JPH0628171B2 - Rechargeable electrochemical device and its manufacturing method - Google Patents

Rechargeable electrochemical device and its manufacturing method

Info

Publication number
JPH0628171B2
JPH0628171B2 JP60107408A JP10740885A JPH0628171B2 JP H0628171 B2 JPH0628171 B2 JP H0628171B2 JP 60107408 A JP60107408 A JP 60107408A JP 10740885 A JP10740885 A JP 10740885A JP H0628171 B2 JPH0628171 B2 JP H0628171B2
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
electrochemical device
activated carbon
rechargeable electrochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60107408A
Other languages
Japanese (ja)
Other versions
JPS61264686A (en
Inventor
敏雄 重松
敏彦 池畠
信晴 小柴
林 早川
祐二 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60107408A priority Critical patent/JPH0628171B2/en
Publication of JPS61264686A publication Critical patent/JPS61264686A/en
Publication of JPH0628171B2 publication Critical patent/JPH0628171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、移動用直流電源、バッフアップ用電源などに
用いる充電可能な電気化学装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rechargeable electrochemical device used for a mobile DC power supply, a buffer power supply, and the like.

従来の技術 リチウムなどの軽金属を負極活物質に用いた有機電解質
電池は、正極にフッ化炭素あるいは二酸化マンガンなど
を用い、負極活物質にリチウム金属,電解液にホウフッ
化リチウム,過塩素酸リチウムなどのリチウム塩を溶解
させたプロピレンカーボネート,γ−ブチロラクトン,
1・2ジエトキシメタンなどの極性,非プロトン性溶媒
が用いられているが、この系は一次電池としてであり、
充電は現状のままでは不可能である。
2. Description of the Related Art Organic electrolyte batteries that use light metals such as lithium as the negative electrode active material use fluorocarbon or manganese dioxide as the positive electrode, lithium metal as the negative electrode active material, lithium borofluoride, lithium perchlorate as the electrolyte, etc. Propylene carbonate, γ-butyrolactone, in which the lithium salt of
Although polar and aprotic solvents such as 1.2 diethoxymethane are used, this system is for primary batteries,
Charging is impossible as it is.

一方、充電可能な電気化学装置として、正極に活性炭負
極にリチウム合金を用いた電池があり、その構成を第3
図に示す。
On the other hand, as a rechargeable electrochemical device, there is a battery using a lithium alloy for a positive electrode and an activated carbon negative electrode.
Shown in the figure.

第3図において、1は電池ケース、2はケースと同じ材
料を打ち抜いた封口板、3はガスケット、4は活性炭か
らなる正極、5は正極集電体で、5′の部分でケース1
の内面に溶接されている。
In FIG. 3, 1 is a battery case, 2 is a sealing plate made by punching out the same material as the case, 3 is a gasket, 4 is a positive electrode made of activated carbon, 5 is a positive electrode current collector, and 5'is a case 1
It is welded to the inner surface of.

この種の電気化学装置は、主に活性炭表面の電気二重層
における電荷チャージを利用するもので、従って電気二
重層を形成する活性炭の有効表面積や導電性、さらに
は、集電体及び活性炭の収納ケースとの接触抵抗などが
問題となる。従来、正極とケースとを電気的に接触させ
る方法として以下のようなものがあった。
This type of electrochemical device mainly utilizes the charge charge in the electric double layer on the surface of the activated carbon, and therefore the effective surface area and conductivity of the activated carbon forming the electric double layer, and the storage of the current collector and activated carbon. Contact resistance with the case becomes a problem. Conventionally, there have been the following methods for electrically contacting the positive electrode and the case.

(1)集電体を中心に正極合剤を成形し、合剤の一部を剥
離して集電体を露出させ、これをケースに溶接する。
(1) A positive electrode mixture is formed around the current collector, a part of the mixture is peeled off to expose the current collector, and this is welded to a case.

(2)集電体の片面に合剤を充填し、合剤の一部を剥離さ
せて集電体とケースを接触させる。
(2) One side of the current collector is filled with the mixture, and a part of the mixture is peeled off to bring the current collector and the case into contact with each other.

(3)正極に活性炭素からなる不織布を用い、この正極の
芯材とケースを溶接する。
(3) A non-woven fabric made of activated carbon is used for the positive electrode, and the core material of the positive electrode is welded to the case.

発明が解決しようとする問題点 上記(1),(2)の方法は、正極とケースとの接触が、完全
で、放電特性も良好であるが、製造工程が煩雑となり、
結果的にコスト高となる。また、合剤の一部を剥離させ
るために容量が減少し、逆に剥離分だけ充填量を増すと
極板が厚くなり不利となる。
Problems to be Solved by the Invention In the methods (1) and (2), the contact between the positive electrode and the case is complete, and the discharge characteristics are good, but the manufacturing process becomes complicated,
As a result, the cost becomes high. Further, since the capacity is reduced because a part of the mixture is peeled off, conversely, if the filling amount is increased by the peeled amount, the electrode plate becomes thicker, which is disadvantageous.

(3)の方法は、正極の製造は簡単であるが、不織布であ
るためケースとの溶接強度が十分でなく、封口した後に
溶接部が外れたり、放電特性のバラツキが大きくなる。
また、粉末状の活性炭を成形した正極と比較すると同体
積における容量は極めて少なくなる。(1)〜(3)における
方法の共通する問題点は、前述したように活性炭表面の
電気二重層における電荷チャージを利用するため、充・
放電サイクルにおいて安定した特性を得るには、できる
だけ正極と集電体との接触面積が大きいことが要求され
るが(1)〜(3)の方法は正極表面のみであり、十分でなか
った。本発明は上記のような従来の問題点を解消するも
のである。
In the method (3), the production of the positive electrode is simple, but since it is a non-woven fabric, the welding strength with the case is not sufficient, and the welded part may come off after sealing and the dispersion of the discharge characteristics becomes large.
Moreover, the capacity in the same volume becomes extremely small as compared with the positive electrode formed by molding powdered activated carbon. The common problems of the methods in (1) to (3) are that charge and charge in the electric double layer on the surface of activated carbon are used as described above.
In order to obtain stable characteristics in the discharge cycle, it is required that the contact area between the positive electrode and the current collector is as large as possible, but the methods (1) to (3) are limited to the surface of the positive electrode and are not sufficient. The present invention solves the above conventional problems.

問題点を解決するための手段 本発明はエキスパンデッドメタルを芯材に用いて正極の
シート成型を行ない、ペレット状に打ち抜いた正極と、
あらかじめ電池ケースに溶接された金属集電体に芯材の
ない正極の他面を密着させることによって、正極を上下
からサンドイッチ構造にはさんだものである。
Means for Solving the Problems The present invention is a positive electrode sheet molded into a positive electrode using expanded metal as a core material, and a positive electrode punched into a pellet form,
The positive electrode is sandwiched from the top and bottom by adhering the other surface of the positive electrode having no core material to the metal current collector that has been welded to the battery case in advance.

作用 この構成によれば、正極と集電体との接触面積が広くか
つ電池ケースとの確実な接触が得られる。従って、前記
(1),(2)のように合剤を剥離させる必要もなく同体積の
中で高容量が得られ、製造工程も簡単である。また、正
極全体に集電体があるため確実な集電効果もあり(3)と
比較して溶接強度も確実に大となる。
Operation According to this configuration, the contact area between the positive electrode and the current collector is wide and reliable contact with the battery case can be obtained. Therefore, the above
Unlike the cases of (1) and (2), it is possible to obtain a high capacity in the same volume without the need to remove the mixture, and the manufacturing process is simple. Further, since there is a current collector over the entire positive electrode, there is also a reliable current collecting effect, and the welding strength is certainly increased as compared with (3).

実施例 以下本発明の実施例を図を参照して説明する。Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の実施例の一つとして、高さ2mm,直
径20mmの充電可能な有機電解質電池を示したものであ
る。第1図中4は、9のエキスパンドメタルを芯材とし
た正極で、表面積が1500cm2/gの活性炭粉末と導電材
であるカーボンブラックと結着剤である6−フッ化プロ
ピレンと4−フッ化エチレンとの共重合体を混合し芯材
を核としシート成形したもので、芯材の厚さは正極合剤
の厚みの約50%まで達している。次にチタンのラスを
直径14mmの大きさに打ち抜き、電池ケース1の内面中
央部にスポット溶接5′して正極集電体5を形成し、こ
の正極集電体上に前述の正極4を載置し、封口の際の加
圧により正極4と正極集電体5とを一体化し密着させ
た。7は負極でリチウムと鉛の合金を50μの厚みのシ
ート状に圧延し、直径14mmの大きさに打ち抜き、あら
かじめ封口板2の内面に溶接したニッケル金属ネットか
ら成る負極集電体8上に圧着した。3はガスケット、6
はポリプロピレン不織布からなるセパレータである。電
解液には、炭酸プロピレンと、1,2−ジメトキシエタ
ンとの等溶積混合溶媒にホウフッ化リチウムを1mol/
の割合で溶解したものを用いている。この電池は、総
高2mm,直径20mm,容量1mA/Vの充電可能な電気
化学装置である。
FIG. 1 shows, as one embodiment of the present invention, a rechargeable organic electrolyte battery having a height of 2 mm and a diameter of 20 mm. In FIG. 1, 4 is a positive electrode using 9 expanded metal as a core material, activated carbon powder having a surface area of 1500 cm 2 / g, carbon black as a conductive material, and 6-fluorinated propylene and 4-fluoride as a binder. This is a sheet formed by mixing a copolymer with ethylene oxide and using a core material as a core, and the thickness of the core material reaches up to about 50% of the thickness of the positive electrode mixture. Next, a titanium lath is punched out to a diameter of 14 mm, spot welded 5'to the center of the inner surface of the battery case 1 to form a positive electrode current collector 5, and the above-mentioned positive electrode 4 is mounted on this positive electrode current collector. Then, the positive electrode 4 and the positive electrode current collector 5 were integrated and brought into close contact with each other by the pressure applied at the time of sealing. Reference numeral 7 denotes a negative electrode, which is obtained by rolling an alloy of lithium and lead into a sheet having a thickness of 50 μ, punching it out to a diameter of 14 mm, and crimping it onto a negative electrode current collector 8 made of a nickel metal net that is welded to the inner surface of the sealing plate 2 in advance. did. 3 is a gasket, 6
Is a separator made of polypropylene nonwoven fabric. For the electrolyte, 1 mol / mol of lithium borofluoride was added to a mixed solvent of propylene carbonate and 1,2-dimethoxyethane.
What was melt | dissolved in the ratio of is used. This battery is a rechargeable electrochemical device having a total height of 2 mm, a diameter of 20 mm and a capacity of 1 mA / V.

第1図Aは活性炭粉末を結着剤と混合した後、シート成
形し、その後ペレット状に打ち抜いた正極4を用いたも
のである。これを電池ケース1内にあらかじめ溶接され
た金属集電体5上に載置し、第2図Bのようにケース1
の封口の際の加圧力により正極4と集電体5とを一体化
し、エキスパンドメタルと集電体とによって正極をはさ
むサンドイッチ構造にしたものである。次に、前記従来
例の(1)〜(3)の方法で正極とケースとを電気的に接続し
たものをA・B・Cとし、本実施例によるものをDとし
て、それぞれの電池を1mAで1時間の充電・放電をく
り返し、1000サイクル後の内部抵抗及び1mA放電
での3Vから1.5Vまでの放電容量を測定し、その結果
を表−1に平均値xとバラツキσで示した。
In FIG. 1A, a positive electrode 4 is used, in which activated carbon powder is mixed with a binder, then formed into a sheet, and then punched into pellets. This is placed on the metal current collector 5 previously welded in the battery case 1, and the case 1 is placed as shown in FIG. 2B.
The positive electrode 4 and the current collector 5 are integrated by the pressure applied at the time of sealing, and the positive electrode 4 and the current collector 5 have a sandwich structure in which the positive electrode is sandwiched by the expanded metal and the current collector. Next, A, B, and C are obtained by electrically connecting the positive electrode and the case by the methods of the above-mentioned conventional examples (1) to (3), and those according to the present example are designated as D, and each battery is 1 mA. After repeating charging and discharging for 1 hour, the internal resistance after 1000 cycles and the discharge capacity from 3 V to 1.5 V at 1 mA discharge were measured. The results are shown in Table 1 as an average value x and a variation σ.

また、前記正極の打ち抜き後の表面積に対し、集電体表
面積の比率を変化させた結果を表−2に示す。
Table 2 shows the results of changing the ratio of the surface area of the current collector to the surface area of the positive electrode after punching.

この結果より、集電体の表面積は、正極の表面積に対し
0.3以下になると集電効果をなくし、0.9以上になると、
正極より集電体が大きくなり、電池構成時にペレット端
部の合剤がくずれやすくなり内部短絡の原因となる。
From this result, the surface area of the current collector is larger than that of the positive electrode.
When it is 0.3 or less, the current collecting effect is lost, and when it is 0.9 or more,
The current collector becomes larger than that of the positive electrode, and the mixture at the end of the pellet easily collapses during battery construction, which causes an internal short circuit.

以上の結果から明らかなように集電体と正極の表面積
は、正極1に対し、0.3〜0.9が最適であることがわか
る。
As is clear from the above results, the surface area of the current collector and the positive electrode is optimally 0.3 to 0.9 with respect to the positive electrode 1.

発明の効果 以上の説明から明らかなように、活性炭をシート成型後
ペレット状に打ち抜き、ケース内面にあらかじめ溶接さ
れた金属集電体上に正極芯材のエキスパンドメタルとこ
のケース側集電体とによってサンドイッチ構造になるよ
う正極を載置し、ケース封口時の加圧力により正極と集
電体を密着一体化させた構成の本発明の電池は、正極と
集電体及びケースとの間の接触が充分に図れて、内部抵
抗が小さく、充・放電性能保存性能が良好である。しか
も製造工程も簡素化でき、量産性を高めることができ、
工業的にも価値のある製造法が得られる。
EFFECTS OF THE INVENTION As is apparent from the above description, the activated carbon is punched into a pellet shape after sheet molding, and the expanded metal of the positive electrode core material and the case side current collector are provided on the metal current collector that is previously welded to the inner surface of the case. The battery of the present invention having a configuration in which the positive electrode is placed so as to have a sandwich structure and the positive electrode and the current collector are brought into close contact with each other by the pressure applied when the case is sealed, and the positive electrode, the current collector and the case are not in contact with each other. It has sufficient internal resistance and good charge / discharge performance and storage performance. Moreover, the manufacturing process can be simplified and mass productivity can be improved.
An industrially valuable manufacturing method can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例における充電可能な有機電解質
電池の縦断面図である。第2図A,Bは本発明の電池の
構成過程を示す図、第3図は従来の製造法による充電可
能な有機電解質電池の断面図てある。 1……正極ケース、2……封口板、3……ガスケット、
4……正極、5……正極集電体、5,5′……スポット
溶接部、6……セパレータ、7……負荷、8……負極集
電体、9……正極芯材。
FIG. 1 is a vertical sectional view of a rechargeable organic electrolyte battery according to an embodiment of the present invention. 2A and 2B are diagrams showing a process of constructing the battery of the present invention, and FIG. 3 is a sectional view of a rechargeable organic electrolyte battery manufactured by a conventional manufacturing method. 1 ... Positive electrode case, 2 ... Sealing plate, 3 ... Gasket,
4 ... Positive electrode, 5 ... Positive electrode current collector, 5, 5 '... Spot weld, 6 ... Separator, 7 ... Load, 8 ... Negative electrode current collector, 9 ... Positive electrode core material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早川 林 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 加納 祐二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭60−17857(JP,A) 特開 昭58−121553(JP,A) 特開 昭59−96678(JP,A) 実開 昭54−174820(JP,U) 特公 昭57−32865(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hayashi Hayakawa, 1006 Kadoma, Kadoma City, Osaka Prefecture, Matsushita Electric Industrial Co., Ltd. (72) Yuji Kano, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. 56) References JP-A-60-17857 (JP, A) JP-A-58-121553 (JP, A) JP-A-59-96678 (JP, A) Actual development Sho-54-174820 (JP, U) JP 57-32865 (JP, B2)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】活性炭を主とした正極と、リチウムを活物
質とするリチウム合金負極と、有機電解質からなる充電
可能な電気化学装置であって、前記正極は活性炭と結着
剤の混合物をシート状に成形して打ち抜いたペレット状
であり、その片面にはエキスパンデットメタルの芯材を
密着させ、他面には電池ケースの内面に溶接された金属
集電体を密着させたことを特徴とする充電可能な電気化
学装置。
1. A rechargeable electrochemical device comprising a positive electrode containing activated carbon as a main component, a lithium alloy negative electrode containing lithium as an active material, and an organic electrolyte, wherein the positive electrode is a sheet of a mixture of activated carbon and a binder. It is in the form of pellets that are molded and punched into a shape, one side of which is fitted with an expanded metal core material, and the other side of which is fitted with a metal current collector welded to the inner surface of the battery case. And a rechargeable electrochemical device.
【請求項2】電池ケース内面の集電体と打ち抜いた正極
の面積比率が、正極を1とした場合、集電体の面積が
0.3〜0.9である特許請求の範囲第1項記載の充電
可能な電気化学装置。
2. The area ratio between the current collector on the inner surface of the battery case and the punched out positive electrode is 0.3 to 0.9 when the positive electrode is 1, and the area of the current collector is 0.3 to 0.9. A rechargeable electrochemical device as described.
【請求項3】活性炭を主とした正極と、リチウムを活物
質とするリチウム合金負極と、有機電解質からなる充電
可能な電気化学装置の製造法であって、前記正極は活性
炭と接着剤の混合物をエキスパンデッドメタルを芯材に
用いてシート成型を行ない、ペレット状に打ち抜いた
後、電池ケースの内面にあらかじめ溶接された金属集電
体にペレット状正極の芯材のない他面が相対するように
載置し、正極ケースのかしめ封口時の加圧によって金属
集電体をペレット状正極の他面に埋没させることを特徴
とした充電可能な電気化学装置の製造法。
3. A method of manufacturing a rechargeable electrochemical device comprising a positive electrode mainly containing activated carbon, a lithium alloy negative electrode containing lithium as an active material, and an organic electrolyte, wherein the positive electrode is a mixture of activated carbon and an adhesive. After forming a sheet using expanded metal as the core material and punching it into pellets, the other side of the pellet-shaped positive electrode without the core material faces the metal current collector that was previously welded to the inner surface of the battery case. A method for manufacturing a rechargeable electrochemical device, which comprises placing the metal collector on the other surface of the pellet-shaped positive electrode by applying pressure when the positive electrode case is caulked and sealed.
JP60107408A 1985-05-20 1985-05-20 Rechargeable electrochemical device and its manufacturing method Expired - Lifetime JPH0628171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60107408A JPH0628171B2 (en) 1985-05-20 1985-05-20 Rechargeable electrochemical device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60107408A JPH0628171B2 (en) 1985-05-20 1985-05-20 Rechargeable electrochemical device and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS61264686A JPS61264686A (en) 1986-11-22
JPH0628171B2 true JPH0628171B2 (en) 1994-04-13

Family

ID=14458389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60107408A Expired - Lifetime JPH0628171B2 (en) 1985-05-20 1985-05-20 Rechargeable electrochemical device and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0628171B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54174820U (en) * 1978-05-30 1979-12-10

Also Published As

Publication number Publication date
JPS61264686A (en) 1986-11-22

Similar Documents

Publication Publication Date Title
US4658498A (en) Process for producing rechargeable electrochemical device
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JP4910235B2 (en) Lithium secondary battery and manufacturing method thereof
JPH06318454A (en) Nonaqueous electrolyte secondary battery
US20020094478A1 (en) Electrode with flag-shaped tab
JP4023213B2 (en) Lithium ion secondary battery
JPH0425676B2 (en)
JPH0628171B2 (en) Rechargeable electrochemical device and its manufacturing method
JP2002367607A (en) Non-sintered electrode for alkali storage battery, and alkali storage battery using the same
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JPH11102728A (en) Organic electrolyte secondary battery
JPH08293302A (en) Organic electrolytic secondary battery
JP3085018B2 (en) Thin battery
JPH0719088Y2 (en) Thin battery
JPH06215755A (en) Thin type battery and manufacture thereof
JP2976825B2 (en) Cylindrical sealed alkaline storage battery
JPS60131769A (en) Rechargeable lithium battery
JPS58129789A (en) Flat type nickel-cadmium battery
JPS61281475A (en) Manufacture of chargeable electrochemical device
JP2000030736A (en) Nickel hydrogen secondary battery
JP2822443B2 (en) Electrode group for storage battery
JPH0756805B2 (en) Non-aqueous electrolyte battery
JPS60264058A (en) Manufacture of chargeable electrochemical device
JPS594453Y2 (en) battery