JPH0885835A - Production of rare earth-nickel alloy - Google Patents

Production of rare earth-nickel alloy

Info

Publication number
JPH0885835A
JPH0885835A JP22298694A JP22298694A JPH0885835A JP H0885835 A JPH0885835 A JP H0885835A JP 22298694 A JP22298694 A JP 22298694A JP 22298694 A JP22298694 A JP 22298694A JP H0885835 A JPH0885835 A JP H0885835A
Authority
JP
Japan
Prior art keywords
rare earth
alloy
heating
earth element
nickel alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22298694A
Other languages
Japanese (ja)
Inventor
Yuichi Makino
勇一 牧野
Takashi Tode
孝 戸出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP22298694A priority Critical patent/JPH0885835A/en
Publication of JPH0885835A publication Critical patent/JPH0885835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To produce a rare earth - Ni alloy minimal in impurity content at a low cost by mixing rare earth fluoride, metallic Ca, Ni powder, and CaCl2 in specific ratio and allowing them to react with each other by heating at specific temp. in an inert-gas atmosphere. CONSTITUTION: The fluoride of rare earth elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu and including Y is mixed with metallic Ca as a reducing agent for it, Ni powder, and anhydrous calcium chloride as a melting auxiliary. The amounts of metallic Ca, Ni powder, and anhydrous calcium chloride are 1.2-1.8mol, 0.1-4mol, and 0.1-6.6mol per mol of the rare earth fluoride, respectively. A crucible made of Ta is filled with the resulting mixture. Then, heating is performed up to 1000-1500 deg.C, not lower than the melting temp. of the resulting rare earth - Ni alloy, in an inert-gas atmosphere of Ar, etc., to carry out reaction. By this method, the alloy of rare earth element and Ni can be inexpensively produced with high-purity quality minimal in impurity content.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金、蓄冷材
用合金、耐熱合金などとして有用な希土類元素−ニッケ
ル合金を高純度かつ低コストで製造する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth element-nickel alloy useful as a hydrogen storage alloy, an alloy for a cold storage material, a heat-resistant alloy and the like with high purity and low cost.

【0002】[0002]

【従来の技術】従来、希土類元素−ニッケル合金は希土
類弗化物を金属Ca で還元し、生成した希土類元素とニ
ッケルを真空誘導溶解炉などで溶解し、希土類元素−ニ
ッケル合金を製造していた。
2. Description of the Related Art Conventionally, rare earth element-nickel alloys have been manufactured by reducing rare earth fluorides with metal Ca and melting the generated rare earth elements and nickel in a vacuum induction melting furnace or the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来技
術で得られた該合金はCa 還元時に使用するるつぼ材質
又は該合金溶解時に使用するるつぼ材質による汚染があ
り、不純物の多い合金であった。本発明は、かかる欠点
を解決した不純物の少ない希土類元素−ニッケル合金を
製造工程を簡略化し低コストで提供しようとするもので
ある。
However, the alloy obtained by the prior art was an alloy containing a large amount of impurities due to contamination by the crucible material used for Ca reduction or the crucible material used for melting the alloy. The present invention intends to provide a rare earth element-nickel alloy containing few impurities, which solves the above drawbacks, by simplifying the manufacturing process and at low cost.

【0004】[0004]

【課題を解決するための手段】本発明者等は、このよう
な欠点を解決するために、製造工程を見直し、従来の還
元、溶解の二工程を簡素化して一工程とすればるつぼ材
質による汚染が少なくかつ安価に製造できることを見出
し、諸条件を確立して本発明を完成したもので、その要
旨は、希土類元素−ニッケル合金の製造に際し、希土類
弗化物、金属カルシウムおよびニッケル粉末の混合物に
塩化カルシウムを加え希土類元素−ニッケル合金の融点
以上に加熱することを特徴とする希土類元素−ニッケル
合金の製造方法にあり、更に詳しくは、加熱温度が1000
〜1500℃であり、かつ加熱雰囲気が高温下反応性のない
不活性ガスである希土類元素−ニッケル合金の製造方法
にある。
In order to solve such drawbacks, the inventors of the present invention reviewed the manufacturing process and simplified the conventional two steps of reduction and dissolution into a single step, depending on the crucible material. The present invention has been completed by establishing various conditions by finding that there is little pollution and can be manufactured at low cost, and its gist is to produce a mixture of rare earth fluoride, metallic calcium and nickel powder when manufacturing a rare earth element-nickel alloy. In a method for producing a rare earth element-nickel alloy, which is characterized by heating to a melting point of the rare earth element-nickel alloy with addition of calcium chloride, more specifically, the heating temperature is 1000
It is a method for producing a rare earth element-nickel alloy in which the temperature is ˜1500 ° C. and the heating atmosphere is an inert gas which is not reactive under high temperature.

【0005】以下、本発明を詳細に説明する。本発明の
製造方法は、希土類弗化物、金属カルシウム、ニッケル
及び塩化カルシウムを原料としてこれらを所定配合割合
に混合し、タンタルるつぼに入れ、目標とする希土類元
素−ニッケル合金の融点以上である1000〜1500℃に不活
性ガス雰囲気中で加熱すれば一工程で希土類元素−ニッ
ケル合金を得ることができる。原料配合割合は希土類弗
化物Re F3 (こヽにRe は希土類元素)1モルに対し
て、金属Ca は 1.2〜 1.8モル、Ni は 0.1〜4モル、
塩化Ca は無水物で 0.1〜 6.6モルの範囲とするのが良
い。金属Ca は還元剤で理論量は1.5 モルであるが、歩
留を上げるには1.5 モル以上が良く、生成合金の不純物
Ca を抑えるには1.5 モル以下が良い。Ni はるつぼ材
質のTa による汚染をなるべく少なくするためには、生
成合金の融点を低温域に移行させるのが良く、共晶点の
融点になるように配合する。塩化Ca は融解助剤で、C
a F2 −Ca Cl2スラグの融点を生成合金の融点程度ま
で低下させるために配合する。Ca F2 50モル−Ca C
l2 50モルスラグの融点は800 ℃まで低下し、反応温度
が1000℃でも合金と完全に分離する。
The present invention will be described in detail below. The production method of the present invention is a rare earth fluoride, metal calcium, nickel and calcium chloride are mixed as a raw material at a predetermined mixing ratio, put in a tantalum crucible, and the melting point of the target rare earth element-nickel alloy is 1000- If heated to 1500 ° C. in an inert gas atmosphere, a rare earth element-nickel alloy can be obtained in one step. The mixing ratio of raw materials is 1.2 to 1.8 moles of metal Ca and 0.1 to 4 moles of Ni with respect to 1 mole of rare earth fluoride Re F 3 (here, Re is a rare earth element).
Ca chloride is an anhydrous substance and is preferably in the range of 0.1 to 6.6 mol. Metal Ca is a reducing agent and the theoretical amount is 1.5 mol. However, 1.5 mol or more is preferable to increase the yield and 1.5 mol or less is preferable to suppress the impurity Ca of the produced alloy. In order to reduce Ta contamination of the crucible material as much as possible, it is preferable to shift the melting point of the produced alloy to a low temperature range, and mix Ni so as to have the melting point at the eutectic point. Ca chloride is a melting aid and C
It is added in order to lower the melting point of the a F 2 -Ca Cl 2 slag to the melting point of the produced alloy. Ca F 2 50 mol-Ca C
The melting point of l 2 50 mol slag drops to 800 ℃, and even if the reaction temperature is 1000 ℃, it completely separates from the alloy.

【0006】溶融加熱温度は希土類元素−ニッケル合金
の融点以上である1000〜1500℃とする必要があり、1000
℃未満ではスラグと該合金の分離が不完全になり、1500
℃を越えるとCa Cl2が蒸発し、スラグと該合金の分離
が不完全となるほか、るつぼからの汚染が増加する。加
熱時間は原料粉末が完全に融解するまでとするのが良
い。ちなみに希土類元素−ニッケル合金の融点は希土類
元素の種類、両者の組成割合によって異なり、二元素共
融点図で表され、それらの極小融点の内最小融点である
合金組成を目標とするのが望ましい。加熱雰囲気は不活
性ガスの中でも高温下反応性のないAr、He、Ne、Kr、X
e などを使用することができるが、中でもAr ガスが好
ましい。本発明の適応範囲は、希土類元素としてはYを
含むLa、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLu
から成る群から選択される1種または2種以上の混合元
素である。
The melting heating temperature must be 1000 to 1500 ° C., which is higher than the melting point of the rare earth element-nickel alloy.
Below ℃, the separation of slag and the alloy becomes incomplete, and 1500
When the temperature exceeds ℃, CaCl 2 evaporates, the separation between the slag and the alloy becomes incomplete, and the contamination from the crucible increases. The heating time is preferably until the raw material powder is completely melted. Incidentally, the melting point of a rare earth element-nickel alloy varies depending on the type of rare earth element and the composition ratio of both, and is represented by a two-element eutectic melting point diagram, and it is desirable to aim at the alloy composition which is the minimum melting point among those minimum melting points. The heating atmosphere is Ar, He, Ne, Kr, X which has no reactivity at high temperature even in the inert gas.
Although e and the like can be used, Ar gas is preferable. The applicable range of the present invention is La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu containing Y as a rare earth element.
It is one kind or two or more kinds of mixed elements selected from the group consisting of.

【0007】[0007]

【作用】本発明の最大の特徴である従来の還元工程と合
金溶解工程の二工程を一工程に簡素化しても、還元反応
になんらの支障もなく、しかもるつぼ材質であるTa に
よる汚染もなくなるという効果があった。これは低温で
反応させることにより、Ta の合金に対する溶解度が小
さくなったためと考えられる。
Even if the conventional reduction step and alloy melting step, which are the greatest feature of the present invention, are simplified into one step, the reduction reaction is not hindered and contamination by Ta, which is the material of the crucible, is eliminated. There was an effect. This is considered to be because the solubility of Ta in the alloy was reduced by reacting it at a low temperature.

【0008】[0008]

【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1)(74%Y−26%Ni 合金)(以下、%は重
量%とする) YF3 100g、Ca 41.2g 、Ni 粉末 21.4g、Ca Cl2 8
7.0gを混合し、Ta るつぼに入れ、Ar 中で1000℃×3
hr加熱した。冷却後、Y−Ni 合金はるつぼ底部にあ
り、スラグ(Ca F2 −Ca Cl2)は合金の上部にあっ
た。合金の回収率は93%で、不純物Ta は0.01%、Al
<0.001 %であった。
EXAMPLES The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. (Example 1) (74% Y-26% Ni alloy) (hereinafter,% is% by weight) YF 3 100 g, Ca 41.2 g, Ni powder 21.4 g, Ca Cl 2 8
Mix 7.0g, put in Ta crucible, 1000 ℃ × 3 in Ar
hr heated. After cooling, Y-Ni alloy is in the crucible bottom, slag (Ca F 2 -Ca Cl 2) was in the upper part of the alloy. The recovery rate of the alloy is 93%, the impurity Ta is 0.01%, Al
It was <0.001%.

【0009】(比較例1)(74%Y−26%Ni 合金) YF3 100g、Ca 41.2g を混合してTa るつぼに入れ、
Ar 中で1500℃×3hr加熱しYメタルを得た。得られた
Yメタル 54.8gとNi 19.3g をアルミナるつぼに入れて
溶解しY−Ni 合金 65.2gを得た。合金の回収率は88%
で不純物Ta は0.96%、Al <0.50%であった。
(Comparative Example 1) (74% Y-26% Ni alloy) 100 g of YF 3 and 41.2 g of Ca were mixed and put in a Ta crucible.
Y metal was obtained by heating at 1500 ° C. for 3 hours in Ar. 54.8 g of the obtained Y metal and 19.3 g of Ni were put into an alumina crucible and melted to obtain 65.2 g of a Y-Ni alloy. 88% alloy recovery
The impurity Ta was 0.96% and Al <0.50%.

【0010】(実施例2)(54.2%La −45.8%Ni 合
金、La Ni2) La F3 1000g 、Ca 306.9g、Ni 599.2g、Ca Cl2 6
47.6gを混合し、Taるつぼに入れ、Ar 中で1000℃×3
hr加熱し、冷却後La −Ni 合金を1190.6g得た。合金
の回収率は91%で、不純物Ta は0.01%、Al <0.001
%であった。
(Example 2) (54.2% La-45.8% Ni alloy, La Ni 2 ) La F 3 1000 g, Ca 306.9 g, Ni 599.2 g, Ca Cl 2 6
Mix 47.6g, put in Ta crucible, 1000 ℃ × 3 in Ar
After heating and cooling for 1 hr, 1190.6 g of La-Ni alloy was obtained. The recovery rate of the alloy is 91%, the impurity Ta is 0.01%, Al <0.001
%Met.

【0011】(実施例3)(89.5%Er −10.5%Ni 合
金、Er3Ni ) Er F3 5000g 、Ca 1340.4g 、Ni 437.5g、Ca Cl2
2828.9gを混合し、Ta るつぼに入れ、Ar 中で1000℃
×5hr加熱し、冷却後Er −Ni 合金を3875.0g 得た。
合金の回収率は93%で、不純物Ta は0.05%、Mg <0.
001 %であった。
(Example 3) (89.5% Er -10.5% Ni alloy, Er 3 Ni) Er F 3 5000g, Ca 1340.4g, Ni 437.5g, Ca Cl 2
2828.9g are mixed, put in a Ta crucible, and 1000 ℃ in Ar
After heating for 5 hours and cooling, 3875.0 g of Er-Ni alloy was obtained.
The recovery rate of the alloy is 93%, the impurity Ta is 0.05%, and Mg <0.
It was 001%.

【0012】(比較例2)(89.5%Er −10.5%Ni 合
金、Er3Ni ) Er F3 5000g 、Ca 1340.0g を混合し、Ta るつぼに
入れ、1500℃×3hr加熱しEr メタルを得た。得られた
Er メタル 3356.1gとNi 393.7gをマグネシアるつぼに
入れて溶解し、Er −Ni 合金 3149.8gを得た。合金の
回収率は84%で、不純物Ta は0.60%、Mg 0.05%であ
った。
(Comparative Example 2) (89.5% Er -10.5% Ni alloy, Er 3 Ni) Er F 3 5000g and Ca 1340.0g were mixed, put in a Ta crucible and heated at 1500 ° C for 3 hours to obtain Er metal. . 3356.1 g of the obtained Er metal and 393.7 g of Ni were put into a magnesia crucible and melted to obtain 3149.8 g of Er-Ni alloy. The recovery rate of the alloy was 84%, the impurity Ta was 0.60%, and the Mg was 0.05%.

【0013】(実施例4)(88.9%Gd −11.1%Ni 合
金、Gd3Ni ) Gd F3 5000g 、Ca 1403.0g 、Ni 458.2g、Ca Cl2
2961.1gを混合し、Ta るつぼに入れ、Ar 中で1000℃
×5hr加熱し、Gd −Ni 合金を3839.0g 得た。合金の
回収率は93%で、不純物Ta は0.02%、Al <0.001 %
であった。
(Example 4) (88.9% Gd -11.1% Ni alloy, Gd 3 Ni) Gd F 3 5000g, Ca 1403.0g, Ni 458.2g, Ca Cl 2
Mix 2961.1g, put in Ta crucible, 1000 ℃ in Ar
After heating for 5 hours, 3839.0 g of a Gd-Ni alloy was obtained. The recovery rate of the alloy is 93%, the impurity Ta is 0.02%, Al <0.001%
Met.

【0014】[0014]

【発明の効果】本発明により、従来の還元、溶解の二つ
の工程を一つの工程に簡素化でき、かつ還元るつぼの寿
命も延びてコストダウンが可能となり、また、るつぼ材
質による汚染の極めて少ない合金を製造することがで
き、産業上その利用価値は極めて高い。
According to the present invention, the conventional two steps of reduction and dissolution can be simplified into one step, the life of the reducing crucible can be extended and the cost can be reduced, and the contamination by the crucible material is extremely small. An alloy can be produced and its utility value is extremely high in industry.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】希土類元素−ニッケル合金の製造に際し、
希土類弗化物、金属カルシウムおよびニッケル粉末の混
合物に塩化カルシウムを加え希土類元素−ニッケル合金
の融点以上に加熱することを特徴とする希土類元素−ニ
ッケル合金の製造方法。
1. When manufacturing a rare earth element-nickel alloy,
A method for producing a rare earth element-nickel alloy, which comprises adding calcium chloride to a mixture of rare earth fluoride, metallic calcium and nickel powder and heating the mixture to a temperature equal to or higher than the melting point of the rare earth element-nickel alloy.
【請求項2】請求項1において加熱温度が、1000〜1500
℃である希土類元素−ニッケル合金の製造方法。
2. The heating temperature according to claim 1, wherein the heating temperature is 1000 to 1500.
A method for producing a rare earth element-nickel alloy having a temperature of 0 ° C.
【請求項3】請求項1において加熱雰囲気が、高温下反
応性のない不活性ガスである希土類元素−ニッケル合金
の製造方法。
3. The method for producing a rare earth element-nickel alloy according to claim 1, wherein the heating atmosphere is an inert gas having no reactivity at a high temperature.
JP22298694A 1994-09-19 1994-09-19 Production of rare earth-nickel alloy Pending JPH0885835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22298694A JPH0885835A (en) 1994-09-19 1994-09-19 Production of rare earth-nickel alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22298694A JPH0885835A (en) 1994-09-19 1994-09-19 Production of rare earth-nickel alloy

Publications (1)

Publication Number Publication Date
JPH0885835A true JPH0885835A (en) 1996-04-02

Family

ID=16791017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22298694A Pending JPH0885835A (en) 1994-09-19 1994-09-19 Production of rare earth-nickel alloy

Country Status (1)

Country Link
JP (1) JPH0885835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106676369A (en) * 2016-12-05 2017-05-17 钦州市钦南区生产力促进中心 Silver-base alloy layer composite and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106676369A (en) * 2016-12-05 2017-05-17 钦州市钦南区生产力促进中心 Silver-base alloy layer composite and preparation method thereof

Similar Documents

Publication Publication Date Title
KR920006603B1 (en) Neodyme alloy and the method of making
JPS59146920A (en) Manufacture of pure metal silicon
US4837109A (en) Method of producing neodymium-iron-boron permanent magnet
US4767455A (en) Process for the preparation of pure alloys based on rare earths and transition metals by metallothermy
US3264093A (en) Method for the production of alloys
US3364015A (en) Silicon alloys containing rare earth metals
JPH0885835A (en) Production of rare earth-nickel alloy
CA1175661A (en) Process for aluminothermic production of chromium and chromium alloys low in nitrogen
KR101927379B1 (en) Scandium Alloy And Preparation Method Thereof
US4308245A (en) Method of purifying metallurgical-grade silicon
JPS61210142A (en) Ni-ti alloy having superior shock resistance and its manufacture
KR920007932B1 (en) Making process for rare metals-fe alloy
SU873692A1 (en) Method of producing alumium-scandium alloying composition
JP2702649B2 (en) Manufacturing method of high purity rare earth metal
US4536215A (en) Boron addition to alloys
US4643874A (en) Method of making a titanium-containing hydrogen storage alloy
JP2749756B2 (en) Rare earth metal electrolytic reduction production method
US20240191321A1 (en) Semi-continuous rare earth metal production
US3440040A (en) Process of making rare earth metals and silicon alloys
JPH04214824A (en) Manufacture of low oxygen-containing rare earth metal
JPH0790410A (en) Production of low-oxygen rare earth metal
JPS5843456B2 (en) Rare earth↓-silicon alloy manufacturing method
JPS6350287B2 (en)
JP3169471B2 (en) Rare earth metal electrolytic reduction production method
RU1791462C (en) Charge for extra-furnace production of magnetic alloys with rare-earth metals