CN111411372A - Preparation method of rare earth iron alloy - Google Patents
Preparation method of rare earth iron alloy Download PDFInfo
- Publication number
- CN111411372A CN111411372A CN201910853695.0A CN201910853695A CN111411372A CN 111411372 A CN111411372 A CN 111411372A CN 201910853695 A CN201910853695 A CN 201910853695A CN 111411372 A CN111411372 A CN 111411372A
- Authority
- CN
- China
- Prior art keywords
- rare earth
- oxide
- fluoride
- iron
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 171
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 145
- 229910000640 Fe alloy Inorganic materials 0.000 title claims abstract description 60
- 238000002360 preparation method Methods 0.000 title abstract description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 134
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 84
- 239000000956 alloy Substances 0.000 claims abstract description 84
- 229910052742 iron Inorganic materials 0.000 claims abstract description 64
- 238000000034 method Methods 0.000 claims abstract description 52
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 41
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims abstract description 26
- -1 rare earth fluoride Chemical class 0.000 claims abstract description 21
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims abstract description 20
- 239000002994 raw material Substances 0.000 claims abstract description 19
- 239000003792 electrolyte Substances 0.000 claims abstract description 16
- 238000002844 melting Methods 0.000 claims abstract description 14
- 230000008018 melting Effects 0.000 claims abstract description 14
- 230000006698 induction Effects 0.000 claims abstract description 13
- 150000003839 salts Chemical class 0.000 claims abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 46
- 239000011248 coating agent Substances 0.000 claims description 39
- 238000000576 coating method Methods 0.000 claims description 39
- 229910002804 graphite Inorganic materials 0.000 claims description 32
- 239000010439 graphite Substances 0.000 claims description 32
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 16
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 claims description 14
- 230000001681 protective effect Effects 0.000 claims description 13
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 13
- 229910052721 tungsten Inorganic materials 0.000 claims description 13
- 239000010937 tungsten Substances 0.000 claims description 13
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 11
- 229910052786 argon Inorganic materials 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims description 9
- 229910001021 Ferroalloy Inorganic materials 0.000 claims description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 239000011733 molybdenum Substances 0.000 claims description 8
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 7
- 239000004615 ingredient Substances 0.000 claims description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 7
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 7
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 claims description 7
- 229910003447 praseodymium oxide Inorganic materials 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 239000000395 magnesium oxide Substances 0.000 claims description 6
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical group [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- BOTHRHRVFIZTGG-UHFFFAOYSA-K praseodymium(3+);trifluoride Chemical compound F[Pr](F)F BOTHRHRVFIZTGG-UHFFFAOYSA-K 0.000 claims description 6
- ZIKATJAYWZUJPY-UHFFFAOYSA-N thulium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Tm+3].[Tm+3] ZIKATJAYWZUJPY-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- XRADHEAKQRNYQQ-UHFFFAOYSA-K trifluoroneodymium Chemical compound F[Nd](F)F XRADHEAKQRNYQQ-UHFFFAOYSA-K 0.000 claims description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 4
- 239000000292 calcium oxide Substances 0.000 claims description 4
- QCCDYNYSHILRDG-UHFFFAOYSA-K cerium(3+);trifluoride Chemical compound [F-].[F-].[F-].[Ce+3] QCCDYNYSHILRDG-UHFFFAOYSA-K 0.000 claims description 4
- 229910003440 dysprosium oxide Inorganic materials 0.000 claims description 4
- NLQFUUYNQFMIJW-UHFFFAOYSA-N dysprosium(iii) oxide Chemical compound O=[Dy]O[Dy]=O NLQFUUYNQFMIJW-UHFFFAOYSA-N 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 4
- 238000010309 melting process Methods 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 claims description 4
- APFWLFUGBMRXCS-UHFFFAOYSA-N 4,7-dihydroxy-3-phenylchromen-2-one Chemical compound O=C1OC2=CC(O)=CC=C2C(O)=C1C1=CC=CC=C1 APFWLFUGBMRXCS-UHFFFAOYSA-N 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- OKOSPWNNXVDXKZ-UHFFFAOYSA-N but-3-enoyl chloride Chemical compound ClC(=O)CC=C OKOSPWNNXVDXKZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910001940 europium oxide Inorganic materials 0.000 claims description 3
- 229940075616 europium oxide Drugs 0.000 claims description 3
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 claims description 3
- 229910001938 gadolinium oxide Inorganic materials 0.000 claims description 3
- 229940075613 gadolinium oxide Drugs 0.000 claims description 3
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 claims description 3
- JYTUFVYWTIKZGR-UHFFFAOYSA-N holmium oxide Inorganic materials [O][Ho]O[Ho][O] JYTUFVYWTIKZGR-UHFFFAOYSA-N 0.000 claims description 3
- OWCYYNSBGXMRQN-UHFFFAOYSA-N holmium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ho+3].[Ho+3] OWCYYNSBGXMRQN-UHFFFAOYSA-N 0.000 claims description 3
- 229910003443 lutetium oxide Inorganic materials 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- MGRWKWACZDFZJT-UHFFFAOYSA-N molybdenum tungsten Chemical compound [Mo].[W] MGRWKWACZDFZJT-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- MPARYNQUYZOBJM-UHFFFAOYSA-N oxo(oxolutetiooxy)lutetium Chemical compound O=[Lu]O[Lu]=O MPARYNQUYZOBJM-UHFFFAOYSA-N 0.000 claims description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 3
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 229910001954 samarium oxide Inorganic materials 0.000 claims description 3
- 229940075630 samarium oxide Drugs 0.000 claims description 3
- OJIKOZJGHCVMDC-UHFFFAOYSA-K samarium(iii) fluoride Chemical compound F[Sm](F)F OJIKOZJGHCVMDC-UHFFFAOYSA-K 0.000 claims description 3
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 claims description 3
- OEKDNFRQVZLFBZ-UHFFFAOYSA-K scandium fluoride Chemical compound F[Sc](F)F OEKDNFRQVZLFBZ-UHFFFAOYSA-K 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 229910003451 terbium oxide Inorganic materials 0.000 claims description 3
- SCRZPWWVSXWCMC-UHFFFAOYSA-N terbium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Tb+3].[Tb+3] SCRZPWWVSXWCMC-UHFFFAOYSA-N 0.000 claims description 3
- FWQVINSGEXZQHB-UHFFFAOYSA-K trifluorodysprosium Chemical compound F[Dy](F)F FWQVINSGEXZQHB-UHFFFAOYSA-K 0.000 claims description 3
- HPNURIVGONRLQI-UHFFFAOYSA-K trifluoroeuropium Chemical compound F[Eu](F)F HPNURIVGONRLQI-UHFFFAOYSA-K 0.000 claims description 3
- TYIZUJNEZNBXRS-UHFFFAOYSA-K trifluorogadolinium Chemical compound F[Gd](F)F TYIZUJNEZNBXRS-UHFFFAOYSA-K 0.000 claims description 3
- LKNRQYTYDPPUOX-UHFFFAOYSA-K trifluoroterbium Chemical compound F[Tb](F)F LKNRQYTYDPPUOX-UHFFFAOYSA-K 0.000 claims description 3
- 229910003454 ytterbium oxide Inorganic materials 0.000 claims description 3
- 229940075624 ytterbium oxide Drugs 0.000 claims description 3
- XASAPYQVQBKMIN-UHFFFAOYSA-K ytterbium(iii) fluoride Chemical compound F[Yb](F)F XASAPYQVQBKMIN-UHFFFAOYSA-K 0.000 claims description 3
- 229940105963 yttrium fluoride Drugs 0.000 claims description 3
- RBORBHYCVONNJH-UHFFFAOYSA-K yttrium(iii) fluoride Chemical compound F[Y](F)F RBORBHYCVONNJH-UHFFFAOYSA-K 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 claims description 2
- AATUHDXSJTXIHB-UHFFFAOYSA-K trifluorothulium Chemical compound F[Tm](F)F AATUHDXSJTXIHB-UHFFFAOYSA-K 0.000 claims description 2
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(iii) oxide Chemical compound O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 claims 2
- 238000003825 pressing Methods 0.000 claims 2
- 239000000203 mixture Substances 0.000 abstract description 45
- 229910000831 Steel Inorganic materials 0.000 abstract description 35
- 239000010959 steel Substances 0.000 abstract description 35
- 239000012535 impurity Substances 0.000 abstract description 12
- 238000003723 Smelting Methods 0.000 description 22
- 210000004027 cell Anatomy 0.000 description 21
- 238000004458 analytical method Methods 0.000 description 14
- 229910052684 Cerium Inorganic materials 0.000 description 10
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 10
- 229910052783 alkali metal Inorganic materials 0.000 description 9
- 150000001340 alkali metals Chemical class 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910052777 Praseodymium Inorganic materials 0.000 description 7
- 229910052746 lanthanum Inorganic materials 0.000 description 7
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 7
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 7
- AYIZIASFKOYHAN-UHFFFAOYSA-N [Fe].[Pr] Chemical compound [Fe].[Pr] AYIZIASFKOYHAN-UHFFFAOYSA-N 0.000 description 6
- NNLJGFCRHBKPPJ-UHFFFAOYSA-N iron lanthanum Chemical compound [Fe].[La] NNLJGFCRHBKPPJ-UHFFFAOYSA-N 0.000 description 6
- 229910052779 Neodymium Inorganic materials 0.000 description 5
- 241001062472 Stokellia anisodon Species 0.000 description 5
- AKWFBKKYZNGQGT-UHFFFAOYSA-N [Fe].[Ce].[La] Chemical compound [Fe].[Ce].[La] AKWFBKKYZNGQGT-UHFFFAOYSA-N 0.000 description 5
- YWYWWXBZMKGRBW-UHFFFAOYSA-N [Fe].[Pr].[Nd] Chemical compound [Fe].[Pr].[Nd] YWYWWXBZMKGRBW-UHFFFAOYSA-N 0.000 description 5
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 5
- 238000005204 segregation Methods 0.000 description 5
- RKLPWYXSIBFAJB-UHFFFAOYSA-N [Nd].[Pr] Chemical compound [Nd].[Pr] RKLPWYXSIBFAJB-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052692 Dysprosium Inorganic materials 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- PXAWCNYZAWMWIC-UHFFFAOYSA-N [Fe].[Nd] Chemical compound [Fe].[Nd] PXAWCNYZAWMWIC-UHFFFAOYSA-N 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- IVWPRVWHVVVZBD-UHFFFAOYSA-N [Fe].[Nd].[Pr].[Ce].[La] Chemical group [Fe].[Nd].[Pr].[Ce].[La] IVWPRVWHVVVZBD-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- GSVIBLVMWGSPRZ-UHFFFAOYSA-N cerium iron Chemical group [Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Fe].[Ce].[Ce] GSVIBLVMWGSPRZ-UHFFFAOYSA-N 0.000 description 2
- ONLCZUHLGCEKRZ-UHFFFAOYSA-N cerium(3+) lanthanum(3+) oxygen(2-) Chemical compound [O--].[O--].[O--].[La+3].[Ce+3] ONLCZUHLGCEKRZ-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 2
- RDTHZIGZLQSTAG-UHFFFAOYSA-N dysprosium iron Chemical compound [Fe].[Dy] RDTHZIGZLQSTAG-UHFFFAOYSA-N 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- ZGMCLEXFYGHRTK-UHFFFAOYSA-N [Fe].[Ce] Chemical compound [Fe].[Ce] ZGMCLEXFYGHRTK-UHFFFAOYSA-N 0.000 description 1
- GFLHXRJQJOMXDJ-UHFFFAOYSA-N [O-2].[Pr+3].[O-2].[Nd+3] Chemical compound [O-2].[Pr+3].[O-2].[Nd+3] GFLHXRJQJOMXDJ-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- YLENEZYZPLSAAV-UHFFFAOYSA-N cerium lanthanum neodymium praseodymium Chemical compound [La][Ce][Nd][Pr] YLENEZYZPLSAAV-UHFFFAOYSA-N 0.000 description 1
- RVANDLMLPHWTFZ-UHFFFAOYSA-N cerium neodymium praseodymium Chemical compound [Ce][Pr][Nd] RVANDLMLPHWTFZ-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- CUPFNGOKRMWUOO-UHFFFAOYSA-N hydron;difluoride Chemical compound F.F CUPFNGOKRMWUOO-UHFFFAOYSA-N 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- ZCMLLZDYDHDKAH-UHFFFAOYSA-M lithium;fluoride;hydrofluoride Chemical compound [Li+].F.[F-] ZCMLLZDYDHDKAH-UHFFFAOYSA-M 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- KBLRIGLPGMRISA-UHFFFAOYSA-N neodymium(3+) oxygen(2-) praseodymium(3+) Chemical compound [O-2].[Pr+3].[Nd+3].[O-2].[O-2] KBLRIGLPGMRISA-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/36—Alloys obtained by cathodic reduction of all their ions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C28/00—Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明公开了一种稀土铁合金的制备方法,包括:非自耗阴极电解制备稀土铁中间合金;在电解槽内装入电解质,以石墨碳素板作为阳极,钨或钼材料作为阴极,钨钼阴极下方的坩埚作为接收器;在氟化稀土和氟化锂熔盐电解质体系中,以氧化稀土、铁为原料,通入直流电电解,在接收器内收得稀土铁中间合金;以稀土铁中间合金和铁为原料放入坩埚内,在中频感应炉内采用熔兑法对稀土铁中间合金进行进一步冶炼,得到稀土铁合金。本发明得到的稀土铁合金成分均一稳定、杂质元素含量低,密度和熔点接近于钢的密度和熔点,易于加入钢中;稀土铁合金可根本解决稀土在钢中的有效加入问题,能够准确控制钢中稀土的含量。
The invention discloses a preparation method of rare earth iron alloy. The crucible under the cathode is used as a receiver; in the rare earth fluoride and lithium fluoride molten salt electrolyte system, rare earth oxide and iron are used as raw materials, and direct current electrolysis is passed through, and the rare earth iron intermediate alloy is collected in the receiver; The alloy and iron are put into the crucible as raw materials, and the rare earth iron intermediate alloy is further smelted by the melting method in the intermediate frequency induction furnace to obtain the rare earth iron alloy. The rare earth iron alloy obtained by the invention has uniform and stable composition, low content of impurity elements, density and melting point close to those of steel, and is easy to be added into steel; the rare earth iron alloy can fundamentally solve the problem of effective addition of rare earth to steel, and can accurately control the concentration of rare earth in steel. rare earth content.
Description
技术领域technical field
本发明涉及一种稀土铁合金的生产技术,具体说,涉及一种采用非自耗阴极电解及中频炉成分调控双联法的稀土铁合金的制备方法。The invention relates to a production technology of rare earth iron alloy, in particular to a preparation method of rare earth iron alloy by adopting non-consumable cathode electrolysis and intermediate frequency furnace composition regulation double method.
背景技术Background technique
目前,钢铁是第一大金属结构材料,被广泛应用于建筑、能源、运输、航空航天等领域。稀土在钢中的应用及其研究也得到了迅猛发展,稀土加入钢水中可起脱硫、脱氧、改变夹杂物形态等作用,可提高钢材的塑性、冲压性能、耐磨性能以及焊接性能。各种稀土钢如汽车用稀土钢板、模具钢、钢轨等得到了十分广泛应用。At present, steel is the largest metal structural material and is widely used in construction, energy, transportation, aerospace and other fields. The application and research of rare earths in steel have also developed rapidly. The addition of rare earths to molten steel can play the role of desulfurization, deoxidation, and change the shape of inclusions, which can improve the plasticity, stamping performance, wear resistance and welding performance of steel. Various rare earth steels, such as rare earth steel plates for automobiles, die steels, rails, etc., have been widely used.
在稀土钢生产过程中稀土的加入方法一直是科研工作这研究的重点,现有加入方法包括喂丝法、包芯线、稀土铁中间合金等多种形式,目前效果比较明显的是稀土铁中间合金加入法。制备稀土铁中间合金工艺技术主要有以下几类:In the production process of rare earth steel, the method of adding rare earth has always been the focus of scientific research. The existing adding methods include wire feeding method, cored wire, rare earth iron master alloy and other forms. At present, the most obvious effect is the rare earth iron intermediate alloy. Alloy addition method. The technology for preparing rare earth iron master alloy mainly includes the following categories:
(1)混溶法。(1) Miscibility method.
混溶法也称作对掺法,主要利用电弧炉或中频感应炉,将稀土金属和铁混溶制得合金。该方法为目前普遍采用的方法,其工艺技术简单,能够制得多元中间合金或应用合金,但是也存在不足:1)稀土金属在铁液中容易局部浓度过高,产生偏析;2)该方法采用的原料为稀土金属,尤其对中重稀土金属而言,制备工艺复杂,成本较高;3)熔炼温度较高,由于以稀土金属和纯铁为原料,熔炼温度要求高。The miscibility method, also known as the counter-doping method, mainly uses an electric arc furnace or an intermediate frequency induction furnace to mix rare earth metals and iron to obtain an alloy. This method is a commonly used method at present, and its process technology is simple, and it can prepare multi-component master alloys or application alloys, but it also has shortcomings: 1) the local concentration of rare earth metals in molten iron is easily too high, resulting in segregation; 2) this method The raw materials used are rare earth metals, especially for medium and heavy rare earth metals, the preparation process is complicated and the cost is high; 3) The smelting temperature is high, since rare earth metals and pure iron are used as raw materials, the smelting temperature is required to be high.
(2)熔盐电解法。(2) Molten salt electrolysis method.
熔盐电解法制备稀土铁中间合金主要是采用铁自耗阴极法。如中国专利CN1827860公开了一种熔盐电解生产镝铁合金工艺及设备,提出在高温条件下,熔解在氟化物溶体中的氧化镝发生电离,在直流电场作用下,镝离子在铁阴极表面析出,还原成金属镝,镝与铁合金化形成镝铁合金。这种方法生产成本低、工艺简单,但是也存在以下缺陷:合金中稀土、铁配分波动大,难控制,配分误差高达3%-5%,影响产品一致性。The preparation of rare earth iron master alloy by molten salt electrolysis mainly adopts iron consumable cathode method. For example, Chinese patent CN1827860 discloses a process and equipment for producing dysprosium-iron alloy by molten salt electrolysis. It is proposed that under high temperature conditions, dysprosium oxide melted in a fluoride solution is ionized, and under the action of a DC electric field, dysprosium ions are precipitated on the surface of the iron cathode, It is reduced to metal dysprosium, and dysprosium is alloyed with iron to form dysprosium-iron alloy. This method has low production cost and simple process, but also has the following defects: the distribution of rare earth and iron in the alloy fluctuates greatly, which is difficult to control, and the distribution error is as high as 3%-5%, which affects product consistency.
稀土钢生产中普遍采用氧化镁坩埚,根据文献《真空感应熔炼碳脱氧研究》(钢铁,2003年第38卷第6期,P275-278)研究表明,利用氧化镁坩埚冶炼稀土铁合金过程中会增加合金中氧含量,影响其加入到钢中的稀土收率及起到的效果。另外利用氧化镁、氧化铝或氧化钙坩埚冶炼稀土金属及合金过程中,稀土金属会与坩埚发生反应,给合金增加了杂质。可见,紧紧通过原料的精选来达到控制杂质含量的目的显然是不够的,冶炼过程中坩埚的选用也是一个重要的环节。Magnesium oxide crucibles are commonly used in the production of rare earth steels. According to the literature "Research on Carbon Deoxidation in Vacuum Induction Melting" (Steel, Vol. 38, No. 6, P275-278, 2003), it is shown that the use of magnesium oxide crucibles in the process of smelting rare earth ferroalloys will increase The oxygen content in the alloy affects the yield and effect of rare earth added to the steel. In addition, in the process of smelting rare earth metals and alloys using magnesium oxide, aluminum oxide or calcium oxide crucibles, rare earth metals will react with the crucible, adding impurities to the alloy. It can be seen that it is obviously not enough to control the content of impurities through the selection of raw materials, and the selection of crucibles in the smelting process is also an important link.
但是,混溶法、熔盐电解法制备的稀土铁合金中氧含量比较高,加入钢包中后,生成的夹杂物易产生水口堵塞问题,影响正常出钢。混溶法、熔盐电解法制取稀土铁合金时,不能够实现稀土元素的精准控制。目前使用的坩埚在冶炼稀土金属及其合金还是会带入杂质。However, the rare earth iron alloy prepared by the miscibility method and the molten salt electrolysis method has a relatively high oxygen content. After being added to the ladle, the generated inclusions are prone to the problem of nozzle blockage, which affects the normal tapping. When the miscibility method and the molten salt electrolysis method are used to prepare rare earth iron alloys, the precise control of rare earth elements cannot be achieved. The currently used crucibles still bring in impurities when smelting rare earth metals and their alloys.
发明内容SUMMARY OF THE INVENTION
本发明所解决的技术问题是提供一种稀土铁合金的制备方法,采用非自耗阴极电解及中频炉成分调控双联法制备,得到的稀土铁合金成分均一稳定、杂质元素含量低,密度和熔点接近于钢的密度和熔点,易于加入钢中,能够根本解决稀土在钢中的有效加入问题,准确控制钢中稀土的含量,降低钢中应用稀土的成本。The technical problem solved by the invention is to provide a preparation method of rare earth iron alloy, which adopts non-consumable cathode electrolysis and intermediate frequency furnace composition control double method to prepare, and the obtained rare earth iron alloy has uniform and stable composition, low impurity element content, and close density and melting point. Due to the density and melting point of steel, it is easy to add to steel, which can fundamentally solve the problem of effective addition of rare earths in steel, accurately control the content of rare earths in steel, and reduce the cost of applying rare earths in steel.
技术方案如下:The technical solution is as follows:
一种稀土铁合金的制备方法,包括:A preparation method of rare earth iron alloy, comprising:
非自耗阴极电解制备稀土铁中间合金;在电解槽内装入电解质,以石墨碳素板作为阳极,钨或钼材料作为阴极,将阴极下方的钨钼坩埚、碱土氧化物坩埚或者碱金属氧化物坩埚作为接收器;在氟化稀土和氟化锂熔盐电解质体系中,以氧化稀土、铁为原料,通入直流电电解,在接收器内收得稀土铁中间合金;Non-consumable cathode electrolysis to prepare rare earth iron master alloy; put electrolyte in the electrolytic cell, use graphite carbon plate as anode, tungsten or molybdenum material as cathode, oxidize tungsten-molybdenum crucible, alkaline earth oxide crucible or alkali metal under the cathode The metal crucible is used as the receiver; in the rare earth fluoride and lithium fluoride molten salt electrolyte system, the rare earth oxide and iron are used as raw materials, and direct current electrolysis is passed through, and the rare earth iron intermediate alloy is collected in the receiver;
以稀土铁中间合金和铁作为的原料放入碱土氧化物坩埚或者碱金属氧化物坩埚内,在中频感应炉内采用熔兑法对稀土铁中间合金进行进一步冶炼,得到符合要求的稀土铁合金。The rare earth iron master alloy and iron are used as raw materials into an alkaline earth oxide crucible or an alkali metal oxide crucible, and the rare earth iron master alloy is further smelted by melting method in an intermediate frequency induction furnace to obtain a rare earth iron alloy that meets the requirements.
进一步,熔盐电解过程使用的铁的形态为块、丝、棒、粉或屑,制备的稀土铁中间合金中稀土含量大于60wt%,稀土铁中间合金中稀土含量控制精度在±2wt%;熔兑过程在真空条件或者保护气氛下进行,稀土铁合金中,稀土的含量小于60wt%,稀土铁合金中稀土含量的控制精度在±1wt%,稀土铁合金中氧≤0.01wt%,碳≤0.01wt%,磷≤0.01wt%,硫≤0.005wt%。Further, the iron used in the molten salt electrolysis process is in the form of blocks, wires, rods, powders or chips, the rare earth content in the prepared rare earth iron master alloy is greater than 60wt%, and the control accuracy of the rare earth content in the rare earth iron master alloy is ±2wt%; The mixing process is carried out under vacuum conditions or a protective atmosphere. In the rare earth iron alloy, the rare earth content is less than 60wt%, the control accuracy of the rare earth content in the rare earth iron alloy is ±1wt%, the oxygen in the rare earth iron alloy≤0.01wt%, the carbon≤0.01wt%, Phosphorus≤0.01wt%, sulfur≤0.005wt%.
进一步,电解过程阳极电流密度0.5-2.0A/cm2,阴极电流密度为5-15A/cm2;温度为1050±50℃,电流强度100-15000A。Further, in the electrolysis process, the anode current density is 0.5-2.0A/cm 2 , the cathode current density is 5-15A/cm 2 ; the temperature is 1050±50°C, and the current intensity is 100-15000A.
进一步,熔兑过程中,温度控制在1500±100℃,保护气体为氩气、氮气或混合惰性气体。Further, during the melting process, the temperature is controlled at 1500±100°C, and the protective gas is argon, nitrogen or mixed inert gas.
进一步,含稀土氟氧化物涂层的碱土(碱金属)氧化物坩埚的制备方法,包括:Further, the preparation method of the alkaline earth (alkali metal) oxide crucible containing rare earth oxyfluoride coating, comprising:
涂层配料,将稀土氧化物、稀土氟化物、聚乙烯醇按照重量比100:0.2-50:5-15混合均匀;Coating ingredients, mix rare earth oxide, rare earth fluoride and polyvinyl alcohol uniformly according to the weight ratio of 100:0.2-50:5-15;
将涂层配料压制在碱土(碱金属)氧化物坩埚内壁上,在压机上将涂层与坩埚一起压制成型,压力控制在270-500Mpa;然后烘干、焙烧,得到含稀土氟氧化物涂层的碱土(碱金属)氧化物坩埚。The coating ingredients are pressed on the inner wall of the alkaline earth (alkali metal) oxide crucible, and the coating and the crucible are pressed together on a press to form, and the pressure is controlled at 270-500Mpa; then dried and roasted to obtain a rare earth-containing oxyfluoride coating. layer of alkaline earth (alkali metal) oxide crucibles.
进一步,涂层配料压制好后,放入干燥窑内自然干燥72-120小时,然后按照以下工艺焙烧:室温下升温到150℃保温2-3小时,升温速度每分钟不超过5℃;升温到1000℃下保温5-6小时,升温速度每分钟不超过10℃;升温到1350-1400℃保温10-11小时,升温速度每分钟不超过10℃;随炉冷却至100℃以下取出待用。Further, after the coating ingredients are pressed, they are put into a drying kiln for natural drying for 72-120 hours, and then roasted according to the following process: at room temperature, the temperature is raised to 150 ℃ and kept for 2-3 hours, and the heating rate does not exceed 5 ℃ per minute; Keep the temperature at 1000°C for 5-6 hours, and the heating rate does not exceed 10°C per minute; heat up to 1350-1400°C for 10-11 hours, and the heating rate does not exceed 10°C per minute; Cool down to below 100°C with the furnace and take it out for use.
进一步,碱土氧化物或者碱金属氧化物选用氧化镁、氧化铝或者氧化钙,涂层的密度为3-8g/cm3,涂层的孔隙度为5-20%。Further, the alkaline earth oxide or alkali metal oxide is selected from magnesium oxide, aluminum oxide or calcium oxide, the density of the coating is 3-8 g/cm 3 , and the porosity of the coating is 5-20%.
进一步,涂层的密度为3-7.5g/cm3或者6-8g/cm3。Further, the density of the coating is 3-7.5 g/cm 3 or 6-8 g/cm 3 .
进一步,稀土氧化物选用氧化镧、氧化铈、氧化镨、氧化钕、氧化钐、氧化铕、氧化钆、氧化铽、氧化镝、氧化钬、氧化饵、氧化铥、氧化镱、氧化镥、氧化钇、氧化钪中一种或者多种;稀土氟化物选用氟化镧、氟化铈、氟化镨、氟化钕、氟化钐、氟化铕、氟化钆、氟化铽、氟化镝、氟化钬、氟化饵、氟化铥、氟化镱、氟化镥、氟化钇或者氟化钪中的一种或者多种;稀土氧化物与稀土氟化物中使用相同的稀土元素。Further, rare earth oxides are selected from lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, bait oxide, thulium oxide, ytterbium oxide, lutetium oxide, and yttrium oxide. , one or more of scandium oxide; rare earth fluoride is selected from lanthanum fluoride, cerium fluoride, praseodymium fluoride, neodymium fluoride, samarium fluoride, europium fluoride, gadolinium fluoride, terbium fluoride, dysprosium fluoride, One or more of holmium fluoride, bait fluoride, thulium fluoride, ytterbium fluoride, lutetium fluoride, yttrium fluoride or scandium fluoride; rare earth oxides and rare earth fluorides use the same rare earth elements.
本发明技术效果包括:The technical effects of the present invention include:
1、本发明采用非自耗阴极电解及中频炉成分调控双联法制备得到稀土铁合金,稀土铁合金成分均一稳定、偏析小、杂质含量低。1. The present invention adopts non-consumable cathode electrolysis and intermediate frequency furnace composition control double method to prepare rare earth iron alloy. The rare earth iron alloy has uniform and stable composition, small segregation and low impurity content.
本发明采用熔兑法对稀土铁合金中稀土含量进行二次调控,稀土铁合金中稀土含量可精确控制,稀土铁合金的成分均匀,稀土铁合金中稀土含量可控制在±1wt%。由于在真空下或惰性气氛中熔炼,稀土烧损小,收率高、产品质量高。In the invention, the rare earth content in the rare earth iron alloy can be controlled twice by the melting method, the rare earth content in the rare earth iron alloy can be precisely controlled, the composition of the rare earth iron alloy is uniform, and the rare earth content in the rare earth iron alloy can be controlled within ±1wt%. Due to the smelting under vacuum or inert atmosphere, the rare earth burning loss is small, the yield is high, and the product quality is high.
2、稀土铁合金的密度和熔点接近于钢的密度和熔点,易于加入钢中,应用到稀土钢中稀土收率高。稀土铁合金能够根本解决稀土在钢中的有效加入问题,能够准确控制钢中稀土的含量,降低钢中应用稀土的成本,无污染,效果显著,适合于大规模工业生产。2. The density and melting point of rare earth iron alloys are close to those of steel, so they are easy to be added to steel and have high rare earth yield when applied to rare earth steel. Rare earth ferroalloys can fundamentally solve the problem of effective addition of rare earths in steel, can accurately control the content of rare earths in steel, reduce the cost of applying rare earths in steel, have no pollution, have remarkable effects, and are suitable for large-scale industrial production.
稀土铁合金在钢中应用,能够大幅提高稀土钢的产品质量和综合性能,改善和提高钢材的塑性、低温冲击韧性、厚度方向性能和耐腐蚀性能。The application of rare earth iron alloy in steel can greatly improve the product quality and comprehensive performance of rare earth steel, improve and improve the plasticity, low temperature impact toughness, thickness direction performance and corrosion resistance of steel.
3、本发明提供的稀土铁合金由于采用稀土氧化物作为原料,冶炼坩埚也是同名稀土的氧化物坩埚,所以稀土铁合金引入杂质含量少。3. The rare earth iron alloy provided by the present invention uses rare earth oxides as raw materials, and the smelting crucible is also the oxide crucible of the same name rare earth, so the rare earth iron alloy introduces less impurities.
4、稀土铁合金在钢中应用能够显著提高稀土收得率,实现对钢水的深度净化,显著提高了冶炼稀土钢时稀土元素的收得率,改善和提高钢材的塑性、低温冲击韧性、厚度方向性能和耐腐蚀性能,降低了生产成本。4. The application of rare earth iron alloys in steel can significantly improve the yield of rare earths, realize deep purification of molten steel, significantly improve the yield of rare earth elements when smelting rare earth steel, and improve and improve the plasticity, low temperature impact toughness and thickness direction of steel. performance and corrosion resistance, reducing production costs.
5、本发明中提出的稀土铁合金中稀土元素以化合态的形式存在,抗氧化性好,热稳定性高;合金中稀土元素成份均匀稳定,低偏析,O、S、P、C等杂质含量低;同时通过稀土铁中间合金加入的稀土元素通过弥散强化使稀土在钢中的应用领域扩大,特别是稀土在一些高尖端技术领域得到应用。5. The rare earth elements in the rare earth iron alloy proposed in the present invention exist in the form of a compound state, with good oxidation resistance and high thermal stability; the rare earth elements in the alloy are uniform and stable in composition, low in segregation, and contain impurities such as O, S, P, and C. At the same time, the rare earth elements added through the rare earth iron master alloy expand the application field of rare earth in steel through dispersion strengthening, especially rare earth is used in some high-tech fields.
6、本发明在碱土(碱金属)氧化物坩埚内壁上设置有稀土氧化物涂层,能够避免在冶炼稀土金属及其合金时带入杂质,适用于冶炼稀土金属及其合金,其工艺简单,成本低廉。6. The present invention is provided with a rare earth oxide coating on the inner wall of the alkaline earth (alkali metal) oxide crucible, which can avoid bringing in impurities when smelting rare earth metals and their alloys, and is suitable for smelting rare earth metals and their alloys, and the process is simple, low cost.
(1)稀土氧化物涂层密度高,气孔率低,抗金属或合金液体侵蚀能力强;(1) The rare earth oxide coating has high density, low porosity, and strong resistance to metal or alloy liquid erosion;
(2)碱土(碱金属)氧化物坩埚采用稀土氧化物作为涂层,冶炼稀土金属、稀土铁中间合金、稀土铁合金过程中,由于稀土氧化物与稀土铁合金的金属液是同名材质,所以不会带入杂质。(2) The alkaline earth (alkali metal) oxide crucible uses rare earth oxide as the coating. In the process of smelting rare earth metal, rare earth iron master alloy and rare earth iron alloy, since the metal liquid of rare earth oxide and rare earth iron alloy is the same material, it will not be Bring in impurities.
7、本发明中,阴极材质采用钨或钼的非自耗阴极电解法制备稀土铁合金,可以降低阴极的控制难度,与自耗铁阴极电解法相比,渣量小,电流效率高,合金成分可精确控制,成分偏析小。7. In the present invention, the cathode material adopts the non-consumable cathode electrolysis method of tungsten or molybdenum to prepare the rare earth iron alloy, which can reduce the difficulty of controlling the cathode. Compared with the consumable iron cathode electrolysis method, the amount of slag is small, the current efficiency is high, and the alloy composition can be Precise control and small component segregation.
8、本发明还适用于稀土铜、稀土镍、稀土镁铝合金、稀土锌合金的制取。8. The present invention is also applicable to the preparation of rare earth copper, rare earth nickel, rare earth magnesium aluminum alloy and rare earth zinc alloy.
附图说明Description of drawings
图1是本发明中制备稀土铁中间合金设备的结构示意图;Fig. 1 is the structural representation of equipment for preparing rare earth iron master alloy in the present invention;
图2是本发明中非自耗阴极制备稀土铁合金方法的流程图。Fig. 2 is a flow chart of the method for preparing rare earth iron alloy from a non-consumable cathode in the present invention.
具体实施方式Detailed ways
以下描述充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践和再现。The following descriptions sufficiently illustrate specific embodiments of the invention to enable those skilled in the art to practice and reproduce them.
如图1所示,是本发明中制备稀土铁中间合金设备的结构示意图。As shown in FIG. 1 , it is a schematic structural diagram of the equipment for preparing rare earth iron master alloy in the present invention.
制备稀土铁中间合金设备包括:耐火砖1、铁套2、接收器3、稀土铁中间合金4、石墨碳素阳极板5、钨或钼材质的阴极6、电解质7、电解槽8、保温层9、碳捣层10。The equipment for preparing rare earth iron intermediate alloy includes: refractory brick 1,
电解槽8为石墨槽,在石墨槽体的外侧依次包有碳捣层10、保温层9、耐火砖1、铁套2;在石墨槽中部设有钨或钼材质的阴极6;在石墨槽内环绕着阴极6设有石墨碳素阳极板5;在石墨槽的底部中心设有接收器3,接收器3位于阴极6下方。The electrolytic cell 8 is a graphite cell, and the outer side of the graphite cell body is sequentially covered with a carbon ramming layer 10, a thermal insulation layer 9, a refractory brick 1, and an
使用时,在石墨槽内装入稀土氧化物、电解质7、铁(铁块、废钢、铁粉等),电解质7采用氟化稀土和氟化锂熔盐电解质,电解后生成的稀土铁合金熔液从阴极6富集后流入接收器3内。When in use, rare earth oxide, electrolyte 7, iron (iron block, scrap steel, iron powder, etc.) are loaded into the graphite tank, and electrolyte 7 adopts rare earth fluoride and lithium fluoride molten salt electrolyte, and the rare earth iron alloy melt generated after electrolysis After being enriched from the cathode 6, it flows into the receiver 3.
如图2所示,是本发明中稀土铁合金的制备方法的流程图。As shown in FIG. 2, it is a flow chart of the preparation method of rare earth iron alloy in the present invention.
稀土铁合金的制备方法采用非自耗阴极电解及中频炉成分调控双联法,具体步骤包括:The preparation method of rare earth iron alloy adopts non-consumable cathode electrolysis and intermediate frequency furnace composition control double method, and the specific steps include:
步骤1:非自耗阴极电解制备稀土铁中间合金;在电解槽内装入电解质,以石墨碳素板5作为阳极,钨或钼材料作为阴极6,阴极6下方的含稀土氟氧化物涂层的碱土金属氧化物坩埚、碱金属氧化物坩埚或钨钼坩埚作为接收器3;在氟化稀土和氟化锂熔盐电解质体系中,以氧化稀土、铁为原料,通入直流电电解,在接收器3收得稀土铁中间合金4;Step 1: non-consumable cathode electrolysis to prepare rare earth iron intermediate alloy; electrolyte is loaded into the electrolytic cell, graphite carbon plate 5 is used as anode, tungsten or molybdenum material is used as cathode 6, and rare earth-containing oxyfluoride coating under cathode 6 is used The alkaline earth metal oxide crucible, alkali metal oxide crucible or tungsten-molybdenum crucible are used as receiver 3; in the rare earth fluoride and lithium fluoride molten salt electrolyte system, rare earth oxide and iron are used as raw materials, and direct current electrolysis is passed into the receiver. The device 3 receives the rare earth iron master alloy 4;
稀土铁中间合金在阴极6上富集并熔化后落入下方的接收器3内。熔盐电解过程使用的铁的形态可以为块、丝、棒、屑等,制备的稀土铁中间合金中,稀土含量大于60wt%,合金中稀土含量的控制精度在±2wt%。The rare earth iron master alloy is enriched and melted on the cathode 6 and falls into the receiver 3 below. The form of iron used in the molten salt electrolysis process can be blocks, wires, rods, chips, etc. In the prepared rare earth iron master alloy, the rare earth content is greater than 60wt%, and the control accuracy of the rare earth content in the alloy is ±2wt%.
电解过程阳极电流密度0.5-2.0A/cm2,阴极电流密度为5-15A/cm2;温度为1050±50℃,电流强度100-15000A。采用钨或钼的非自耗阴极电解法制备稀土铁合金,可以降低阴极的控制难度,与自耗铁阴极电解法相比,渣量小,电流效率高,合金成分可精确控制,成分偏析小。During the electrolysis process, the anode current density is 0.5-2.0A/cm 2 , the cathode current density is 5-15A/cm 2 ; the temperature is 1050±50°C, and the current intensity is 100-15000A. The use of tungsten or molybdenum non-consumable cathodic electrolysis to prepare rare earth iron alloys can reduce the difficulty of cathode control. Compared with consumable iron cathodic electrolysis, the amount of slag is small, the current efficiency is high, the alloy composition can be precisely controlled, and the composition segregation is small.
步骤2:以稀土铁中间合金和铁作为的原料放入含稀土氟氧化物涂层的碱土(碱金属)氧化物坩埚内,在中频感应炉内采用熔兑法对稀土铁中间合金进行进一步冶炼,得到符合要求的稀土铁合金。Step 2: Put rare earth iron master alloy and iron as raw materials into an alkaline earth (alkali metal) oxide crucible containing rare earth oxyfluoride coating, and further smelt the rare earth iron master alloy by melting method in an intermediate frequency induction furnace , to obtain rare earth iron alloys that meet the requirements.
熔炼过程温度控制在1500±100℃,保护气体可以为氩气、氮气或其混合等惰性气体。The temperature in the smelting process is controlled at 1500±100°C, and the protective gas can be inert gas such as argon, nitrogen or a mixture thereof.
熔兑过程在真空条件或者保护气氛下进行,稀土铁合金中,稀土的含量小于60wt%,稀土铁合金中稀土含量的控制精度在±1wt%,稀土铁合金中氧≤0.01wt%,碳≤0.01wt%,磷≤0.01wt%,硫≤0.005wt%。The melting process is carried out under vacuum conditions or protective atmosphere. In rare earth iron alloy, the content of rare earth is less than 60wt%, the control accuracy of rare earth content in rare earth iron alloy is ±1wt%, oxygen in rare earth iron alloy≤0.01wt%, carbon≤0.01wt% , phosphorus≤0.01wt%, sulfur≤0.005wt%.
碱土(碱金属)氧化物坩埚在内壁上设置有稀土氧化物涂层,碱土氧化物选用氧化镁、氧化铝或者氧化钙。其参数如下:涂层的密度:3-8g/cm3;孔隙度5-20%。优选3-7.5g/cm3或者6-8g/cm3。采用稀土氧化物作为涂层,由于与稀土铁合金的金属液是同名材质,所以不会带入杂质。The alkaline earth (alkali metal) oxide crucible is provided with a rare earth oxide coating on the inner wall, and the alkaline earth oxide is selected from magnesium oxide, aluminum oxide or calcium oxide. Its parameters are as follows: Density of the coating: 3-8 g/cm 3 ; Porosity 5-20%. Preferably 3-7.5 g/cm 3 or 6-8 g/cm 3 . The rare earth oxide is used as the coating. Since the metal liquid of the rare earth iron alloy is of the same name, it will not bring in impurities.
含稀土氟氧化物涂层的碱土(碱金属)氧化物坩埚的制备方法,包括:A preparation method of an alkaline earth (alkali metal) oxide crucible containing rare earth oxyfluoride coating, comprising:
1、涂层配料,将稀土氧化物、稀土氟化物、聚乙烯醇按照重量比100:0.2-50:5-15混合均匀;1. For coating ingredients, mix rare earth oxide, rare earth fluoride and polyvinyl alcohol uniformly according to the weight ratio of 100:0.2-50:5-15;
涂层的稀土氧化物与稀土氟化物的稀土元素相对应,即稀土氧化物与稀土氟化物中使用相同的稀土元素。The rare earth oxide of the coating corresponds to the rare earth element of the rare earth fluoride, that is, the same rare earth element is used in the rare earth oxide and the rare earth fluoride.
稀土氧化物选用氧化镧、氧化铈、氧化镨、氧化钕、氧化钐、氧化铕、氧化钆、氧化铽、氧化镝、氧化钬、氧化饵、氧化铥、氧化镱、氧化镥、氧化钇、氧化钪中一种或者多种。Rare earth oxides are selected from lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, bait oxide, thulium oxide, ytterbium oxide, lutetium oxide, yttrium oxide, oxide One or more of scandium.
稀土氟化物选用氟化镧、氟化铈、氟化镨、氟化钕、氟化钐、氟化铕、氟化钆、氟化铽、氟化镝、氟化钬、氟化饵、氟化铥、氟化镱、氟化镥、氟化钇或者氟化钪中的一种或者多种。Rare earth fluorides are selected from lanthanum fluoride, cerium fluoride, praseodymium fluoride, neodymium fluoride, samarium fluoride, europium fluoride, gadolinium fluoride, terbium fluoride, dysprosium fluoride, holmium fluoride, bait fluoride, fluoride fluoride One or more of thulium, ytterbium fluoride, lutetium fluoride, yttrium fluoride or scandium fluoride.
2、将配料涂覆在坩埚内壁上,在压机上将涂层与坩埚一起压制(压力控制在270-500Mpa)成型,然后烘干、焙烧,得到含稀土氟氧化物涂层的碱土(碱)氧化物坩埚。2. Coat the ingredients on the inner wall of the crucible, press the coating together with the crucible on a press (the pressure is controlled at 270-500Mpa) to form, then dry and bake to obtain an alkaline earth (alkali earth) containing rare earth oxyfluoride coating. ) oxide crucible.
涂层压制好后,放入干燥窑内自然干燥72-120小时,然后按照以下工艺焙烧:After the coating is pressed, it is put into a drying kiln for natural drying for 72-120 hours, and then fired according to the following process:
(1)、室温下升温(升温速度每分钟不超过5℃)到150℃保温2-3小时;(1), heat up at room temperature (the rate of temperature increase does not exceed 5°C per minute) to 150°C for 2-3 hours;
该段升温主要是确保物料内水分充分蒸发。The temperature rise in this section is mainly to ensure that the moisture in the material is fully evaporated.
(2)、升温(升温速度每分钟不超过10℃)到1000℃下保温5-6小时;(2), heat up (the heating rate does not exceed 10°C per minute) to 1000°C for 5-6 hours;
该段升温主要是保证物料内低熔点、低沸点杂质的充分逸出,同时不能过快升温,主要控制低沸点的杂质逸出速度要慢,确保坩埚完好,不破裂。The temperature rise in this section is mainly to ensure the sufficient escape of impurities with low melting point and low boiling point in the material, and at the same time, the temperature cannot be raised too fast.
(3)、升温到1350-1400℃(升温速度每分钟不超过10℃)保温10-11小时;(3), heat up to 1350-1400 ℃ (the heating rate does not exceed 10 ℃ per minute) and keep it for 10-11 hours;
该段升温主要控制速度要慢,确保坩埚完好,不破裂,同时能够保证混合稀土氧化物涂层密度高,气孔率低,抗金属或合金液体侵蚀能力强。高温段让氧化稀土和氟化稀土充分反应,形成高熔点的稀土氟氧化物,并与坩埚基体有很好的结合力。The main control speed of heating in this section should be slow to ensure that the crucible is intact and not broken, and at the same time, it can ensure that the mixed rare earth oxide coating has high density, low porosity, and strong resistance to metal or alloy liquid erosion. The high temperature section allows the rare earth oxide and the rare earth fluoride to fully react to form a high melting point rare earth oxyfluoride, which has a good bonding force with the crucible matrix.
(4)、随炉冷却至100℃以下取出待用,得到含稀土氟氧化物涂层的碱土(碱)氧化物坩埚。(4), cooling to below 100 DEG C with the furnace and taking out for use to obtain an alkaline earth (alkali) oxide crucible containing rare earth oxyfluoride coating.
稀土氧化物、稀土氟化物、聚乙烯醇经高温形成的稀土氟氧化物涂层具有高熔点(熔点2000-3000℃)、抗腐蚀的特性。The rare earth oxyfluoride coating formed by rare earth oxide, rare earth fluoride and polyvinyl alcohol at high temperature has the characteristics of high melting point (melting point 2000-3000 ° C) and corrosion resistance.
金属检测依据GB/T18115.1-2006等国家标准,采用ICP-MS测试;C的检测依据GB/T12690.13-1990,采用高频燃烧-红外法测试;O的测试依据GB/T12690.4-2003,采用惰性气体脉冲-红外法测试。化学成分的标准偏差S由以下公式计算:Metal detection is based on national standards such as GB/T18115.1-2006, and is tested by ICP-MS; C is detected according to GB/T12690.13-1990, and is tested by high-frequency combustion-infrared method; O is tested according to GB/T12690.4 -2003, tested by inert gas pulse-infrared method. The standard deviation S of the chemical composition is calculated by the following formula:
其中Xi是样品的化学成;X平均值是样品n点化学成分的均值,本发明n=20。Wherein X i is the chemical composition of the sample; the average value of X is the average value of the chemical composition at n points of the sample, and n=20 in the present invention.
实施例1Example 1
电解槽8采用Φ650mm的圆形石墨电解槽,石墨碳素阳极板5由四块石墨板组成;电解质中氟化镧为80wt%、氟化锂为20wt%;阴极6的材质为钨,直径70mm,平均电流强度3500A,阳极电流密度0.7-1.0A/cm2,阴极电流密度7-9A/cm2,电解温度维持在1000-1050℃,连续电解150小时,消耗氧化镧923kg,制得镧铁中间合金857kg,平均镧含量为90%,电流效率85%,镧收率98%,合金成分结果见表1。The electrolytic cell 8 adopts a circular graphite electrolytic cell of Φ650 mm, and the graphite carbon anode plate 5 is composed of four graphite plates; the lanthanum fluoride in the electrolyte is 80wt%, and the lithium fluoride is 20wt%; the cathode 6 is made of tungsten, with a diameter of 70mm , the average current intensity is 3500A, the anode current density is 0.7-1.0A/cm 2 , the cathode current density is 7-9A/cm 2 , the electrolysis temperature is maintained at 1000-1050 ℃, the continuous electrolysis is 150 hours, and the consumption of lanthanum oxide is 923kg to obtain lanthanum iron The master alloy is 857kg, the average lanthanum content is 90%, the current efficiency is 85%, and the lanthanum yield is 98%. The alloy composition results are shown in Table 1.
表1镧铁中间合金成分分析结果/wt%Table 1 Analysis results of composition of lanthanum iron master alloy/wt%
将制备的镧铁中间合金作为原料,取镧铁中间合金3.33kg,配加铁11.67kg,在30kg中频真空感应炉内进行冶炼,保护气体为氩气,冶炼后镧氧化物涂层坩埚中得到的镧铁合金成分见表2。Using the prepared lanthanum-iron master alloy as a raw material, taking 3.33kg of lanthanum-iron master alloy, adding 11.67kg of iron, and smelting in a 30kg medium-frequency vacuum induction furnace, the protective gas is argon, and after smelting, it is obtained in a lanthanum oxide-coated crucible. The composition of lanthanum-iron alloy is shown in Table 2.
表2镧铁合金成分分析结果/wt%Table 2 Lanthanum-iron alloy composition analysis results/wt%
实施例2Example 2
电解槽8采用Φ600mm的圆形石墨电解槽,石墨碳素阳极板5由四块石墨板组成;电解质中氟化铈为90wt%、氟化锂为10wt%;阴极6的材质为钨,直径75mm,平均电流强度4000A,阳极电流密度0.8-1.2A/cm2,阴极电流密度6-8A/cm2,电解温度维持在1000-1050℃,连续电解720小时,消耗氧化铈4051kg,制得铈铁中间合金3764kg,平均铈含量为85%,电流效率85%,铈收率97%,合金成分结果见表3。The electrolytic cell 8 adopts a circular graphite electrolytic cell with a diameter of 600 mm, and the graphite carbon anode plate 5 is composed of four graphite plates; the cerium fluoride in the electrolyte is 90wt% and the lithium fluoride is 10wt%; the cathode 6 is made of tungsten, with a diameter of 75mm , the average current intensity is 4000A, the anode current density is 0.8-1.2A/cm 2 , the cathode current density is 6-8A/cm 2 , the electrolysis temperature is maintained at 1000-1050 ° C, the continuous electrolysis is 720 hours, the consumption of cerium oxide is 4051kg, and the iron cerium is obtained. The master alloy is 3764kg, the average cerium content is 85%, the current efficiency is 85%, and the cerium yield is 97%. The alloy composition results are shown in Table 3.
表3铈铁中间合金成分分析结果/wt%Table 3 Analysis results of composition of ferric cerium master alloy/wt%
将制备的铈铁中间合金作为原料,取铈铁中间合金1.76kg,配加铁13.24kg,在30kg中频真空感应炉内进行冶炼,保护气体为氩气,冶炼后氧化铈涂层坩埚中得到的铈铁合金成分见表4。Using the prepared ferric cerium master alloy as a raw material, take 1.76 kg of ferric cerium master alloy, add 13.24 kg of iron, and carry out smelting in a 30 kg intermediate frequency vacuum induction furnace. The protective gas is argon, and the obtained smelting cerium oxide coating crucible is obtained. The composition of cerium-iron alloy is shown in Table 4.
表4铈铁合金成分分析结果/wt%Table 4 Analysis results of cerium-iron alloy composition/wt%
实施例3Example 3
电解槽8采用Φ620mm的圆形石墨电解槽,石墨碳素阳极板5由四块石墨板组成;电解质中氟化钕为85wt%、氟化锂为15wt%;阴极6的材质为钨,直径80mm,平均电流强度5000A,阳极电流密度0.7-1.1A/cm2,阴极电流密度7-9A/cm2,电解温度维持在1020-1070℃,连续电解480小时,消耗氧化钕4720kg,制得钕铁中间合金4843kg,平均钕含量为80%,电流效率90%,钕收率98%,合金成分结果见表5。The electrolytic cell 8 adopts a circular graphite electrolytic cell with a diameter of 620 mm, and the graphite carbon anode plate 5 is composed of four graphite plates; in the electrolyte, neodymium fluoride is 85wt% and lithium fluoride is 15wt%; the cathode 6 is made of tungsten, with a diameter of 80mm , the average current intensity is 5000A, the anode current density is 0.7-1.1A/cm 2 , the cathode current density is 7-9A/cm 2 , the electrolysis temperature is maintained at 1020-1070 ℃, the continuous electrolysis is 480 hours, the consumption of neodymium oxide is 4720kg, and the neodymium iron is obtained. The master alloy is 4843kg, the average neodymium content is 80%, the current efficiency is 90%, and the neodymium yield is 98%. The alloy composition results are shown in Table 5.
表5钕铁中间合金成分分析结果/wt%Table 5 Analysis results of NdFe master alloy composition/wt%
将制备的钕铁中间合金作为原料,取钕铁中间合金3kg,配加铁13kg,在30kg中频真空感应炉内进行冶炼,保护气体为氩气,冶炼后氧化钕涂层坩埚中得到的钕铁合金成分见表6。Using the prepared Nd-Fe master alloy as a raw material, take 3kg of Nd-Fe master alloy, add 13kg of iron, smelt in a 30kg intermediate frequency vacuum induction furnace, the protective gas is argon, and the Nd-Fe alloy obtained in the neodymium oxide coating crucible after smelting The ingredients are shown in Table 6.
表6钕铁合金成分分析结果/wt%Table 6 Analysis results of NdFe alloy composition/wt%
实施例4Example 4
电解槽8采用Φ400mm的圆形石墨电解槽,石墨碳素阳极板5由四块石墨板组成;电解质中氟化镨为85wt%、氟化锂为15wt%;阴极6的材质为钨,直径40mm,平均电流强度2000A,阳极电流密度0.7-1.1A/cm2,阴极电流密度7-9A/cm2,电解温度维持在1010-1060℃,连续电解100小时,消耗氧化镨313kg,制得镨铁中间合金302kg,平均镨含量为85%,电流效率88%,镨收率97%,合金成分结果见表7。The electrolytic cell 8 adopts a circular graphite electrolytic cell of Φ400mm, and the graphite carbon anode plate 5 is composed of four graphite plates; the praseodymium fluoride in the electrolyte is 85wt%, and the lithium fluoride is 15wt%; the cathode 6 is made of tungsten, with a diameter of 40mm , the average current intensity is 2000A, the anode current density is 0.7-1.1A/cm 2 , the cathode current density is 7-9A/cm 2 , the electrolysis temperature is maintained at 1010-1060 ° C, the continuous electrolysis is 100 hours, the consumption of praseodymium oxide is 313kg, and the praseodymium iron is obtained The master alloy is 302 kg, the average praseodymium content is 85%, the current efficiency is 88%, and the praseodymium yield is 97%. The alloy composition results are shown in Table 7.
表7镨铁中间合金成分分析结果/wt%Table 7 Analysis results of praseodymium iron master alloy composition/wt%
将制备的镨铁中间合金作为原料,取镨铁中间合金3.3kg,配加铁10.7kg,在30kg中频真空感应炉内进行冶炼,保护气体为氩气,冶炼后氧化镨涂层坩埚中得到的镨铁合金成分见表8。Using the prepared praseodymium iron master alloy as a raw material, take 3.3kg of praseodymium iron master alloy, add 10.7kg of iron, smelt in a 30kg medium frequency vacuum induction furnace, the protective gas is argon, and the praseodymium oxide coating crucible obtained after smelting is obtained. The composition of praseodymium iron alloy is shown in Table 8.
表8镨铁合金成分分析结果/wt%Table 8 Analysis results of praseodymium-iron alloy composition/wt%
实施例5Example 5
电解槽8采用Φ500mm的圆形石墨电解槽,石墨碳素阳极板5由四块石墨板组成;电解质中氟化镧铈(氟化镧:氟化铈=55:45)为82wt%、氟化锂为18wt%;阴极6的材质为钼,直径60mm,平均电流强度3000A,阳极电流密度0.7-1.2A/cm2,阴极电流密度6-10A/cm2,电解温度维持在1050-1080℃,连续电解300小时,消耗氧化镧铈(氧化镧:氧化铈=35:65)1452kg,制得镨钕(镧:铈=35:65)铁中间合金1792kg,平均稀土含量为65%,钕含量为85%,电流效率89%,稀土收率97%,合金成分结果见表9。The electrolytic cell 8 adopts a circular graphite electrolytic cell with a diameter of 500 mm, and the graphite carbon anode plate 5 is composed of four graphite plates; Lithium is 18wt%; the cathode 6 is made of molybdenum, the diameter is 60mm, the average current intensity is 3000A, the anode current density is 0.7-1.2A/cm 2 , the cathode current density is 6-10A/cm 2 , and the electrolysis temperature is maintained at 1050-1080 ℃, Continuous electrolysis for 300 hours consumes 1452 kg of lanthanum cerium oxide (lanthanum oxide: cerium oxide = 35:65) to obtain 1792 kg of praseodymium neodymium (lanthanum: cerium = 35:65) iron master alloy, the average rare earth content is 65%, and the neodymium content is 85%, the current efficiency is 89%, the rare earth yield is 97%, and the alloy composition results are shown in Table 9.
表9镧铈铁中间合金成分分析结果/wt%Table 9 Lanthanum-cerium-iron master alloy composition analysis results/wt%
将制备的镧铈铁中间合金作为原料,取镧铈铁中间合金3.5kg,配加铁11.5kg,在30kg中频真空感应炉内进行冶炼,保护气体为氩气,冶炼后氧化镧铈涂层坩埚中得到的镧铈铁合金成分见表10。Using the prepared lanthanum-cerium-iron master alloy as a raw material, take 3.5kg of the lanthanum-cerium-iron master alloy, add 11.5kg of iron, and smelt in a 30kg medium-frequency vacuum induction furnace, the protective gas is argon, and the lanthanum-cerium oxide-coated crucible is smelted. The composition of the lanthanum-cerium-iron alloy obtained in Table 10.
表10镧铈铁合金成分分析结果/wt%Table 10 Lanthanum-cerium-iron alloy composition analysis results/wt%
实施例6Example 6
电解槽8采用Φ650mm的圆形石墨电解槽,石墨碳素阳极板5由四块石墨板组成;电解质中氟化镨钕(氟化镨:氟化钕=25:75)为86wt%、氟化锂为14wt%;阴极6的材质为钨,直径80mm,平均电流强度6000A,阳极电流密度0.6-1.2A/cm2,阴极电流密度6-9A/cm2,电解温度维持在1020-1070℃,连续电解720小时,消耗氧化镨钕(氧化镨:氧化钕=25:75)7765kg,制得镨钕(镨:钕=25:75)铁中间合金8570kg,平均镨钕含量为75%,电流效率87%,镨钕收率98%,合金成分结果见表11。The electrolytic cell 8 adopts a circular graphite electrolytic cell of Φ650 mm, and the graphite carbon anode plate 5 is composed of four graphite plates; in the electrolyte, praseodymium fluoride (praseodymium fluoride: neodymium fluoride=25:75) is 86wt%, fluoride fluoride Lithium is 14wt%; the cathode 6 is made of tungsten, with a diameter of 80mm, an average current intensity of 6000A, an anode current density of 0.6-1.2A/cm 2 , a cathode current density of 6-9A/cm 2 , and the electrolysis temperature is maintained at 1020-1070°C, Continuous electrolysis for 720 hours consumes 7765 kg of praseodymium neodymium oxide (praseodymium oxide: neodymium oxide = 25:75) to obtain 8570 kg of praseodymium neodymium (praseodymium: neodymium = 25:75) iron master alloy, with an average content of praseodymium neodymium of 75%, and the current efficiency 87%, the yield of praseodymium neodymium is 98%, and the alloy composition results are shown in Table 11.
表11镨钕铁中间合金成分分析结果/wt%Table 11 Composition analysis results of praseodymium neodymium iron master alloy/wt%
将制备的镨钕铁中间合金作为原料,取镨钕铁中间合金2kg,配加铁13kg,在30kg中频真空感应炉内进行冶炼,保护气体为氩气,冶炼后氧化镨钕涂层坩埚中得到的镨钕铁合金成分见表12。Using the prepared praseodymium neodymium iron master alloy as a raw material, take 2kg of praseodymium neodymium iron master alloy, add 13kg of iron, smelt in a 30kg medium frequency vacuum induction furnace, the protective gas is argon, and obtain in the praseodymium oxide neodymium oxide coating crucible after smelting. The composition of the praseodymium neodymium iron alloy is shown in Table 12.
表12镨钕铁合金成分分析结果/wt%Table 12 Analysis results of praseodymium neodymium iron alloy composition/wt%
实施例7Example 7
电解槽8采用Φ320mm的圆形石墨电解槽,石墨碳素阳极板5由四块石墨板组成;电解质中氟化镧铈镨钕(氟化镧:氟化铈:氟化镨:氟化钕=55:32:3:10)为82wt%、氟化锂为18wt%;阴极6的材质为钨,直径30mm,平均电流强度1000A,阳极电流密度0.6-1.0A/cm2,阴极电流密度6-8A/cm2,电解温度维持在1000-1050℃,连续电解120小时,消耗混合稀土氧化物(氧化镧:氧化铈:氧化镨:氧化钕=28:52:5:15)193kg,制得镧铈镨钕(镧:铈:镨:钕=28:52:5:15)铁中间合金219kg,平均稀土含量为70%,电流效率85%,稀土收率96%,合金成分结果见表13。The electrolytic cell 8 adopts a circular graphite electrolytic cell of Φ320 mm, and the graphite carbon anode plate 5 is composed of four graphite plates; 55:32:3:10) is 82wt%, lithium fluoride is 18wt%; the material of cathode 6 is tungsten, the diameter is 30mm, the average current intensity is 1000A, the anode current density is 0.6-1.0A/cm 2 , the cathode current density is 6- 8A/cm 2 , the electrolysis temperature was maintained at 1000-1050°C, continuous electrolysis was carried out for 120 hours, and 193 kg of mixed rare earth oxides (lanthanum oxide: cerium oxide: praseodymium oxide: neodymium oxide = 28:52:5:15) were consumed to obtain lanthanum Cerium praseodymium neodymium (lanthanum:cerium:praseodymium:neodymium=28:52:5:15) iron master alloy 219kg, average rare earth content 70%, current efficiency 85%, rare earth yield 96%, alloy composition results are shown in Table 13.
表13镧铈镨钕铁中间合金成分分析结果/wt%Table 13 Analysis results of composition of Lanthanum, Cerium, Praseodymium, NdFe, and Fe master alloys/wt%
将制备的镧铈镨钕铁中间合金作为原料,取镧铈镨钕铁中间合金6.43kg,配加铁8.57kg,在30kg中频真空感应炉内进行冶炼,保护气体为氩气,冶炼后氧化镧铈镨钕涂层坩埚中得到的镧铈镨钕铁合金成分见表14。The prepared lanthanum, cerium, praseodymium, neodymium-iron master alloy was used as a raw material, and 6.43 kg of lanthanum, cerium, praseodymium, neodymium-iron master alloy was taken, and 8.57 kg of iron was added. The smelting was carried out in a 30 kg medium-frequency vacuum induction furnace. The protective gas was argon. After smelting, lanthanum oxide was used. The composition of the lanthanum cerium praseodymium neodymium iron alloy obtained in the cerium praseodymium neodymium coating crucible is shown in Table 14.
表14镧铈镨钕铁合金成分分析结果/wt%Table 14 Analysis results of composition of lanthanum cerium praseodymium neodymium iron alloy/wt%
本发明所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。The terms used in the present invention are terms of description and illustration, not limitation. Since the invention can be embodied in many forms without departing from the spirit or spirit of the invention, it is to be understood that the above-described embodiments are not limited to any of the foregoing details, but are to be construed broadly within the spirit and scope defined by the appended claims Therefore, all changes and modifications that come within the scope of the claims or their equivalents should be covered by the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910853695.0A CN111411372B (en) | 2019-09-10 | 2019-09-10 | Preparation method of rare earth iron alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910853695.0A CN111411372B (en) | 2019-09-10 | 2019-09-10 | Preparation method of rare earth iron alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111411372A true CN111411372A (en) | 2020-07-14 |
CN111411372B CN111411372B (en) | 2022-04-29 |
Family
ID=71488920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910853695.0A Active CN111411372B (en) | 2019-09-10 | 2019-09-10 | Preparation method of rare earth iron alloy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111411372B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112267131A (en) * | 2020-10-23 | 2021-01-26 | 赣州有色冶金研究所 | Yttrium-nickel alloy and preparation method and application thereof |
CN112725841A (en) * | 2020-12-24 | 2021-04-30 | 四川省乐山市科百瑞新材料有限公司 | Rare earth alloy material and preparation method thereof |
CN113218934A (en) * | 2021-04-08 | 2021-08-06 | 江西理工大学 | Detection method for rapidly determining content of yttrium in steel by utilizing full-spectrum spark direct-reading spectrometry |
CN113308633A (en) * | 2021-06-01 | 2021-08-27 | 包头市华星稀土科技有限责任公司 | Preparation method of praseodymium-neodymium alloy |
CN113897640A (en) * | 2021-09-29 | 2022-01-07 | 内蒙金属材料研究所 | Composition for coating cathode, preparation method and application thereof, and preparation method of tungsten cathode |
CN114657421A (en) * | 2022-04-08 | 2022-06-24 | 包头稀土研究院 | Ce-Zn alloy and its production method and use of melting vessel |
CN114941079A (en) * | 2022-05-24 | 2022-08-26 | 国瑞科创稀土功能材料(赣州)有限公司 | Method for removing oxide inclusion in Dy-Fe alloy |
CN114974870A (en) * | 2022-06-15 | 2022-08-30 | 赣州市华新金属材料有限公司 | Method for preparing neodymium iron boron permanent magnet from neodymium iron boron powdery waste |
CN115389283A (en) * | 2022-06-24 | 2022-11-25 | 赣州艾科锐检测技术有限公司 | Internal control sample in rare earth metal or alloy detection, preparation method and application |
CN115852163A (en) * | 2022-11-23 | 2023-03-28 | 包头稀土研究院 | Separation method of rare earth zinc alloy |
CN116516106A (en) * | 2023-04-28 | 2023-08-01 | 有研稀土新材料股份有限公司 | A rare earth additive |
CN118621387A (en) * | 2024-07-04 | 2024-09-10 | 包头市玺骏稀土有限责任公司 | A highly efficient preparation method for preparing lanthanum-cerium alloy by electrolysis |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62139891A (en) * | 1985-12-14 | 1987-06-23 | Showa Denko Kk | Electrolytic smelting method for neodium alloy |
CN1198482A (en) * | 1997-05-05 | 1998-11-11 | 包钢稀土三厂 | Preparation of battery grade mixed rareearth metal by rareearth chloride molten-salt electrolysis and its equipment |
CN1643184A (en) * | 2002-03-13 | 2005-07-20 | 株式会社三德 | Process for producing R-iron alloy |
CN102140656A (en) * | 2011-03-09 | 2011-08-03 | 赣州晨光稀土新材料股份有限公司 | Method for preparing Dy-Fe alloy through oxide molten salt electrolysis |
CN104748548A (en) * | 2013-12-30 | 2015-07-01 | 比亚迪股份有限公司 | High-temperature smelting pot and processing method and application thereof |
CN106835205A (en) * | 2016-12-16 | 2017-06-13 | 包头稀土研究院 | Praseodymium neodymium iron alloy and its preparation method |
CN106834905A (en) * | 2016-12-16 | 2017-06-13 | 包头稀土研究院 | Rare earth iron alloy and preparation method thereof |
CN109371429A (en) * | 2018-11-30 | 2019-02-22 | 乐山有研稀土新材料有限公司 | A method of improving rare earth metal product quality |
-
2019
- 2019-09-10 CN CN201910853695.0A patent/CN111411372B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62139891A (en) * | 1985-12-14 | 1987-06-23 | Showa Denko Kk | Electrolytic smelting method for neodium alloy |
CN1198482A (en) * | 1997-05-05 | 1998-11-11 | 包钢稀土三厂 | Preparation of battery grade mixed rareearth metal by rareearth chloride molten-salt electrolysis and its equipment |
CN1643184A (en) * | 2002-03-13 | 2005-07-20 | 株式会社三德 | Process for producing R-iron alloy |
CN102140656A (en) * | 2011-03-09 | 2011-08-03 | 赣州晨光稀土新材料股份有限公司 | Method for preparing Dy-Fe alloy through oxide molten salt electrolysis |
CN104748548A (en) * | 2013-12-30 | 2015-07-01 | 比亚迪股份有限公司 | High-temperature smelting pot and processing method and application thereof |
CN106835205A (en) * | 2016-12-16 | 2017-06-13 | 包头稀土研究院 | Praseodymium neodymium iron alloy and its preparation method |
CN106834905A (en) * | 2016-12-16 | 2017-06-13 | 包头稀土研究院 | Rare earth iron alloy and preparation method thereof |
CN109371429A (en) * | 2018-11-30 | 2019-02-22 | 乐山有研稀土新材料有限公司 | A method of improving rare earth metal product quality |
Non-Patent Citations (1)
Title |
---|
杨庆山等: ""镝—铁中间合金的制备方法"", 《湖南冶金》 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112267131A (en) * | 2020-10-23 | 2021-01-26 | 赣州有色冶金研究所 | Yttrium-nickel alloy and preparation method and application thereof |
CN112725841A (en) * | 2020-12-24 | 2021-04-30 | 四川省乐山市科百瑞新材料有限公司 | Rare earth alloy material and preparation method thereof |
CN113218934A (en) * | 2021-04-08 | 2021-08-06 | 江西理工大学 | Detection method for rapidly determining content of yttrium in steel by utilizing full-spectrum spark direct-reading spectrometry |
CN113308633A (en) * | 2021-06-01 | 2021-08-27 | 包头市华星稀土科技有限责任公司 | Preparation method of praseodymium-neodymium alloy |
CN113897640A (en) * | 2021-09-29 | 2022-01-07 | 内蒙金属材料研究所 | Composition for coating cathode, preparation method and application thereof, and preparation method of tungsten cathode |
CN114657421B (en) * | 2022-04-08 | 2023-10-20 | 包头稀土研究院 | Ce-Zn alloy, production method thereof and application of smelting vessel |
CN114657421A (en) * | 2022-04-08 | 2022-06-24 | 包头稀土研究院 | Ce-Zn alloy and its production method and use of melting vessel |
CN114941079A (en) * | 2022-05-24 | 2022-08-26 | 国瑞科创稀土功能材料(赣州)有限公司 | Method for removing oxide inclusion in Dy-Fe alloy |
CN114941079B (en) * | 2022-05-24 | 2023-07-21 | 国瑞科创稀土功能材料(赣州)有限公司 | A method for removing oxide inclusions in dysprosium-iron alloys |
CN114974870A (en) * | 2022-06-15 | 2022-08-30 | 赣州市华新金属材料有限公司 | Method for preparing neodymium iron boron permanent magnet from neodymium iron boron powdery waste |
CN114974870B (en) * | 2022-06-15 | 2023-10-27 | 赣州市华新金属材料有限公司 | Method for preparing neodymium-iron-boron permanent magnet from neodymium-iron-boron powdery waste |
CN115389283A (en) * | 2022-06-24 | 2022-11-25 | 赣州艾科锐检测技术有限公司 | Internal control sample in rare earth metal or alloy detection, preparation method and application |
CN115852163A (en) * | 2022-11-23 | 2023-03-28 | 包头稀土研究院 | Separation method of rare earth zinc alloy |
CN116516106A (en) * | 2023-04-28 | 2023-08-01 | 有研稀土新材料股份有限公司 | A rare earth additive |
WO2024222340A1 (en) * | 2023-04-28 | 2024-10-31 | 有研稀土新材料股份有限公司 | Rare earth-containing additive |
CN116516106B (en) * | 2023-04-28 | 2024-12-13 | 有研稀土新材料股份有限公司 | Rare earth-containing additive |
CN118621387A (en) * | 2024-07-04 | 2024-09-10 | 包头市玺骏稀土有限责任公司 | A highly efficient preparation method for preparing lanthanum-cerium alloy by electrolysis |
Also Published As
Publication number | Publication date |
---|---|
CN111411372B (en) | 2022-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111411372B (en) | Preparation method of rare earth iron alloy | |
CN105624737B (en) | A kind of method for preparing magnesium-rare earth and rare-earth yttrium neodymium magnesium alloy | |
CN109777919A (en) | Reduce the remelting method and remelting slag system of ESR ingot oxygen content | |
CN102719682A (en) | Smelting method of GH901 alloy | |
CN113046789B (en) | Preparation method of rare earth iron alloy | |
CN105618723B (en) | A kind of titanium alloy consumable electrode skull melting casting technique based on inert atmosphere | |
WO2024222340A1 (en) | Rare earth-containing additive | |
US20040037771A1 (en) | Cast ceramic anode for metal oxide electrolytic reduction | |
CN103433642A (en) | Low-hydrogen basic electrode for 1Ni9 low-temperature steel welding and preparation method of low-hydrogen basic electrode | |
CN106834889A (en) | Cerium-iron alloy and preparation method thereof | |
CN103882182B (en) | A kind of high temperature steel cleaning molten method | |
Kawakami et al. | Electrode reactions in dc electroslag remelting of steel rod | |
CN113430579B (en) | Preparation method of lanthanum-iron alloy | |
CN101914687B (en) | Electro-slag re-melting method for steel for aluminum-controlled seamless steel pipes | |
CN113279018B (en) | Use of praseodymium neodymium iron alloy in rare earth steel | |
CN106834890A (en) | Lanthanum cerium-iron alloy and preparation method thereof for producing rare earth steel | |
CN113279020B (en) | Preparation method of praseodymium-iron alloy | |
CN106811644A (en) | Neodymium-iron alloy and preparation method thereof | |
CN103498091B (en) | The preparation method of niobium ferro-titanium and niobium ferro-titanium | |
CN106636668A (en) | Waste electromagnetic wire copper refining agent and preparation method and application thereof | |
CN109487091A (en) | A kind of electroslag remelting arc starting agent and preparation method thereof | |
CN106636830A (en) | Yttrium iron alloy and its preparation method | |
Hong et al. | Mechanical properties, purifying techniques and processing methods of metal yttrium | |
CN119979817A (en) | Method for stably controlling aluminum content in steel by adopting vacuum induction furnace | |
CN118422046A (en) | 304 Stainless steel and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |