JPH06280077A - Production of rare-earth metal by electrolytic reduction - Google Patents

Production of rare-earth metal by electrolytic reduction

Info

Publication number
JPH06280077A
JPH06280077A JP6891093A JP6891093A JPH06280077A JP H06280077 A JPH06280077 A JP H06280077A JP 6891093 A JP6891093 A JP 6891093A JP 6891093 A JP6891093 A JP 6891093A JP H06280077 A JPH06280077 A JP H06280077A
Authority
JP
Japan
Prior art keywords
rare
earth
rare earth
electrolytic reduction
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6891093A
Other languages
Japanese (ja)
Other versions
JP3169471B2 (en
Inventor
Junzo Tsuruki
潤三 鶴来
Haruo Takamura
治男 高村
Takayuki Hasegawa
孝幸 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP06891093A priority Critical patent/JP3169471B2/en
Publication of JPH06280077A publication Critical patent/JPH06280077A/en
Application granted granted Critical
Publication of JP3169471B2 publication Critical patent/JP3169471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To economically produce rare-earth metals with high productivity by electrolytically reducing the fired material of an intermediate composition of the rare-earth carbonates and oxide obtained by firing rare-earth carbonates. CONSTITUTION:Rare-earth metals are produced by electrolytic reduction. In this case, the fired material of inexpensive and easy-to-obtain rare-earth carbonates consisting of Re2O2CO3 (Re is a rare-earth element) is used as the raw material. The fired material is obtained by firing rare-earth carbonates at about 500 deg.C, preferably at 500-700, for about 10min to 2hr. A molten salt bath mixed with rare-earth fluorides such as LiF and BaF2 is kept at about 1000 deg.C by applying current to electrolytically reduce the calcined rare-earth carbonates. The formed rare-earth metals accumulated on the furnace bottom is drawn off and cast into the ingot.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】電解還元法により希土類金属を製
造するに際しての原料組成調整方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a raw material composition adjusting method for producing a rare earth metal by an electrolytic reduction method.

【0002】[0002]

【従来の技術】従来、希土類金属の電解還元製造法は、
希土類酸化物を原料として該希土類弗化物溶融塩中で電
解還元するのが一般的であった。
2. Description of the Related Art Conventionally, the method for electrolytic reduction of rare earth metals is
It was general to carry out electrolytic reduction in the rare earth fluoride molten salt using a rare earth oxide as a raw material.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、原料希
土類酸化物の供給の少ない時は陽極効果があって通電が
困難になり、一方供給の多い場合には炉底部にオキシ弗
化物を主とする固相の増加が進行する等のトラブルが発
生し易く、その改良が望まれていた。オキシ弗化物を主
とする固化層は生成した希土類金属に対して反応性がな
く、高価なタンタル容器を必要とせずにセルフライニン
グ層を形成して希土類金属の溜り部として機能している
が、その増加は希土類金属溜り部の減少〜消滅に繋がり
好ましくない。本発明はかかる課題を解決した原料コス
トが安価でしかも生産性の高い希土類金属の電解還元製
造法を提供しようとするものである。
However, when the raw material rare earth oxide is supplied in a small amount, the anode effect is exerted, which makes it difficult to conduct electricity. Problems such as an increase in the number of phases are likely to occur, and improvement thereof has been desired. The solidified layer mainly consisting of oxyfluoride is not reactive with the generated rare earth metal, and functions as a reservoir for rare earth metal by forming a cell flying layer without the need for an expensive tantalum container. The increase leads to a decrease to disappearance of the rare earth metal accumulation portion, which is not preferable. The present invention is intended to provide a method for electrolytic reduction production of a rare earth metal which solves the above problems and which has a low raw material cost and high productivity.

【0004】[0004]

【課題を解決するための手段】本発明者等はかかる課題
を解決するために希土類炭酸塩に着目し、炭酸塩と酸化
物の中間組成物が有効であることを見出し、本発明を完
成したもので、その要旨は、電解還元法により希土類金
属を製造するに際し、原料として一般式Re2O2CO3(ここ
にReは希土類元素を表す)から成る希土類炭酸塩の焼成
物を使用することを特徴とする希土類金属の電解還元製
造法にある。
The present inventors have focused on rare earth carbonates in order to solve the above problems, found that an intermediate composition of carbonate and oxide is effective, and completed the present invention. The main point of this is to use a calcined product of a rare earth carbonate composed of the general formula Re 2 O 2 CO 3 (where Re represents a rare earth element) as a raw material when producing a rare earth metal by the electrolytic reduction method. And a method for electrolytically reducing rare earth metals.

【0005】以下、本発明を詳細に説明する。従来の希
土類酸化物原料より安価にしかも容易に得られる希土類
炭酸塩を500℃以上、好ましくは 500〜 700℃で10分〜
2時間焼成して得られる一般式Re2O2CO3から成る焼成物
を溶融塩電解還元法の原料とするところに本発明の最大
の特徴がある。ここで500 ℃未満では炭酸塩Re2(CO3)3
は殆ど分解せず、原料として溶融塩浴に供給された時に
急激にCO2 を発生し、殆どが飛散してしまい不適当であ
る。800 ℃を越えると酸化物Re2O3 のみとなり従来の酸
化物を原料とする従来法と変わらなくなり、メリットが
なくなる。600 ± ℃ではRe2O2CO3が100 %で最適条件
である。溶融塩電解還元法においてRe2O2CO3が好成績を
もたらすのはRe2O3 に対して1分子のCO2 が化合したRe
2O2CO3が溶融塩浴に供給され、 1,000℃以上に急速に加
熱された時にCO2 ガスが適度に発生し、溶融塩浴への溶
解を促進するためと推測される。
The present invention will be described in detail below. Rare earth carbonates, which are cheaper and easier to obtain than conventional rare earth oxide raw materials, can be obtained at 500 ° C or higher, preferably at 500-700 ° C for 10 minutes-
The greatest feature of the present invention is that a calcined product of the general formula Re 2 O 2 CO 3 obtained by calcining for 2 hours is used as a raw material for the molten salt electrolytic reduction method. Below 500 ° C, carbonate Re 2 (CO 3 ) 3
Is hardly decomposed, and when supplied as a raw material to a molten salt bath, CO 2 is rapidly generated, and most of it is scattered, which is unsuitable. If the temperature exceeds 800 ° C, only the oxide Re 2 O 3 remains, which is no different from the conventional method using the conventional oxide as a raw material, and there is no merit. At 600 ± ℃, Re 2 O 2 CO 3 is 100%, which is the optimum condition. In the molten salt electrolytic reduction method, Re 2 O 2 CO 3 gives good results because one molecule of CO 2 is combined with Re 2 O 3 .
It is presumed that 2 O 2 CO 3 is supplied to the molten salt bath, and when heated rapidly to 1,000 ° C or higher, CO 2 gas is appropriately generated, which promotes dissolution in the molten salt bath.

【0006】ここにReは希土類元素を表し、本発明はY
を含む La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Ybお
よびLuから選択される1種または2種以上の混合物に対
して適応されるが、特にNdに対して好適である。希土類
炭酸塩の焼成はバッチ式ならば原料をるつぼに入れ電気
炉で行えば良く、連続式ならばロータリーキルンを使用
すれば良い。希土類炭酸塩は例えば粗製希土類塩化物水
溶液を炭酸アンモニウムで中和し、沈殿を濾別乾燥して
得られる。
Here, Re represents a rare earth element, and the present invention is Y
It is applicable to one or more mixtures selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. , Especially suitable for Nd. The firing of the rare earth carbonate may be carried out in an electric furnace by putting the raw materials in a crucible if it is a batch system, and by using a rotary kiln if it is a continuous system. The rare earth carbonate is obtained, for example, by neutralizing a crude aqueous solution of rare earth chloride with ammonium carbonate and filtering and drying the precipitate.

【0007】Re2O2CO3を原料とする溶融塩電解還元法は
従来公知の方法によれば良いが、その概要は次のようで
ある。例えば電解槽は 1,000mmφ×1,200mmHの鉄製円筒
状で、陽極として黒鉛棒を6本、陰極としてMo棒1本か
らなり、電解浴は原料希土類炭酸塩焼成物に対応する希
土類弗化物に弗化リチウム、弗化バリウムを配合したも
ので、通電して浴温度は約1,000 ℃に保つ。この溶融塩
浴に原料希土類炭酸塩を少しづつ供給して電解すれば、
希土類金属は炉底に溜るので、タッピング管を差し込ん
で眞空をかけ吸引して鋳型に流し込み冷却して希土類金
属インゴットとする。
The molten salt electrolytic reduction method using Re 2 O 2 CO 3 as a raw material may be a conventionally known method, and the outline thereof is as follows. For example, the electrolytic cell is a 1,000 mmφ x 1,200 mmH iron cylinder, consisting of 6 graphite rods as the anode and 1 Mo rod as the cathode. It is a mixture of lithium and barium fluoride, and the bath temperature is kept at about 1,000 ° C by applying electricity. If the raw material rare earth carbonate is supplied little by little to this molten salt bath and electrolyzed,
Since the rare earth metal accumulates on the bottom of the furnace, a tapping tube is inserted, a vacuum is applied, suction is made, and it is poured into a mold and cooled to form a rare earth metal ingot.

【0008】[0008]

【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1) (電解用原料の調整)炭酸Ndを下記各温度で 時間焼
成した後、焼成物をX線により結晶型を同定した結果は
次の通りである。 A: 800℃・・・Nd2O3 100% B: 700℃・・・Nd2O2CO3が主で若干のNd2O3 が認めら
れる。 C: 600℃・・・Nd2O2CO3 100% D: 500℃・・・Nd2O2CO3が主で若干のNdCO3・OHが認め
られる。
EXAMPLES The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. (Example 1) (Preparation of raw material for electrolysis) Nd carbonate was calcined at the following temperatures for an hour, and the crystal form of the calcined product was identified by X-ray. The results are as follows. A: 800 ° C ・ ・ ・ Nd 2 O 3 100% B: 700 ° C ・ ・ ・ Nd 2 O 2 CO 3 is mainly present, and a small amount of Nd 2 O 3 is observed. C: 600 ° C .... Nd 2 O 2 CO 3 100% D: 500 ° C .... Nd 2 O 2 CO 3 is mainly present, and a small amount of NdCO 3 .OH is observed.

【0009】(電解還元)上記各温度で焼成した焼成物
を原料として溶融塩電解還元を行った。 電解条件 電解槽: 1,000mmφ×1,200mmH、鉄製。 陽極: 150mmφ×6本、黒鉛製、浸積長:約600mm 。 陰極: 100mmφ×1本、Mo製、浸積長:約500mm 。 タッピング管:50mmφ、鉄製。 電解浴:NdF3-LiF-BaF2 (70,20,10各重量%)、浴融
点:約 900℃。 原料供給速度:Nd2O3 換算で10.5Kg/Hr とした。 その結果を表1に示す。
(Electrolytic reduction) Molten salt electrolytic reduction was performed using the calcined product calcined at each of the above temperatures as a raw material. Electrolysis conditions Electrolyzer: 1,000mmφ x 1,200mmH, made of iron. Anode: 150mmφ × 6 pieces, made of graphite, immersion length: about 600mm. Cathode: 100 mmφ x 1, made of Mo, immersion length: about 500 mm. Tapping tube: 50mmφ, made of iron. Electrolysis bath: NdF 3 -LiF-BaF 2 (70,20,10 wt% each), bath melting point: about 900 ° C. Raw material supply rate: 10.5 Kg / Hr in terms of Nd 2 O 3 . The results are shown in Table 1.

【0010】(比較例)原料に市販のNd2O3 (純度95%
以上)を使用した以外は実施例1と同様の条件で電解還
元した。その結果を表1に併記した。
Comparative Example Commercially available Nd 2 O 3 (purity 95%)
Electrolytic reduction was performed under the same conditions as in Example 1 except that the above) was used. The results are also shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【発明の効果】本発明によれば、安価な希土類炭酸塩を
焼成したRe2O2CO3を原料とすることにより経済的で生産
性の高い希土類金属の電解還元製造法を提供することが
できる。
Industrial Applicability According to the present invention, it is possible to provide an economical and highly productive electrolytic reduction production method of rare earth metal by using Re 2 O 2 CO 3 obtained by firing inexpensive rare earth carbonate as a raw material. it can.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電解還元法により希土類金属を製造するに
際し、原料として一般式Re2O2CO3(ここにReは希土類元
素を表す)から成る希土類炭酸塩の焼成物を使用するこ
とを特徴とする希土類金属の電解還元製造法。
1. A method for producing a rare earth metal by an electrolytic reduction method, wherein a calcined product of a rare earth carbonate having a general formula Re 2 O 2 CO 3 (wherein Re represents a rare earth element) is used as a raw material. A method for electrolytic reduction of rare earth metals.
JP06891093A 1993-03-26 1993-03-26 Rare earth metal electrolytic reduction production method Expired - Fee Related JP3169471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06891093A JP3169471B2 (en) 1993-03-26 1993-03-26 Rare earth metal electrolytic reduction production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06891093A JP3169471B2 (en) 1993-03-26 1993-03-26 Rare earth metal electrolytic reduction production method

Publications (2)

Publication Number Publication Date
JPH06280077A true JPH06280077A (en) 1994-10-04
JP3169471B2 JP3169471B2 (en) 2001-05-28

Family

ID=13387287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06891093A Expired - Fee Related JP3169471B2 (en) 1993-03-26 1993-03-26 Rare earth metal electrolytic reduction production method

Country Status (1)

Country Link
JP (1) JP3169471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015701A1 (en) * 1995-10-25 1997-05-01 Santoku Metal Industry Co., Ltd. Process for producing rare earth metals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015701A1 (en) * 1995-10-25 1997-05-01 Santoku Metal Industry Co., Ltd. Process for producing rare earth metals
US5932084A (en) * 1995-10-25 1999-08-03 Santoku Metal Industry Co., Ltd. Process for producing rare earth metals

Also Published As

Publication number Publication date
JP3169471B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
KR20100059871A (en) Refractory material having high zirconia content and high silica content
CN111411372A (en) Preparation method of rare earth iron alloy
WO2002061168B1 (en) Methods of forming sputtering targets
RU2015105027A (en) RARE EARTH EXTRACTION
CN1163637C (en) Process for producing rare earth metals
CN101058891A (en) Method of preparing high rare-earth content magnesium intermediate alloy
CN112813463A (en) Method for preparing rare earth metal or rare earth alloy
Hirschhorn Commercial production of rare earth metals by fused salt electrolysis
JP3169471B2 (en) Rare earth metal electrolytic reduction production method
US3264093A (en) Method for the production of alloys
Krishnamurthy et al. Rare earth metals and alloys by electrolytic methods
JP7486199B2 (en) Electrochemical generation of reactive metals
JPH0790411A (en) Production of high-purity rare earth metal
JP2749756B2 (en) Rare earth metal electrolytic reduction production method
JP2761002B2 (en) Method for producing Nd-Fe alloy or Nd metal
KR20190109082A (en) Recovery method rare earth elements from waste RE:YAG crystal
JPH0713314B2 (en) Method for producing rare earth metal and rare earth alloy
CN112725841A (en) Rare earth alloy material and preparation method thereof
RU2161207C1 (en) Method of high-purity niobium production
JP2702649B2 (en) Manufacturing method of high purity rare earth metal
CN111364066B (en) Short-process preparation method of rare earth magnesium alloy
JP2964649B2 (en) Method for producing terbium alloy
CN115305520A (en) Method for producing rare earth metals
JPH0885835A (en) Production of rare earth-nickel alloy
RU2517090C1 (en) Electrochemical production of metals and/or alloys of marginally soluble or immiscible compounds

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees