (the upper side) of the substrate 3, so it is difficult to form a thin film on the other side as well. There was a problem with inefficiency as the work had to be done again. In addition, in the conventional plasma CVD apparatus, the substrate 3 is set in the vacuum reaction vessel 1 and then the vacuum is evacuated.
Since the D treatment is carried out and then the post-treatment is carried out in the vacuum reaction vessel 1, time is required for the pre-treatment and post-treatment, and there is also the problem of poor efficiency in this respect.

本発明の目的は、基板の両面に同時にF#躾を形成でき
、しかも能率良く前処理や後処理を行える連続式プラズ
マCVD装置を提供することにある。
An object of the present invention is to provide a continuous plasma CVD apparatus which can simultaneously form F# layers on both sides of a substrate and can perform pre-treatment and post-treatment efficiently.

[問題点を解決するための手段] 上記の目的を達成するための本発明の詳細な説明すると
、本発明の連続式プラズマCVD装置は、内部に第1室
を有する第1室容器と、前記第1室に連通ずる第2室を
内部に有する第2室容器と、前記第2室に連通ずる第3
室を内部に有する第3室容器とが隣接して順次設けられ
、前記第1室の入口と隣接する前記第1.第2室の境界
と隣接する第2.第3室の境界と前記第3室の出口とが
それぞれゲートバルブで仕切られ、前記第1室容器には
前記第1室内で処理すべき基板を加熱するための加熱手
段と前記第1室内を真空引きするための真空引き手段と
が設けられ、前記第2室容器には前記第2室内を真空引
きするための真空引き手段と前記第1室から送られて来
た前記基板を1対の原料ガス流出電極の間に置いて該基
板の両側にプラズマを形成して該プラズマを通して前記
基板の両面に前記両原料ガス流出電極から原料ガスを供
給することにより前記基板の両面に同時に膜を形成する
プラズマCVD手段とが設けられ、前記第3室容器には
前記第3室内を真空引きするための真空引き手段と前記
第2vから送られて来た前記基板の両面の膜を安定化さ
せる膜安定化ガスを該第3室に供給する膜安定化ガス供
給手段とが設けられて構成されていることを特徴とする
[Means for Solving the Problems] To explain in detail the present invention for achieving the above object, the continuous plasma CVD apparatus of the present invention includes a first chamber container having a first chamber therein; a second chamber container having a second chamber therein that communicates with the first chamber; and a third chamber that communicates with the second chamber.
A third chamber container having a chamber therein is sequentially provided adjacent to the third chamber container, and the first chamber container is adjacent to the entrance of the first chamber. The second chamber adjacent to the boundary of the second chamber. The boundary of the third chamber and the outlet of the third chamber are separated by gate valves, and the first chamber container includes a heating means for heating the substrate to be processed in the first chamber. A vacuum evacuation means for evacuation is provided in the second chamber, and a pair of evacuation means for evacuation of the second chamber and a pair of the substrates sent from the first chamber are provided. Plasma is formed on both sides of the substrate by placing it between source gas outflow electrodes, and source gas is supplied from both source gas outflow electrodes to both sides of the substrate through the plasma, thereby simultaneously forming a film on both sides of the substrate. The third chamber is provided with a vacuum evacuation means for evacuating the inside of the third chamber, and a film for stabilizing the films on both sides of the substrate sent from the second v. A membrane stabilizing gas supply means for supplying stabilizing gas to the third chamber is provided.

[作用] このようにすると、第2室でプラズマCVD処理を行っ
ているとき、第1vと第3室で前処理と後処理とを並行
して行うことができ、能率良く作業を行うことができる
。また、第2室では、両原料ガス流出電極の間に基板を
配置し、該基板の両側にプラズマを発生させ、両涼料ガ
ス流出電極から原料ガスを各プラズマを横切って基板の
両面に供給するようにしたので、基板の両面に同時に薄
膜を形成できる。
[Function] In this way, when plasma CVD processing is performed in the second chamber, pre-treatment and post-treatment can be performed in parallel in the first and third chambers, and the work can be carried out efficiently. can. In addition, in the second chamber, a substrate is placed between both source gas outflow electrodes, plasma is generated on both sides of the substrate, and source gas is supplied from both coolant gas outflow electrodes across each plasma to both sides of the substrate. This allows thin films to be formed on both sides of the substrate at the same time.

[実施例コ 以下、本発明の実施例を図面を幸照して詳細に説明する
。第1図乃至第3図に示すように、本実施例の連続式プ
ラズマCVD装置においては、内部に第1室7Δを有す
る第1室容器7と、前記第1室7Aに連通する第2室8
Aを内部に有する第2室容器8と、前記第2室8Aに連
通する第3室9Aを内部に有する第3室容器9とが隣接
して順次設けられている。第1室7Aの入口にはゲート
バルブ10が設けられ、隣接する第1.第2室7A、8
Aの境界にはゲートバルブ11が設けられ、隣接する第
2.第3室8A、9Aの境界にはゲートバルブ12が設
けられ、第3室9Aの出口にはゲートバルブ13が設け
られてそれぞれ仕切られている。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIGS. 1 to 3, the continuous plasma CVD apparatus of this embodiment includes a first chamber container 7 having a first chamber 7Δ therein, and a second chamber communicating with the first chamber 7A. 8
A second chamber container 8 having a chamber A therein and a third chamber container 9 having therein a third chamber 9A communicating with the second chamber 8A are successively provided adjacent to each other. A gate valve 10 is provided at the entrance of the first chamber 7A, and a gate valve 10 is provided at the entrance of the first chamber 7A. 2nd room 7A, 8
A gate valve 11 is provided at the boundary of the adjacent second. A gate valve 12 is provided at the boundary between the third chambers 8A and 9A, and a gate valve 13 is provided at the outlet of the third chamber 9A to separate them from each other.

第1室容器7には、第1室7A内で処理すべき基板3を
加熱するためのヒータの如き加熱手段14と、第1室7
A内を真空引きするための真空引き手段15と、第1室
7A内にArの如き不活性ガスを供給する不活性ガス供
給手段16とが設けられている。
The first chamber container 7 includes a heating means 14 such as a heater for heating the substrate 3 to be processed in the first chamber 7A;
A vacuum evacuation means 15 for evacuating the inside of A, and an inert gas supply means 16 for supplying an inert gas such as Ar into the first chamber 7A are provided.

第2室容器8には、第2空8A内を真空引きするための
真空引き手段17と、第1室7Aから送られて来た基板
3を1対の原料ガス流出電極18の間に置いて該基板3
の両側にプラズマを形成して該プラズマを通して該基板
30両面に両原料ガス流出電極18から原料ガスを供給
することにより該基板3の両面に同時に膜を形成するプ
ラズマCVD手段19とが設けられている。即ち、この
プラズマCVD手段19においては、第2室8A内に垂
直向きで向かい合せにして互いに平行に配置された1対
の原料ガス流出電極18を有している。各原料ガス流出
電極18は、金属製であって多数のガス流出孔18Aが
分散して設けられている原料ガス流出電極本体18Bと
、その裏側に一体に設けられた金属製で漏斗状をした分
配室形成体18Gとで構成されている。原料ガス流出電
極18には原料ガス供給部20から配管21を介して原
料ガスが供給されるようになっている。また、原料ガス
流出電極18は、配管21を介して接地されている。向
い合せの原料ガス流出電極18間には、網目状なす1対
のメツシュ電極22が垂直向きで向い合せにして原料ガ
ス流出電極18に対して平行に配置されている。各メツ
シュ電極22は、高周波電源5からマツチングボックス
23を介して高周波電力が印加されるようになつている
The second chamber container 8 includes a vacuum evacuation means 17 for evacuating the inside of the second space 8A, and a substrate 3 sent from the first chamber 7A is placed between a pair of source gas outflow electrodes 18. The board 3
A plasma CVD means 19 is provided which simultaneously forms a film on both sides of the substrate 3 by forming plasma on both sides of the substrate 3 and supplying source gas from both source gas outflow electrodes 18 to both sides of the substrate 30 through the plasma. There is. That is, this plasma CVD means 19 has a pair of raw material gas outflow electrodes 18 arranged vertically facing each other and parallel to each other in the second chamber 8A. Each source gas outflow electrode 18 has a metal source gas outflow electrode main body 18B in which a large number of gas outflow holes 18A are distributed and provided, and a metal funnel-shaped body 18B that is integrally provided on the back side of the main body 18B. It is composed of a distribution chamber forming body 18G. Raw material gas is supplied to the raw material gas outflow electrode 18 from a raw material gas supply section 20 via a pipe 21 . Further, the raw material gas outflow electrode 18 is grounded via a pipe 21. Between the opposing source gas outlet electrodes 18, a pair of mesh electrodes 22 are disposed vertically facing each other and parallel to the source gas outlet electrodes 18. High frequency power is applied to each mesh electrode 22 from the high frequency power source 5 via a matching box 23.

両メツシュ電極22間には、処理用の基板3を通過させ
る空間が設けられている。なお、第1図では、原料ガス
流出電極18及びメツシュ電極22は、図示の関係上9
0度向きを変えて示している。
A space is provided between both mesh electrodes 22, through which the substrate 3 for processing passes. In FIG. 1, the raw material gas outflow electrode 18 and the mesh electrode 22 are shown as 9 for illustration purposes.
It is shown rotated 0 degrees.

第3室容器9には、第3室9A内を真空引きするための
真空引き手段24と、第2室8Aから送られて来た基板
3の両面の膜を安定化させる酸素の如き膜安定化ガスを
該第3室9△に供給する膜安定化ガス供給手段25と、
第3室9A内にA「の如き不活性ガスを供給する不活性
ガス供給手段26が設けられている。
The third chamber container 9 includes a vacuum evacuation means 24 for evacuating the inside of the third chamber 9A, and a film stabilizer such as oxygen for stabilizing the films on both sides of the substrate 3 sent from the second chamber 8A. membrane stabilizing gas supply means 25 for supplying a stabilizing gas to the third chamber 9Δ;
An inert gas supply means 26 for supplying an inert gas such as A is provided in the third chamber 9A.

基板3は基板支持台車27に垂直向きに搭載されて、第
1室7A、第2室8A、第3室9Aと順次移動されるよ
うになっている。
The substrate 3 is vertically mounted on a substrate support cart 27 and is moved sequentially to a first chamber 7A, a second chamber 8A, and a third chamber 9A.

次に、このようなプラズマCVD装置を用いて行うl膜
形成方法について説明する。
Next, a method for forming an l film using such a plasma CVD apparatus will be described.

ゲートバルブ10を開き、基板3を基板支持台車27に
よって第1室7Aに入れ、ゲートバルブ10@閉じる。
The gate valve 10 is opened, the substrate 3 is placed into the first chamber 7A by the substrate support cart 27, and the gate valve 10 is closed.

第1W7A内の加熱手段14によって基板3を200℃
位にし加熱する。次に、真空引き手段15によって第1
室7A内を10−3〜10 ’ Torr台に真空引き
し、不純物を排除して至内条件を一定にする。基板3が
200℃位に加熱できたら、不活性ガス供給手段16に
よってArの如き不、活性ガスを第1室7A内に入れて
該第1室7を10 ’ Torr台に調圧する。かかる
状態になったらゲートバルブ11を開いて基板3を第2
室8Aに入れ、ゲートバルブ11を閉じる。なお、第2
室8Aは予め10 ’ Torrに真空引き手段17で
真空引きしておく。第2室8Aでは、基板3を両メツシ
ュ電極22間に位置させる。かかる状態で、各メツシュ
電極22に高周波電源5からマツチングボックス23を
介して高周波電力(13,56MHz x15GsJ)
を印加し、各メツシュ電極22とこれに対向する原料ガ
ス流出電極18との間にプラズマを発生させる。また、
各原料ガス流出電極18からは、プラズマを横切って基
板3の両面に原料ガスを供給し、該原料ガスをプラズマ
で活性化させ、これにより基板3の両面に同時に成膜を
行わせる。成膜は約30秒行う。基板3への成膜が終了
したら、ゲートバルブ9Aを開け、基板3を第3室9A
に送り、ゲートバルブ9Aを閉じる。
The substrate 3 is heated to 200°C by the heating means 14 in the first W7A.
Place and heat. Next, the first
The inside of the chamber 7A is evacuated to a level of 10-3 to 10' Torr to remove impurities and keep the internal conditions constant. Once the substrate 3 has been heated to about 200° C., an inert gas such as Ar is introduced into the first chamber 7A by the inert gas supply means 16 to adjust the pressure of the first chamber 7 to about 10' Torr. When this state is reached, open the gate valve 11 and transfer the substrate 3 to the second
Enter the chamber 8A and close the gate valve 11. In addition, the second
The chamber 8A is previously evacuated to 10' Torr by the vacuum evacuation means 17. In the second chamber 8A, the substrate 3 is positioned between both mesh electrodes 22. In this state, high frequency power (13,56 MHz x 15 GsJ) is applied to each mesh electrode 22 from the high frequency power supply 5 via the matching box 23.
is applied to generate plasma between each mesh electrode 22 and the raw material gas outflow electrode 18 facing thereto. Also,
From each raw material gas outflow electrode 18, raw material gas is supplied across the plasma to both sides of the substrate 3, and the raw material gas is activated by the plasma, thereby forming a film on both sides of the substrate 3 at the same time. Film formation is performed for about 30 seconds. When the film formation on the substrate 3 is completed, open the gate valve 9A and transfer the substrate 3 to the third chamber 9A.
and close the gate valve 9A.

なお、第3室9Aは予め10−ITorr台に真空引き
手段24で真空引きし、不純物を排除した後、不活性ガ
ス供給手段25からArの如き不活性ガスを供給して室
内を10 ’ Torr台に調圧しておく。
The third chamber 9A is evacuated in advance to a 10-ITorr level by the vacuum evacuation means 24 to remove impurities, and then an inert gas such as Ar is supplied from the inert gas supply means 25 to bring the interior to 10' Torr. Adjust the pressure on the table.

第3室9A内に入って来た基板3に対し膜安定化ガス供
給手段26から酸素の如き膜安定化ガスを供給して基板
3の両面の膜を安定化させる。膜安定化処理後、ゲート
バルブ13を開き、基板3を外に取り出し、ゲートバル
ブ13を閉じる。
A film stabilizing gas such as oxygen is supplied from the film stabilizing gas supply means 26 to the substrate 3 that has entered the third chamber 9A to stabilize the films on both sides of the substrate 3. After the film stabilization treatment, the gate valve 13 is opened, the substrate 3 is taken out, and the gate valve 13 is closed.

このように第2室8Aは10 ’ Torr台とし、第
1、第3苗7A、9Aは10−2Torr台とすると、
ゲートバルブ11を開けたとき気流は第2室8Aから第
1室7Aに流れ、ゲートバルブ12を開けたとき気流は
第2室8Aから第3室9Aに流れ、第2室′8Δに不純
物が入らないようになる。
In this way, if the second chamber 8A is set at 10' Torr level, and the first and third seedlings 7A and 9A are set at 10-2 Torr level,
When the gate valve 11 is opened, the airflow flows from the second chamber 8A to the first chamber 7A, and when the gate valve 12 is opened, the airflow flows from the second chamber 8A to the third chamber 9A, and impurities enter the second chamber '8Δ. It becomes impossible to enter.

第1室容器7〜第3室容器9は、いずれも例えばステン
レススチールで形成する。また、この装置では、一定時
間後に基板3が移動し、所定の処理を受けるようにシー
ケンスを作り、自動化されている。
The first chamber container 7 to the third chamber container 9 are all made of, for example, stainless steel. Further, in this apparatus, a sequence is created and automated so that the substrate 3 is moved after a certain period of time and undergoes a predetermined process.

なお、上記実施例では、メツシュ電極22に高周波電力
を印加するようにしたが、メツシュ電極22を省略して
基板3に高周波電力を直接印加するようにしてもよい。
In the above embodiment, the high frequency power is applied to the mesh electrode 22, but the mesh electrode 22 may be omitted and the high frequency power may be directly applied to the substrate 3.

このようにすると、基板3と原料ガス供給電極18との
間にプラズマが発生するようになる。
In this way, plasma is generated between the substrate 3 and the source gas supply electrode 18.

第2室8Aにおいては、室内の構成部品にもハイドロカ
ーボン系の付着物が付くので、定期的にクリーニングす
る必要がある。クリーニングは、例えば02を供給しな
がらプラズマをかけることにより、プラズマエツチング
により行う。
In the second chamber 8A, since hydrocarbon-based deposits also adhere to the internal components, it is necessary to periodically clean the second chamber 8A. Cleaning is performed by plasma etching, for example, by applying plasma while supplying 02.

[発明の効果] 以上説明したように本発明の連続式プラズマCVD装置
では、第1.第2.第3室を連続させて設け、冬至をゲ
ートバルブで独立させたので、第2至でプラズマCVD
処理を行っているとき、第1室と第3室で前処理と後処
理とを並行して行うことができ、能率良く作業を行うこ
とができる利点がある。また、第2室では、両原料ガス
流出電極の間に基板を配置し、該基板の両側にプラズマ
を発生させ、両原料ガス流出電極から原料ガスを各プラ
ズマを横切って基板の両面に供給するようにしたので、
基板の両面に同時に薄膜を形成できる。従って本発明に
よれば、プラズマCVD法による成膜を能率良く行なう
ことができる。
[Effects of the Invention] As explained above, in the continuous plasma CVD apparatus of the present invention, the first. Second. The third chamber was set up continuously, and the winter solstice was separated by a gate valve, so plasma CVD was performed at the second solstice.
During processing, pre-processing and post-processing can be performed in parallel in the first and third chambers, which has the advantage of allowing efficient work. In addition, in the second chamber, a substrate is placed between both source gas outflow electrodes, plasma is generated on both sides of the substrate, and source gas is supplied from both source gas outflow electrodes across each plasma to both sides of the substrate. I did it like this,
Thin films can be formed on both sides of the substrate simultaneously. Therefore, according to the present invention, film formation by plasma CVD can be performed efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る連続式プラズマCVD装dの一実
施例を示す概略縦断面図、第2図及び第3図は本実施例
で用いている原料ガス流出電極の正面図及び縦断面図、
第4図は従来のプラズマCVD装置の概略縦断面図であ
る。。 3・・・基板、5・・・高周波電源、7・・・第1室容
器、7A・・・第1室、8・・・第2室容器、8A・・
・第2室、9・・・第3室容器、9A・・・第3室、1
0〜13・・・ゲートパルプ、14・・・加熱手段、1
5.17.24・・・寞空引き手段、18・・・原料ガ
ス電極、19・・・プラズマCVD手段、25・・・不
活性ガス供給手段、26・・・膜安定化ガス供給手段。
FIG. 1 is a schematic longitudinal sectional view showing an embodiment of a continuous plasma CVD apparatus according to the present invention, and FIGS. 2 and 3 are a front view and a longitudinal sectional view of a source gas outlet electrode used in this embodiment. figure,
FIG. 4 is a schematic longitudinal sectional view of a conventional plasma CVD apparatus. . 3... Substrate, 5... High frequency power supply, 7... First chamber container, 7A... First chamber, 8... Second chamber container, 8A...
・Second chamber, 9...Third chamber container, 9A...Third chamber, 1
0-13...Gate pulp, 14...Heating means, 1
5.17.24... Air drawing means, 18... Source gas electrode, 19... Plasma CVD means, 25... Inert gas supply means, 26... Film stabilizing gas supply means.

Claims (1)

【特許請求の範囲】[Claims]  内部に第1室を有する第1室容器と、前記第1室に連
通する第2室を内部に有する第2室容器と、前記第2室
に連通する第3室を内部に有する第3室容器とが隣接し
て順次設けられ、前記第1室の入口と隣接する前記第1
、第2室の境界と隣接する第2、第3室の境界と前記第
3室の出口とがそれぞれゲートバルブで仕切られ、前記
第1室容器には前記第1室内で処理すべき基板を加熱す
るための加熱手段と前記第1室内を真空引きするための
真空引き手段とが設けられ、前記第2室容器には前記第
2室内を真空引きするための真空引き手段と前記第1室
から送られて来た前記基板を1対の原料ガス流出電極の
間に置いて該基板の両側にプラズマを形成して該プラズ
マを通して前記基板の両面に前記両原料ガス流出電極か
ら原料ガスを供給することにより前記基板の両面に同時
に膜を形成するプラズマCVD手段とが設けられ、前記
第3室容器には前記第3室内を真空引きするための真空
引き手段と前記第2室から送られて来た前記基板の両面
の膜を安定化させる膜安定化ガスを該第3室に供給する
膜安定化ガス供給手段とが設けられて構成されているこ
とを特徴とする連続式プラズマCVD装置。
a first chamber container having a first chamber inside; a second chamber container having a second chamber inside communicating with the first chamber; and a third chamber having a third chamber inside communicating with the second chamber. the first chamber adjacent to the entrance of the first chamber;
, the boundary of the second chamber, the boundary of the adjacent second and third chambers, and the outlet of the third chamber are each partitioned off by a gate valve, and the substrate to be processed in the first chamber is placed in the container of the first chamber. A heating means for heating and a vacuum evacuation means for evacuation of the inside of the first chamber are provided, and the second chamber container is provided with a evacuation means for evacuation of the inside of the second chamber and a evacuation means for evacuation of the inside of the first chamber. Placing the substrate sent from the substrate between a pair of source gas outflow electrodes, forming plasma on both sides of the substrate, and supplying source gas from both source gas outflow electrodes to both sides of the substrate through the plasma. A plasma CVD means for simultaneously forming a film on both sides of the substrate is provided, and the third chamber is provided with a vacuum evacuation means for evacuating the inside of the third chamber, and a plasma CVD means for forming a film on both sides of the substrate at the same time. A continuous plasma CVD apparatus comprising a film stabilizing gas supply means for supplying a film stabilizing gas to the third chamber to stabilize films on both sides of the substrate.
JP27835387A 1987-11-05 1987-11-05 Continuous plasma CVD equipment Expired - Fee Related JPH0628239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27835387A JPH0628239B2 (en) 1987-11-05 1987-11-05 Continuous plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27835387A JPH0628239B2 (en) 1987-11-05 1987-11-05 Continuous plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH01120809A true JPH01120809A (en) 1989-05-12
JPH0628239B2 JPH0628239B2 (en) 1994-04-13

Family

ID=17596152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27835387A Expired - Fee Related JPH0628239B2 (en) 1987-11-05 1987-11-05 Continuous plasma CVD equipment

Country Status (1)

Country Link
JP (1) JPH0628239B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334014A (en) * 1991-05-09 1992-11-20 Kawasaki Steel Corp Epitaxial growth device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334014A (en) * 1991-05-09 1992-11-20 Kawasaki Steel Corp Epitaxial growth device

Also Published As

Publication number Publication date
JPH0628239B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
JPH03120362A (en) Apparatus and method for plasma treatment
JPH03166373A (en) In-line cvd device
JP2003174012A5 (en)
TW201443265A (en) Atomic layer deposition apparatus and atomic layer deposition method
CN106661731A (en) Nozzle head, apparatus and method for subjecting surface of substrate to successive surface reactions
CN108885983B (en) Plasma processing apparatus and method
JPH01120809A (en) Continuous plasma cvd equipment
US5164017A (en) Method for cleaning reactors used for gas-phase processing of workpieces
CN101199039A (en) Film-forming and cleaning method
JPH01137621A (en) Vapor growth apparatus
JPS59167012A (en) Plasma cvd equipment
JP2001073146A (en) Thin film deposition system and method
JPS62287079A (en) Plasma cvd apparatus
KR100384500B1 (en) Self-cleaning method of thin film forming device
JPH0341722A (en) Thin-film manufacturing apparatus
JPS62298116A (en) Treatment device
JPS6223106A (en) Processor
JPH04329626A (en) Processor of semiconductor device
JPH04349624A (en) Film forming treatment
JPH0717146Y2 (en) Wafer processing equipment
JPH0447455B2 (en)
JPS58117870A (en) Film forming device
JPH08261535A (en) Dust removal apparatus, semiconductor processing apparatus, and vapor deposition apparatus
JPH0527707B2 (en)
JPH01100915A (en) Plasma cvd apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees