JPH06279805A - Production of ceramic powder or metallic powder sintered compact - Google Patents

Production of ceramic powder or metallic powder sintered compact

Info

Publication number
JPH06279805A
JPH06279805A JP9201993A JP9201993A JPH06279805A JP H06279805 A JPH06279805 A JP H06279805A JP 9201993 A JP9201993 A JP 9201993A JP 9201993 A JP9201993 A JP 9201993A JP H06279805 A JPH06279805 A JP H06279805A
Authority
JP
Japan
Prior art keywords
degreasing
sintering
injection
molded article
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9201993A
Other languages
Japanese (ja)
Inventor
Jun Inahashi
潤 稲橋
Masao Agawa
正夫 阿川
Takuya Kodama
卓弥 児玉
Kenji Haga
健二 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP9201993A priority Critical patent/JPH06279805A/en
Publication of JPH06279805A publication Critical patent/JPH06279805A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily obtain a small-sized sintered compact by injection molding a kneaded body which contains ceramic powder or metallic powder inspecific ratios and is composed of the balance an org. binder, then compressing the molded. article while degreasing and sintering the molded article. CONSTITUTION:The kneaded body composed of 5 to 40vol.% and the balance the org. binder is injection molded to form the molded article 32. This molded article 32 is installed in a degreasing furnace 31 where the molded article is degreased by heating. The atmosphere pressure in the degreasing furnace body 31 is increased by a compressor 42 to compress the molded article 32. A pressure reducing valve 44 is opened after the completion of the compression and after the molded article 32 is cooled, the molded article is sintered in a sintering furnace. The formation of the cavity of the molds to be used for the injection molding to a relatively large size is possible. Since the flow property of the kneaded body is improved at the time of the injection molding, the molding is relatively easy. The molded article shrinks largely and, therefore, the sintered compact of a small size is easily obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミクス粉末または
金属粉末を焼結することにより成形される焼結体の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered body formed by sintering ceramic powder or metal powder.

【0002】[0002]

【従来の技術】従来、粉末治金やセラミクスの製造方法
として金型成形,静水圧成形,ホットプレス成形,テー
プ成形,押出成形および鋳込成形などの種々の方法が行
われている。その中でも、近年複雑形状を比較的容易に
製造する方法としてセラミクス粉末射出成形や金属粉末
射出成形が注目を集めている。
2. Description of the Related Art Conventionally, various methods such as die molding, hydrostatic molding, hot press molding, tape molding, extrusion molding and cast molding have been carried out as a method for producing powder metallurgy and ceramics. Among them, ceramic powder injection molding and metal powder injection molding have recently attracted attention as a method for relatively easily manufacturing a complicated shape.

【0003】これらの製造方法として、例えば特開昭5
7−198202号公報および特開昭62−37302
号公報記載の発明が開示されている。これらの方法は、
セラミクス粉末または金属粉末と、有機バインダーと一
般にいわれている成形助剤とを混練した混練体を射出成
形し、その成形体を脱脂した後、焼結して製品を得るも
のである。
As a method for producing these, for example, Japanese Patent Laid-Open No.
7-198202 and JP-A-62-37302.
The invention described in the publication is disclosed. These methods are
A kneaded body obtained by kneading a ceramic powder or a metal powder, an organic binder and a molding aid generally called is injection-molded, and the molded body is degreased and then sintered to obtain a product.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記従
来技術においては以下の様な欠点がある。すなわち、射
出成形体に対する焼結体の線収縮率は10〜20%とプ
ラスチックに比較して大きいとはいえ、最終的な焼結体
が小型になるつれて射出成形時に用いる成形型のキャビ
ティも小型になる。例えば、外径0.1mmのギアを得
るためには0.125mmのキャビティを加工する必要
がある。従って、最終的な焼結体が小型・微細になれば
なるほど、成形型のキャビティは小型・微細になり、成
形が困難になる。
However, the above-mentioned prior art has the following drawbacks. That is, although the linear shrinkage ratio of the sintered body with respect to the injection molded body is 10 to 20%, which is larger than that of plastic, as the final sintered body becomes smaller, the cavity of the molding die used during injection molding also becomes smaller. It becomes small. For example, in order to obtain a gear having an outer diameter of 0.1 mm, it is necessary to machine a cavity of 0.125 mm. Therefore, the smaller and finer the final sintered body is, the smaller and finer the cavity of the molding die becomes, and the more difficult the molding becomes.

【0005】また、射出成形工程で得られた射出成形体
の機械強度は、射出成形材料中の有機バインダーの結合
に担われている。射出成形体自身が微小になれば、その
構造を保持するバインダー物質は当然極少量となり、射
出成形体自身の保形が困難になる。
The mechanical strength of the injection-molded article obtained in the injection-molding step is responsible for the binding of the organic binder in the injection-molding material. If the injection-molded body itself becomes minute, the amount of the binder material that holds the structure will naturally be extremely small, and it will be difficult to maintain the shape of the injection-molded body itself.

【0006】さらに、射出成形性を大きく左右する要因
として混練体の流動特性がある。混練体は前記従来技術
の特許公報中にもあるように、通常セラミクス粉末また
は金属粉末が50〜80vol%、残部が有機バインダ
ー20〜50vol%で構成されているため、一般のプ
ラスチックに比較して熱伝導率が3〜25倍も大きく、
従って射出成形時のキャビティ内での冷却固化が極めて
早い。
Further, a flow characteristic of the kneaded body is a factor that greatly influences the injection moldability. The kneaded body is usually composed of ceramic powder or metal powder of 50 to 80 vol% and the balance of organic binder of 20 to 50 vol% as described in the above-mentioned prior art patent publication. The thermal conductivity is 3 to 25 times larger,
Therefore, cooling and solidification in the cavity during injection molding are extremely fast.

【0007】キャビティが微小になるほど、その体積に
対する表面積は指数関数的に増大する。射出成形時のキ
ャビティ内での冷却固化はキャビティ表面から行われ
る。従って、キャビティが微小になるほどこの傾向が増
大されてしまい、場合によってはコンパウンドがキャビ
ティに充填される前に冷却固化し、グリーン体自体を得
られないことすらある。
The smaller the cavity, the more exponentially increases its surface area with respect to its volume. Cooling and solidification in the cavity during injection molding is performed from the cavity surface. Therefore, the smaller the cavity is, the more this tendency is increased, and in some cases, the compound is cooled and solidified before being filled in the cavity, so that the green body itself cannot be obtained.

【0008】因って、本発明は前記従来技術における欠
点に鑑みて開発されたもので、微小な焼結体を容易に得
ることのできるセラミクス粉末または金属粉末焼結体の
製造方法を提供することを目的とする。
Therefore, the present invention was developed in view of the above-mentioned drawbacks of the prior art, and provides a method for producing a ceramic powder or a metal powder sintered body from which a minute sintered body can be easily obtained. The purpose is to

【0009】[0009]

【課題を解決するための手段】本発明は、セラミクス粉
末または金属粉末が5〜40vol%、残部が有機バイ
ンダーで構成した混練体を射出成形する射出成形工程
と、射出成形された成形体を脱脂する脱脂工程と、脱脂
された成形体を焼結する焼結工程とからなり、前記射出
成形工程と脱脂工程との間,脱脂工程中,脱脂工程と焼
結工程との間および焼結工程の内の少なくとも1ヶ所で
前記成形体を圧縮する製造方法である。
According to the present invention, there is provided an injection molding step of injection molding a kneaded body having a ceramic powder or a metal powder in an amount of 5 to 40 vol% and the remainder being an organic binder, and degreasing the injection molded body. A degreasing step for sintering, and a sintering step for sintering the degreased molded body, the steps of the injection molding step and the degreasing step, during the degreasing step, between the degreasing step and the sintering step, and the sintering step. In the manufacturing method, the molded body is compressed at at least one of the inside.

【0010】[0010]

【作用】本発明では、成形材料であるセラミクス粉末ま
たは金属粉末と有機バインダーとの混練体には有機バイ
ンダーが大量に配合されているため、射出成形時の流動
性は極めて良く微細なキャビティであっても充分に充填
可能である。また、焼結に関しては焼結機構が固相焼結
であるもの、例えばステンレス鋼および炭素鋼などの金
属粉体の場合、射出成形工程と脱脂工程との間、脱脂工
程、脱脂工程と焼結工程との間および焼結工程の少なく
とも1ヶ所に圧縮工程があるため、粉体どうしが接触し
てその接触点より粒界成長が発生し、焼結することが可
能となる。
In the present invention, since a large amount of the organic binder is mixed in the kneaded body of the ceramic powder or the metal powder, which is a molding material, and the organic binder, the fluidity at the time of injection molding is very good and it is a fine cavity. However, it can be sufficiently filled. Regarding sintering, when the sintering mechanism is solid phase sintering, for example, in the case of metal powder such as stainless steel and carbon steel, the degreasing step, the degreasing step and the sintering are performed between the injection molding step and the degreasing step. Since there is a compression step at least at one point between the step and the sintering step, the powder particles come into contact with each other, grain boundary growth occurs from the contact point, and it becomes possible to sinter.

【0011】また、焼結機構が液相焼結であるもの、例
えばアルミナ(Al2 3 )およびジルコニア(ZrO
2 )などのセラミクス粉体または金属粉体であっても液
相焼結法で焼結するものの場合、やはり圧縮工程がある
ことで、焼結時発生する液相が液体を凝集せしめること
が可能であり、すなわち焼結可能となる。
Further, the one whose sintering mechanism is liquid phase sintering, such as alumina (Al 2 O 3 ) and zirconia (ZrO)
In the case of ceramic powders such as 2 ) or metal powders that are sintered by the liquid phase sintering method, since there is also a compression step, the liquid phase generated during sintering can agglomerate the liquid. That is, it becomes possible to sinter.

【0012】[0012]

【実施例1】図1〜図5は本実施例を示し、図1は射出
成形型の部分断面図、図2は成形された成形体の斜視
図、図3は脱脂炉の概略構成図、図4は脱脂工程での脱
脂炉内の温度および雰囲気圧力条件を示すグラフ、図5
は製造工程を示すフローチャートである。
Embodiment 1 FIGS. 1 to 5 show this embodiment, FIG. 1 is a partial sectional view of an injection mold, FIG. 2 is a perspective view of a molded body, and FIG. 3 is a schematic configuration diagram of a degreasing furnace. FIG. 4 is a graph showing the temperature and atmospheric pressure conditions in the degreasing furnace in the degreasing step, FIG.
3 is a flowchart showing a manufacturing process.

【0013】図1は射出成形型で、固定型1は、固定側
取付板3に固定された固定板4と、固定側取付板3およ
び固定板4を貫通するスプル5を有したスプルブッシュ
6と、このスプルブッシュ6に連通するように固定側取
付板3に取付られるとともに、図示を省略した射出成形
機のプラテンに固定型を固定するロケートリング7とを
備えている。
FIG. 1 shows an injection molding die. The fixed die 1 has a fixed plate 4 fixed to a fixed side mounting plate 3 and a sprue bush 6 having a sprue 5 penetrating the fixed side mounting plate 3 and the fixed plate 4. And a locate ring 7 which is attached to the fixed side attachment plate 3 so as to communicate with the sprue bush 6 and which fixes the fixed die to a platen of an injection molding machine (not shown).

【0014】一方、可動型2は、スペーサブロック8を
介して可動側取付板9に取付けられた可動板10と、可
動板10に左右動自在に設けられた突出板11と、射出
成形体を突出するために、共に突出板11に設けられた
突出ロッド12およびランナとの対応位置となるように
突出板11に設けられた突出ロッド14とを備えてい
る。
On the other hand, the movable mold 2 includes a movable plate 10 mounted on a movable side mounting plate 9 via a spacer block 8, a protruding plate 11 provided on the movable plate 10 so as to be movable left and right, and an injection molded body. In order to project, the projecting plate 11 is provided with a projecting rod 12 provided on the projecting plate 11 and a projecting rod 14 provided on the projecting plate 11 so as to correspond to the runner.

【0015】さらに、可動板10には嵌合部15が形成
されており、この嵌合部15には可動入子16が取付け
られている。この可動入子16には射出成形体の形状が
形成されており、前記固定型1と可動型2とが密着する
ことにより、可動入子16に形成されたキャビティ17
が構成される。キャビティ17は長辺3.8mm,短辺
2.1mm,高さ3.4mmに構成されている。
Further, a fitting portion 15 is formed on the movable plate 10, and a movable insert 16 is attached to the fitting portion 15. The movable insert 16 is formed in the shape of an injection molded body, and the fixed mold 1 and the movable mold 2 are brought into close contact with each other, whereby a cavity 17 formed in the movable insert 16 is formed.
Is configured. The cavity 17 has a long side of 3.8 mm, a short side of 2.1 mm, and a height of 3.4 mm.

【0016】図3は脱脂炉で、脱脂炉本体31内には射
出成形工程で射出成形された射出成形体32を設置する
ための設置台33が設けられており、排気口34と吸気
口35と増圧口40と減圧口43とを具備している。前
記排気口34の次段にはバインダトラップ36が連結さ
れており、さらにバインダトラップ36の次段には加熱
ヒータ37が連結されている。また、前記吸気口35の
前段にはファン38を具備した送風部39が連結されて
おり、さらに送風部39は前記加熱ヒータ37に連結さ
れている。また、前記増圧口40の次段にはバルブ41
を介してコンプレッサ42が連結されている。さらに、
前記減圧口43の次段には減圧バルブ44が連結されて
いる。
FIG. 3 shows a degreasing furnace. A degreasing furnace main body 31 is provided with an installation table 33 for installing an injection molded body 32 injection-molded in an injection molding process, and an exhaust port 34 and an intake port 35. And a pressure increasing port 40 and a pressure reducing port 43. A binder trap 36 is connected to the next stage of the exhaust port 34, and a heater 37 is connected to the next stage of the binder trap 36. An air blower 39 having a fan 38 is connected to the front of the intake port 35, and the air blower 39 is connected to the heater 37. In addition, a valve 41 is provided next to the pressure increasing port 40.
The compressor 42 is connected via. further,
A pressure reducing valve 44 is connected to the next stage of the pressure reducing port 43.

【0017】図5は製造工程を示フローチャートで、以
下同図を参照しながら具体的に説明する。平均粒度10
μmのステンレス鋼(SUS316L)粉末15.5v
ol%に対し、有機バインダーとしてポリスチレン8
3.0vol%、パラフィンワックス0.8vol%お
よびステアリン酸0.7vol%を図示を省略した混練
機に投入して混練した後、やはり図示を省略した造粒機
に投入してペレット状に造粒し、その後やはり図示を省
略した射出成形機に投入する。
FIG. 5 is a flowchart showing the manufacturing process, which will be specifically described below with reference to the same drawing. Average particle size 10
μm stainless steel (SUS316L) powder 15.5v
ol%, polystyrene 8 as an organic binder
3.0 vol%, paraffin wax 0.8 vol% and stearic acid 0.7 vol% are charged into a kneader (not shown) and kneaded, and then put into a granulator (not shown) to form pellets. Then, after that, it is put into an injection molding machine (not shown).

【0018】この時、射出成形機は固定型1と可動型2
とを密着させてキャビティ17が構成されており、前記
溶融状態の前記混練体を射出して射出成形体32を得
る。その後、固定型1と可動型2とを型開きし、突出板
11を前進させることにより突出ロッド12,14を前
進させて射出成形体32を突出する。その後、この射出
成形体32を脱脂炉本体31内の設置台33上に設置
し、加熱ヒータ37に通電して10℃/Hの昇温速度で
加熱するとともに、ファン38を回転させて脱脂炉本体
31内に吸気口35→脱脂炉本体31内→排気口34→
バインダトラップ36→加熱ヒータ37→送風部39→
吸気口35の順で循環する雰囲気の流れを発生させる。
At this time, the injection molding machine has a fixed mold 1 and a movable mold 2.
A cavity 17 is formed by closely adhering to each other, and the kneaded body in the molten state is injected to obtain an injection molded body 32. Then, the fixed mold 1 and the movable mold 2 are opened, and the protruding plate 11 is moved forward to move the protruding rods 12 and 14 forward so that the injection molded body 32 is projected. Then, the injection molded body 32 is set on the installation table 33 in the degreasing furnace main body 31, the heater 37 is energized to heat at a temperature rising rate of 10 ° C./H, and the fan 38 is rotated to rotate the degreasing furnace. Intake port 35 in main body 31 → degreasing furnace main body 31 → exhaust port 34 →
Binder trap 36 → Heater 37 → Blower 39 →
A flow of an atmosphere that circulates in the order of the intake port 35 is generated.

【0019】脱脂炉本体31内の温度が350℃に達し
た後、この温度で脱脂炉本体31内の温度を10時間保
持し、その後放冷する。この時、脱炉炉本体31内の雰
囲気圧力は昇温開始から38時間後までは1kgf/c
2 を保った後、バルブ41を開けてコンプレッサ42
により脱脂炉本体31内の雰囲気圧力を毎時3.5kg
f/cm2 で増圧し、8kgf/cm2 に達した時点で
7時間保持して射出成形体32を圧縮する。
After the temperature inside the degreasing furnace main body 31 reaches 350 ° C., the temperature inside the degreasing furnace main body 31 is maintained at this temperature for 10 hours and then allowed to cool. At this time, the atmospheric pressure in the degasser furnace body 31 was 1 kgf / c until 38 hours after the start of temperature increase.
After maintaining m 2 , the valve 41 is opened and the compressor 42
The atmospheric pressure in the degreasing furnace main body 31 is set to 3.5 kg / hour.
The pressure is increased at f / cm 2 , and when the pressure reaches 8 kgf / cm 2 , the injection molded body 32 is compressed by holding for 7 hours.

【0020】その後、コンプレッサ42を停止してバル
ブ41を閉め、減圧バルブ44を開放して減圧口43よ
り脱脂炉本体31内の雰囲気圧力を1kgf/cm2
減圧し、減圧完了後減圧バルブ44を閉鎖する。冷却完
了後の射出成形体32を図示省略した焼結炉に移送して
焼結し、最終的な焼結体として長辺2.0mm,短辺
1.1mm,高さ1.8mmの小型構造体を得た。
Thereafter, the compressor 42 is stopped, the valve 41 is closed, the decompression valve 44 is opened, the atmospheric pressure in the degreasing furnace main body 31 is reduced to 1 kgf / cm 2 through the decompression port 43, and after the decompression is completed, the decompression valve 44 To close. The injection-molded body 32 after completion of cooling is transferred to a sintering furnace (not shown) for sintering, and as a final sintered body, a small structure having a long side of 2.0 mm, a short side of 1.1 mm and a height of 1.8 mm. Got the body

【0021】本実施例では、混練体は有機バインダーに
対する金属粉末の割合が多いので、その流動性に関して
は通常のプラスチック、この場合はポリスチレンに比較
して若干劣る程度であり、射出成形はなんの問題もなく
成形が可能である。また、脱脂工程で射出成形体を加熱
しながら、雰囲気圧力を増圧することで成形体を圧縮す
るので、金属粉末どうしが接触する。従って、脱脂後の
焼結では、金属粉末どうしの接触点から粒界成長が発生
するので焼結可能となり、成形体は大きく収縮し、最終
的な小型焼結体を得ることができた。
In this embodiment, since the kneaded body has a large ratio of metal powder to the organic binder, the fluidity thereof is slightly inferior to that of ordinary plastic, in this case polystyrene, and injection molding is performed. Molding is possible without problems. Moreover, since the molding is compressed by increasing the atmospheric pressure while heating the injection molding in the degreasing step, the metal powders come into contact with each other. Therefore, in the sintering after degreasing, grain boundary growth occurs from the contact point between the metal powders, so that the sintering becomes possible, the compact compacts greatly, and the final compact sintered compact can be obtained.

【0022】本実施例によれば、射出成形体を得るため
のキャビティは最終的な焼結体に対して線方向で約1.
9倍大きくできるので、その形成は極めて容易となり、
小型の焼結体を容易に得ることができる。すなわち、成
形型のキャビティを比較的大きく形成でき、しかも混練
体は流動性が良好であるため、射出成形体は容易に得ら
れる。また、その後の脱脂中に射出成形体を圧縮するの
で、大きく収縮した小型焼結体を容易に得ることができ
る。
According to this embodiment, the cavity for obtaining the injection-molded body is approximately 1.
Because it can be made 9 times larger, its formation is extremely easy,
A compact sintered body can be easily obtained. That is, since the cavity of the molding die can be formed to be relatively large and the kneaded body has good fluidity, an injection molded body can be easily obtained. In addition, since the injection molded body is compressed during the subsequent degreasing, a large contracted compact sintered body can be easily obtained.

【0023】尚、本実施例では脱脂工程後半に圧縮して
いるが、それに限定することはなく、例えば脱脂工程の
開始時から圧縮しても構わない。また、脱脂方法として
加熱脱脂法を用いているが、これに替えて抽出脱脂法で
も構わない。この場合も脱脂工程中の適当な部分で射出
成形体を圧縮すれば所定の効果が得られる。さらに、こ
れらの方法を組み合わせて脱脂前半を抽出脱脂方法と
し、後半を加熱脱脂方法としてその適当な部分で圧縮す
ることも可能である。
In the present embodiment, the compression is performed in the latter half of the degreasing step, but the invention is not limited to this. For example, the compression may be performed from the start of the degreasing step. Although the heating degreasing method is used as the degreasing method, an extraction degreasing method may be used instead. Also in this case, a predetermined effect can be obtained by compressing the injection molded body at an appropriate portion during the degreasing process. Furthermore, it is possible to combine these methods and use the first half of the degreasing as the extraction degreasing method and the latter half as the heating degreasing method to compress at an appropriate portion thereof.

【0024】また、本実施例においては金属粉末(SU
S316L)を用いているが、これに代えてセラミク
ス、例えばアルミナ(Al2 3 ),ジルコニア(Zr
2 )およびSiO2 を同様に焼結することができる。
Further, in this embodiment, metal powder (SU
S316L) is used, but instead of this, ceramics such as alumina (Al 2 O 3 ) and zirconia (Zr
O 2 ) and SiO 2 can likewise be sintered.

【0025】さらに、本実施例では射出成形体に対する
圧縮を脱脂工程の中で行ったが、射出成形後の射出成形
体を脱脂する前に射出成形体に対する圧縮を行ってもよ
い。また、脱脂完了後、すなわち脱脂工程後の焼結工程
前に射出成形体に対する圧縮を行ってもよい。この場
合、脱脂工程中で圧縮するのと同程度の収縮率が得られ
るとともに、射出成形体に対する圧縮を1つの工程とし
て、脱炉炉とは別の圧縮を行う圧縮室を用いることによ
り、脱脂炉および圧縮室を既存のもので済ませることが
できる。さらに、脱脂方法や、焼結する粉体に関しても
上記のいずれの方法および粉体であっても構わない。
Further, in this embodiment, the compression of the injection molded body is performed in the degreasing step, but the injection molded body may be compressed before the degreasing of the injection molded body after the injection molding. Further, the injection molded body may be compressed after the degreasing is completed, that is, before the sintering step after the degreasing step. In this case, the same degree of shrinkage as that in the degreasing step is obtained, and the degreasing is performed by using a compression chamber that performs compression on the injection molded body as one step and that is different from the defurnace furnace. The furnace and compression chamber can be replaced with existing ones. Further, the degreasing method and the powder to be sintered may be any of the above methods and powders.

【0026】[0026]

【実施例2】図6および図7は本実施例を示し、図6は
焼結炉の概略構成図、図7は焼結工程での焼結炉内の温
度および雰囲気圧力条件を示すグラフである。本実施例
では、前記実施例1と共通な構成および作用を省略す
る。焼結炉51にはガス導入口53と排気口54とが設
けられており、ヒータ端子56が焼結炉51天井を貫通
し、下部に加熱ヒータ55を接続して焼結炉内52に固
定されている。焼結炉内52には脱脂体58を設置する
ための設置台57が設置されている。
[Embodiment 2] FIGS. 6 and 7 show the present embodiment, FIG. 6 is a schematic configuration diagram of a sintering furnace, and FIG. 7 is a graph showing temperature and atmospheric pressure conditions in the sintering furnace in the sintering process. is there. In this embodiment, the configurations and operations common to those in the first embodiment will be omitted. The sintering furnace 51 is provided with a gas introduction port 53 and an exhaust port 54, a heater terminal 56 penetrates the ceiling of the sintering furnace 51, and a heater 55 is connected to the lower portion to fix it in the sintering furnace interior 52. Has been done. An installation stand 57 for installing the degreased body 58 is installed in the sintering furnace 52.

【0027】また、前記ガス導入口53の前段にはガス
導入バルブ59が連結されており、さらに前段にはコン
プレッサ60とガス元バルブ61とが連結されており、
さらに前段にはArガスボンベ(図示省略)が接続され
ている。また、ガス元バルブ61とコンプレッサ60と
を迂回するガスバイパスバルブ62が設けられており、
ガス導入バルブ59とArガスボンベとを直接連結でき
る様に構成されている。さらに、前記排気口54の次段
は排気バルブ63とリークバルブ64とに分岐してお
り、排気バルブ63の次段には図示を省略した真空ポン
プが接続されている。
A gas introduction valve 59 is connected to the front stage of the gas introduction port 53, and a compressor 60 and a gas source valve 61 are connected to the front stage.
Further, an Ar gas cylinder (not shown) is connected to the front stage. In addition, a gas bypass valve 62 that bypasses the gas source valve 61 and the compressor 60 is provided,
The gas introduction valve 59 and the Ar gas cylinder can be directly connected to each other. Further, the next stage of the exhaust port 54 is branched into an exhaust valve 63 and a leak valve 64, and a vacuum pump (not shown) is connected to the next stage of the exhaust valve 63.

【0028】以下に本実施例を具体的に説明する。平均
粒度8μmの金属粉末(SUS304)11.8vol
%とポリエチレン87.3vol%およびステアリック
アルコール0.9vol%とを混練し、前記実施例1で
用いた射出成形型で射出成形体を得る。その後、脱脂炉
に射出成形体を移送して8.5℃/Hで昇温し、325
℃に達した時点で12時間保持した後放冷する。この
時、脱脂炉本体内の雰囲気圧力は1kgf/cm2 で一
定に保つ。
This embodiment will be specifically described below. Metal powder (SUS304) 11.8vol with an average particle size of 8 μm
%, Polyethylene 87.3 vol%, and stearic alcohol 0.9 vol% are kneaded to obtain an injection-molded article by the injection molding die used in Example 1 above. Then, the injection molded body was transferred to a degreasing furnace and heated at 8.5 ° C./H to 325
When the temperature reaches ℃, it is held for 12 hours and then left to cool. At this time, the atmospheric pressure in the degreasing furnace main body is kept constant at 1 kgf / cm 2 .

【0029】その後、脱脂体を焼結炉51の焼結炉内5
2に設置した設置台57上に移送する。加熱ヒータ55
に通電し、焼結炉内52を100℃/Hで加熱する。こ
の時、ガス導入バルブ59とガス元バルブ61とを共に
開放し、コンプレッサ60で焼結炉内52の雰囲気をA
rガスで毎時1kgf/cm2 で増圧する。脱脂体は金
属粉末を含包しており、その構造を保つために多孔質体
ではあってもある程度の気密性がある。従って、この焼
結炉内52雰囲気圧力の増大により、脱脂体は圧縮され
る。
Then, the degreased body is placed in the sintering furnace 5 of the sintering furnace 51.
It is transferred to the installation table 57 installed in 2. Heater 55
Is energized to heat the inside 52 of the sintering furnace at 100 ° C./H. At this time, both the gas introduction valve 59 and the gas source valve 61 are opened, and the atmosphere in the sintering furnace 52 is set to A by the compressor 60.
The pressure is increased at 1 kgf / cm 2 per hour with r gas. The degreased body contains metal powder, and has a certain degree of airtightness even though it is a porous body in order to maintain its structure. Therefore, the degreased body is compressed by the increase of the atmospheric pressure in the sintering furnace 52.

【0030】その後、焼結炉内52雰囲気が10kgf
/cm2 になった時点で2時間保持し、その後コンプレ
ッサ60を停止してガス導入バルブ59とガス元バルブ
61とを共に閉鎖し、排気バルブ63を開放して図示を
省略した真空ポンプで焼結炉内52雰囲気圧力を10-4
Torrに減圧する。一方、焼結炉内52温度が130
0℃になった時点で2時間保持した後放冷し、最終的な
焼結体として長辺1.8mm,短辺0.8mm,高さ
1.6mmの小型構造体を得た。
After that, the atmosphere in the sintering furnace 52 was 10 kgf.
/ Cm 2 is maintained for 2 hours, then the compressor 60 is stopped to close both the gas introduction valve 59 and the gas source valve 61, and the exhaust valve 63 is opened to burn with a vacuum pump (not shown). 52 atmosphere pressure in the furnace is 10 -4
Reduce the pressure to Torr. On the other hand, the temperature in the sintering furnace 52 is 130
When the temperature reached 0 ° C., it was held for 2 hours and then allowed to cool to obtain a small-sized structure having a long side of 1.8 mm, a short side of 0.8 mm and a height of 1.6 mm as a final sintered body.

【0031】本実施例では、混練体は有機バインダーに
対する金属粉末の割合が多いので、その流動性に関して
は通常のプラスチック、この場合はポリエチレンに比較
して若干劣る程度であり、射出成形はなんの問題もなく
成形が可能である。また、焼結工程で射出成形体を加熱
しながら、雰囲気圧力を増圧することで成形体を圧縮す
るので、金属粉末どうしが接触する。従って、金属粉末
どうしの接触点から粒界成長が発生するので焼結可能と
なり、成形体は大きく収縮し、最終的な小型焼結体を得
ることができた。
In this example, since the kneaded body had a large proportion of metal powder in the organic binder, its fluidity was slightly inferior to that of ordinary plastic, polyethylene in this case, and injection molding was performed. Molding is possible without problems. Moreover, since the molding is compressed by increasing the atmospheric pressure while heating the injection molding in the sintering step, the metal powders come into contact with each other. Therefore, since grain boundary growth occurs from the contact point between the metal powders, it becomes possible to sinter, the compact compacts greatly, and the final compact sintered compact can be obtained.

【0032】本実施例によれば、射出成形体を得るため
のキャビティは最終的な焼結体に対して線方向で約2.
3倍大きくできるのでその形成は極めて容易となり、射
出成形体も極めて容易に得られた。また、その後の焼結
で射出成形体は大きく収縮するので、小型焼結体を容易
に得ることができた。さらに、焼結中に射出成形体を圧
縮するので、焼結時の変形防止にも効果がある。
According to this embodiment, the cavity for obtaining the injection-molded body is approximately 2.
Since it can be made three times as large, its formation becomes extremely easy, and an injection-molded body was also very easily obtained. Further, since the injection-molded body was greatly shrunk by subsequent sintering, a compact sintered body could be easily obtained. Further, since the injection molded body is compressed during sintering, it is effective in preventing deformation during sintering.

【0033】尚、本実施例では焼結工程後半で圧縮して
いるが、それに限定することはなく、例えば焼結工程の
開始時から圧縮しても構わない。また、本実施例におい
ては金属粉末(SUS316L)を用いているが、これ
に代えてセラミクス、例えばアルミナ(Al2 3 ),
ジルコニア(ZrO2 )およびSiO2 を同様に焼結す
ることができる。
In this embodiment, the compression is performed in the latter half of the sintering process, but the present invention is not limited to this. For example, the compression may be performed from the start of the sintering process. Although metal powder (SUS316L) is used in this embodiment, ceramics such as alumina (Al 2 O 3 ),
Zirconia (ZrO 2 ) and SiO 2 can be similarly sintered.

【0034】本実施例では、射出成形体に対する圧縮を
焼結工程の中で行ったが、脱脂工程後の成形体を焼結す
る前に射出成形体に対する圧縮を行ってもよい。この場
合、焼結工程中で圧縮するのと同程度の収縮率が得られ
るとともに、射出成形体に対する圧縮を1つの工程とし
て焼結炉とは別の圧縮を行う圧縮室を用いることによ
り、焼結炉および圧縮室を既存のもので済ませることが
できる。
In this embodiment, the compression of the injection-molded body was performed during the sintering step, but the compression of the injection-molded body may be performed before the sintering of the molded body after the degreasing step. In this case, a shrinkage rate similar to that in the sintering process is obtained, and the compression of the injection molded body is performed as one process by using a compression chamber that is different from the sintering furnace. Existing furnaces and compression chambers can be used.

【0035】また、各実施例においては、圧縮工程をた
だ1ヶ所で行ったが、射出成形工程後から焼結工程完了
までの任意の工程および工程間に任意の箇所で圧縮を行
っても所定の効果を得ることができる。
Further, in each of the embodiments, the compression process was carried out at only one place, but it is possible to perform the compression process at any place between the injection molding process and the completion of the sintering process and at any place between the processes. The effect of can be obtained.

【0036】さらに本発明においては、セラミクス粉末
または金属粉末の有機バインダーに対する割合を5〜4
0vol%ととしたが、これは40vol%を超える場
合、射出成形体に対する焼結体の線収縮率はたかだか1
0〜20%であり、小型焼結体を得るための射出成形型
のキャビティをあまり大きくできず、従ってその形成は
甚だ困難である。
Further, in the present invention, the ratio of the ceramic powder or the metal powder to the organic binder is 5 to 4.
It was set to 0 vol%, but when it exceeds 40 vol%, the linear shrinkage ratio of the sintered body to the injection molded body is at most 1
It is 0 to 20%, and the cavity of the injection molding die for obtaining the small sintered body cannot be made so large, so that its formation is very difficult.

【0037】また、上記割圧が5vol%を下回る場
合、射出成形工程から焼結工程のどこかで射出成形体を
圧縮したとしても、焼結性は極めて悪化する。すなわ
ち、固相焼結で焼結するものは粉体どうしの接触が困難
となり、焼結性が悪化する。また、液相焼結であるもの
も、焼結時に発生する液相が粉体を凝集せしめることが
不可能となり、焼結できない。
When the above-mentioned split pressure is less than 5 vol%, the sinterability is extremely deteriorated even if the injection-molded body is compressed somewhere from the injection molding process to the sintering process. That is, in the case of solid phase sintering, it becomes difficult for powders to come into contact with each other and the sinterability deteriorates. Also, in the case of liquid phase sintering, the liquid phase generated at the time of sintering cannot agglomerate the powder and cannot be sintered.

【0038】さらに、本発明における圧縮は特に温度に
関係なく行うことが可能であり、例えば常温時に圧縮し
ても構わない。
Further, the compression in the present invention can be carried out irrespective of the temperature, for example, the compression may be carried out at room temperature.

【0039】[0039]

【発明の効果】以上説明した様に、本発明に係るセラミ
クス粉末または金属粉末焼結体の製造方法によれば、小
型微小な焼結体を得るに際し、射出成形に用いる成形型
のキャビティを比較的大型に形成することができ、キャ
ビティそれ自身の形成が容易となる。また、射出成形に
おいても混練体の流動性が極めて向上しているので容易
に行える。さらに、射出成形体が大きく収縮するので小
型焼結体を容易に得ることができる。
As described above, according to the method for producing a ceramic powder or a metal powder sintered body according to the present invention, the cavities of the molding dies used for injection molding are compared when a small sized sintered body is obtained. The cavities themselves can be easily formed. In addition, injection molding can be easily performed because the fluidity of the kneaded body is extremely improved. Furthermore, since the injection-molded body shrinks greatly, a compact sintered body can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1を示す部分断面図である。FIG. 1 is a partial cross-sectional view showing a first embodiment.

【図2】実施例1を示す斜視図である。FIG. 2 is a perspective view showing a first embodiment.

【図3】実施例1を示す概略構成図である。FIG. 3 is a schematic configuration diagram showing a first embodiment.

【図4】実施例1を示すグラフである。FIG. 4 is a graph showing Example 1.

【図5】実施例1を示すフローチャートである。FIG. 5 is a flowchart showing a first embodiment.

【図6】実施例2を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing a second embodiment.

【図7】実施例2を示すグラフである。FIG. 7 is a graph showing Example 2.

【符号の説明】[Explanation of symbols]

1 固定型 2 可動型 3 固定側取付板 4 固定板 9 可動側取付板 10 可動板 16 可動入子 17 キャビティ 31 脱脂炉本体 32 射出成形体 36 バインダトラップ 37 加熱ヒータ 39 送風部 42 コンプレッサ 1 Fixed type 2 Movable type 3 Fixed side mounting plate 4 Fixed plate 9 Movable side mounting plate 10 Movable plate 16 Movable insert 17 Cavity 31 Degreasing furnace main body 32 Injection molded body 36 Binder trap 37 Heating heater 39 Blower section 42 Compressor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芳賀 健二 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Haga 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミクス粉末または金属粉末が5〜4
0vol%、残部が有機バインダーで構成した混練体を
射出成形する射出成形工程と、射出成形された成形体を
脱脂する脱脂工程と、脱脂された成形体を焼結する焼結
工程とからなり、前記射出成形工程と脱脂工程との間,
脱脂工程中,脱脂工程と焼結工程との間および焼結工程
の内の少なくとも1ヶ所で前記成形体を圧縮することを
特徴とする焼結体の製造方法。
1. Ceramic powder or metal powder is 5-4.
0 vol%, the injection molding step of injection molding a kneaded body composed of the balance of the organic binder, a degreasing step of degreasing the injection-molded molded body, and a sintering step of sintering the degreased molded body, Between the injection molding process and the degreasing process,
A method for producing a sintered body, comprising compressing the molded body during the degreasing step, between the degreasing step and the sintering step, and at at least one of the sintering steps.
JP9201993A 1993-03-26 1993-03-26 Production of ceramic powder or metallic powder sintered compact Withdrawn JPH06279805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9201993A JPH06279805A (en) 1993-03-26 1993-03-26 Production of ceramic powder or metallic powder sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9201993A JPH06279805A (en) 1993-03-26 1993-03-26 Production of ceramic powder or metallic powder sintered compact

Publications (1)

Publication Number Publication Date
JPH06279805A true JPH06279805A (en) 1994-10-04

Family

ID=14042830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9201993A Withdrawn JPH06279805A (en) 1993-03-26 1993-03-26 Production of ceramic powder or metallic powder sintered compact

Country Status (1)

Country Link
JP (1) JPH06279805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996789A (en) * 2021-09-24 2022-02-01 河南中原吉凯恩气缸套有限公司 Manufacturing method of metal injection molding steel piston

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996789A (en) * 2021-09-24 2022-02-01 河南中原吉凯恩气缸套有限公司 Manufacturing method of metal injection molding steel piston
CN113996789B (en) * 2021-09-24 2023-08-18 河南中原吉凯恩气缸套有限公司 Manufacturing method of metal injection molding steel piston

Similar Documents

Publication Publication Date Title
US5279349A (en) Process for casting amorphous alloy member
EP1300209A2 (en) Process of metal injection molding multiple dissimilar materials to form composite parts
US4101348A (en) Process for preparing hot-pressed sintered alloys
WO2000076697A2 (en) Co-sintering of similar materials
AU2003271541A1 (en) Method for the production of near net-shaped metallic and/or ceramic parts
GB2400578A (en) Ceramic casting mould and process for production thereof
US6997232B2 (en) Infiltrated aluminum preforms
KR100502986B1 (en) Net shape die and mold and manufacturing method
JPH06279805A (en) Production of ceramic powder or metallic powder sintered compact
JPS6254162B2 (en)
JPH07116487B2 (en) Method for degreasing metal powder injection molded body
US20040060390A1 (en) Apparatus and method for fabricating high purity, high density metal matrix composite materials and the product thereof
KR100678589B1 (en) Multi-layer material and Munufacturing method therefor
JPH111704A (en) Powder forming method
JP3161629B2 (en) Two-layer component manufacturing method, molded product for two-layer component, and two-layer component obtained by two-layer component manufacturing method
JP4292599B2 (en) Composition for injection molding of inorganic powder and method for producing inorganic sintered body
JP3326140B2 (en) Magnesium alloy die casting and die casting products
JPH0892605A (en) Core for injection-molding sintered article and production of sintered article using the core
JPS5895658A (en) Manufacture of silicon nitride sintered body
JP2002292613A (en) Method for manufacturing ceramic molding
JPS61205103A (en) Manufacture of ceramic hollow shape body
JPH08100204A (en) Production of sintered part
JP3684026B2 (en) Manufacturing method of inorganic powder sintered body
JPH06122903A (en) Method for degreasing metal powder compact
JP3479718B2 (en) Method for producing shaped article made of metal or ceramic

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530