JPH0627826A - High voltage controller for separation - Google Patents

High voltage controller for separation

Info

Publication number
JPH0627826A
JPH0627826A JP20751092A JP20751092A JPH0627826A JP H0627826 A JPH0627826 A JP H0627826A JP 20751092 A JP20751092 A JP 20751092A JP 20751092 A JP20751092 A JP 20751092A JP H0627826 A JPH0627826 A JP H0627826A
Authority
JP
Japan
Prior art keywords
high voltage
voltage power
power source
separation
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20751092A
Other languages
Japanese (ja)
Inventor
Takatami Souma
宇民 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP20751092A priority Critical patent/JPH0627826A/en
Publication of JPH0627826A publication Critical patent/JPH0627826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE:To perform discharge within a real use range by simple circuit constitution by constituting a separation electrode of a discharge wire and a grid wire, and connecting an AC high voltage power source to the discharge wire and a DC high voltage power source for controlling grid potential to the grid wire. CONSTITUTION:The separation electrode 12 is constituted of the discharge wire 120 and the grid wire 121, and the AC high voltage power source 520 without the correction of DC component for performing corona discharge and the DC high voltage power source 521 for controlling the grid potential are connected to the discharge wire 120 and the grid wire 121, respectively. A high voltage power source for separation 52 is constituted of the AC high voltage power source 520 and the DC high voltage power source 521 which are respectively independent. A high voltage power source for electrostatic charge 50, a high voltage power source for transfer 51, and a high voltage power source for separation 52 are driven according to a command from a control part 53. An electrostatic charge current value command and a transfer current value command are outputted to the power source 50 and the power source 51, respectively. Then, an AC component separation current command and a DC component separation current command are outputted to the AC high voltage power source 520 of the power source 52 and the DC high voltage power source 521, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、複写機等の画像形成
装置に用いられる分離用高圧制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separating high-voltage controller used in an image forming apparatus such as a copying machine.

【0002】[0002]

【従来の技術】複写機等の画像形成装置では、光学系で
感光体上に露光された画像を現像してトナー像を形成
し、この感光体上のトナー像を転写用電極と分離用電極
で転写紙に転写し、さらに加熱、加圧して転写紙にトナ
ー像を定着するものがある。この感光体から転写紙を分
離させる分離用電極には、例えば感光体のドラムの曲率
が大きいものでは交流高圧を印加し、ドラムの曲率が小
さいものでは直流高圧を印加するものがある。
2. Description of the Related Art In an image forming apparatus such as a copying machine, an image exposed on a photoconductor is developed by an optical system to form a toner image, and the toner image on the photoconductor is transferred to a transfer electrode and a separation electrode. In some cases, the toner image is transferred onto the transfer paper, and then heated and pressed to fix the toner image on the transfer paper. As a separating electrode for separating the transfer paper from the photoconductor, for example, an AC high voltage is applied when the drum of the photoconductor has a large curvature, and a DC high voltage is applied when the drum of the photoconductor has a small curvature.

【0003】[0003]

【発明が解決しようとする課題】ところで、感光体から
転写紙を分離するための分離用電極に交流高圧を印加す
るものでは、図5に破線で示すような交流電圧を印加す
ると、実線で示すような放電電流が得られる。この印加
電圧Vがプラス側とマイナス側が同じ電圧であっても、
放電電流Iはマイナス側が放電し易いため、プラス側よ
りマイナス側が大きくなる傾向にある。この放電電流I
は、交流成分電流I(ac)と、直流成分電流I(d
c)の和で表わされ、この高圧出力特性を図6に示す。
図6では、放電電流Iがプラス側よりマイナス側が大き
くなる傾向にあるため、放電電流Iによる高圧出力特性
が実使用範囲Aよりマイナス側へ外れており、実使用範
囲Aに対応することができない。
By the way, in the case of applying an AC high voltage to the separation electrode for separating the transfer paper from the photosensitive member, when an AC voltage as shown by the broken line in FIG. 5 is applied, it is shown by the solid line. Such a discharge current can be obtained. Even if the applied voltage V is the same voltage on the plus side and the minus side,
Since the negative side of the discharge current I is easily discharged, the negative side tends to be larger than the positive side. This discharge current I
Is the AC component current I (ac) and the DC component current I (d
This is represented by the sum of c), and this high voltage output characteristic is shown in FIG.
In FIG. 6, since the discharge current I tends to be larger on the minus side than on the plus side, the high-voltage output characteristic due to the discharge current I deviates from the actual use range A to the minus side, and the actual use range A cannot be supported. .

【0004】このため、例えば、図7に示すように固定
補正するものがある。即ち、交流出力トランス100を
用い、この一次側に電源E1と電流制御回路101が接
続され、二次側に固定補正回路102と電流検知回路1
03とが接続され、この電流検知回路103で二次側電
流検知を検知して電流制御回路101へ送出する。この
電流制御回路101で一次側を制御し、二次側の交流電
圧を制御し、この交流電圧を固定補正回路102で補正
する。この固定補正回路102は、例えば図8に示すよ
うにダイオードD1と抵抗R1の並列回路、あるいは図
9に示すように定電圧ダイオードZDで構成することが
できる。このように印加電圧を補正することで、図10
に示すような高圧出力特性を得ることができる。ところ
で、交流成分電流I(ac)では実使用範囲Aに対応す
ることができるが、直流成分電流I(dc)は可変でき
ないから十分ではない。
Therefore, for example, there is a fixed correction as shown in FIG. That is, the AC output transformer 100 is used, the power source E1 and the current control circuit 101 are connected to the primary side, and the fixed correction circuit 102 and the current detection circuit 1 are connected to the secondary side.
03 is connected, and the current detection circuit 103 detects the secondary side current detection and sends it to the current control circuit 101. The current control circuit 101 controls the primary side, controls the secondary side AC voltage, and corrects this AC voltage by the fixed correction circuit 102. The fixed correction circuit 102 can be configured by, for example, a parallel circuit of a diode D1 and a resistor R1 as shown in FIG. 8 or a constant voltage diode ZD as shown in FIG. By correcting the applied voltage in this way, FIG.
It is possible to obtain a high voltage output characteristic as shown in. By the way, the AC component current I (ac) can correspond to the actual use range A, but the DC component current I (dc) cannot be varied, which is not sufficient.

【0005】また、例えば、図11に示すように可変補
正するものがある。即ち、交流出力トランス110と、
直流出力トランス111を用い、交流出力トランス11
0の一次側に電源E2と交流電流制御回路112が接続
され、二次側に交流成分分離用コンデンサC1と交流電
流検知回路113とが接続され、この交流電流検知回路
113で二次側電流を検知して交流電流制御回路112
へ送出する。この交流電流制御回路112で一次側を制
御し、二次側の交流電圧を制御する。また、直流出力ト
ランス111の一次側に電源E3と直流電流制御回路1
14が接続され、二次側に直流補正方向切換ダイオード
D2と直流電流検知回路115とが接続され、この直流
電流検知回路115で二次側電流を検知して直流電流制
御回路114へ送出する。この直流電流制御回路114
で一次側を制御し、二次側の直流電圧を制御する。
Further, for example, there is one that variably corrects as shown in FIG. That is, the AC output transformer 110,
Using the DC output transformer 111, the AC output transformer 11
The power source E2 and the AC current control circuit 112 are connected to the primary side of 0, the AC component separation capacitor C1 and the AC current detection circuit 113 are connected to the secondary side, and the AC current detection circuit 113 detects the secondary side current. Detect and AC current control circuit 112
Send to. This AC current control circuit 112 controls the primary side and controls the AC voltage on the secondary side. In addition, the power source E3 and the DC current control circuit 1 are provided on the primary side of the DC output transformer 111.
14 is connected, and the DC correction direction switching diode D2 and the DC current detection circuit 115 are connected to the secondary side. The DC current detection circuit 115 detects the secondary side current and sends it to the DC current control circuit 114. This DC current control circuit 114
Controls the primary side and controls the DC voltage on the secondary side.

【0006】このように印加電圧を補正することで、図
12に示すような高圧出力特性を得ることができる。と
ころで、交流成分電流I(ac)では実使用範囲Aに対
応することができ、直流成分電流I(dc)も可変でき
るが、直流補正方向切換ダイオードD2の配置によって
マイナス側で補正されるため、実使用範囲Aの全域に対
応することができないから十分ではない。
By correcting the applied voltage in this manner, a high voltage output characteristic as shown in FIG. 12 can be obtained. By the way, the AC component current I (ac) can correspond to the actual use range A, and the DC component current I (dc) can be changed, but since it is corrected on the negative side by the arrangement of the DC correction direction switching diode D2, This is not sufficient because it cannot cover the entire actual use range A.

【0007】また、例えば、図13に示すように可変補
正するものがある。即ち、交流出力トランス110と、
直流出力トランス111を用い、図11と同様に構成さ
れているが、直流補正方向切換ダイオードD3を逆方向
へ配置し、プラス側を可変として補正することで、図1
4に示すような高圧出力特性を得ることができる。とこ
ろで、交流成分電流I(ac)では実使用範囲Aに対応
することができ、直流成分電流I(dc)も可変できる
が、プラス側で補正されるため、実使用範囲Aの全域に
対応することができないから十分ではない。
Further, for example, there is one that variably corrects as shown in FIG. That is, the AC output transformer 110,
The configuration is similar to that of FIG. 11 using the DC output transformer 111, but the DC correction direction switching diode D3 is arranged in the opposite direction, and the positive side is corrected to be variable, so that FIG.
It is possible to obtain high voltage output characteristics as shown in FIG. By the way, the AC component current I (ac) can correspond to the actual use range A, and the DC component current I (dc) can be changed, but since it is corrected on the plus side, it corresponds to the entire actual use range A. Not enough because you can't.

【0008】このように、いずれの印加電圧の補正で
も、放電電流の交流成分電流I(ac)、直流成分電流
(dc)とも実使用範囲Aに対応させることができず不
十分であるとともに、補正する回路構成が複雑である。
As described above, any correction of the applied voltage is insufficient because neither the AC component current I (ac) nor the DC component current (dc) of the discharge current can correspond to the actual use range A. The circuit configuration for correction is complicated.

【0009】この発明は、前記の課題に鑑みてなされた
もので、簡単な回路構成で、実使用範囲の放電を行なう
ことができる分離用高圧制御装置を提供することを目的
としている。
The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a separation high-voltage control device capable of discharging in an actual use range with a simple circuit configuration.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
に、この発明は、感光体から転写紙を分離するための分
離用電極と、この分離用電極に高圧を印加する高圧電源
とを備える分離用高圧制御装置において、前記分離用電
極を放電ワイヤーとグリットワイヤーとで構成し、前記
放電ワイヤーに交流高圧電源を接続し、前記グリットワ
イヤーにグリッド電位の制御を行う直流高圧電源を接続
したことを特徴としている。
In order to solve the above-mentioned problems, the present invention comprises a separating electrode for separating the transfer paper from the photosensitive member, and a high voltage power source for applying a high voltage to the separating electrode. In the separation high-voltage control device, the separation electrode is constituted by a discharge wire and a grit wire, an AC high-voltage power supply is connected to the discharge wire, and a DC high-voltage power supply for controlling the grid potential is connected to the grit wire. Is characterized by.

【0011】[0011]

【作用】この発明では、分離電極を放電ワイヤーとグリ
ットワイヤーとで構成し、放電ワイヤーに交流高圧電源
を接続し、グリットワイヤーにグリッド電位の制御を行
う直流高圧電源を接続し、交流高圧電源の印加と直流高
圧電源の印加とに分離することで、独立した制御が可能
となり、実使用範囲の放電を行なうことができる。
According to the present invention, the separation electrode is composed of the discharge wire and the grit wire, the discharge wire is connected to the AC high voltage power source, and the grit wire is connected to the DC high voltage power source for controlling the grid potential. By separating the application and the application of the DC high-voltage power supply, independent control becomes possible and discharge in the actual use range can be performed.

【0012】[0012]

【実施例】以下、この発明の分離用高圧制御装置の一実
施例を添付図面に基づき説明する。図1は分離用高圧制
御装置を備える画像形成装置の概略構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the separation high pressure control device of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of an image forming apparatus including a separation high-voltage control device.

【0013】この画像形成装置の装置本体1には感光体
2が矢印方向に回転可能に設けられ、装置本体1の上部
には原稿ガラス3が取り付けられている。この原稿ガラ
ス3の下方位置には光源4、ミラー5,6,7、レンズ
8等から構成される光学系が配置され、この光学系で原
稿ガラス3上にセットされる原稿の画像を感光体2上に
露光する。この光学系の光源4及びミラー5は、露光時
に連動して往復動作し、レンズ8及びミラー6は変倍時
に連動して移動する。
A photoconductor 2 is provided in a main body 1 of the image forming apparatus so as to be rotatable in an arrow direction, and a document glass 3 is attached to an upper portion of the main body 1. An optical system including a light source 4, mirrors 5, 6, 7 and a lens 8 is arranged below the original glass 3, and an image of an original set on the original glass 3 is sensed by this optical system as a photoconductor. 2 is exposed. The light source 4 and the mirror 5 of this optical system move back and forth in conjunction with each other during exposure, and the lens 8 and the mirror 6 move in conjunction with each other during zooming.

【0014】感光体2の周囲には、帯電用電極9、現像
ユニット10、転写用電極11、分離用電極12、クリ
ーニングユニット13が配置され、光学系で感光体2上
に露光された画像を現像して、転写紙14に転写して記
録される。転写紙14は複数の給紙段、即ち上部より第
一給紙段15、第二給紙段16、第三給紙段17、第四
給紙段18にそれぞれ収容されている。各給紙段15〜
18の転写紙14の上面には、それぞれ給紙ローラ19
〜22が配置され、それぞれが連結する図示しない給紙
駆動モータの回転により転写紙14を間欠的に送り出
す。各給紙ローラ19〜22には重送防止ローラ23〜
26が併設されており、転写紙14を1枚づつ次工程に
送り出している。
Around the photosensitive member 2, a charging electrode 9, a developing unit 10, a transfer electrode 11, a separating electrode 12 and a cleaning unit 13 are arranged, and an image exposed on the photosensitive member 2 by an optical system is displayed. The image is developed, transferred to the transfer paper 14 and recorded. The transfer paper 14 is accommodated in a plurality of paper feed stages, that is, a first paper feed stage 15, a second paper feed stage 16, a third paper feed stage 17, and a fourth paper feed stage 18 from the top. Each paper feed stage 15-
On the upper surface of the transfer paper 14 of 18, the paper feed rollers 19
22 to 22 are arranged, and the transfer paper 14 is intermittently sent out by rotation of a paper feed drive motor (not shown) connected to each other. Each of the paper feed rollers 19 to 22 has a double feed prevention roller 23 to
26 is provided side by side, and the transfer paper 14 is sent to the next process one by one.

【0015】各段より送り出される転写紙14はそれぞ
れ搬送ローラ27〜30に挿入される。これらの搬送ロ
ーラ27〜30は直列に配設されており、転写紙14を
次の搬送ローラに送り込んでいる。 最上部の搬送ロー
ラ27から送り出される転写紙14は、転写処理部の直
前に配置されるレジストローラ31に挿入される。この
レジストローラ31は転写紙14を突き当てて停止さ
せ、転写紙14の先端を進行方向に直角な方向に整位
し、レジストセンサ32で後端の転写紙14の搬送を停
止し、整位された転写紙14は、一定時間経過後に転写
処理部の転写領域に送り出す。転写紙14は転写処理部
を構成する感光体2、転写用電極11、分離用電極12
を通過してトナー像を担持し、分離爪33を経て搬送ユ
ニット34に上載され、定着ユニット35に送り込まれ
る。分離爪33の後段には巻付検知センサ36が設けら
れ、巻付検知センサ36で転写紙14の巻き付きが監視
される。また、定着ユニット35内では転写紙14が加
熱、加圧され、この転写紙14にトナー像を定着し、図
示しない排紙トレイに送られる。
The transfer paper 14 delivered from each stage is inserted into each of the transport rollers 27-30. These transport rollers 27 to 30 are arranged in series and send the transfer paper 14 to the next transport roller. The transfer paper 14 delivered from the uppermost transport roller 27 is inserted into the registration roller 31 arranged immediately before the transfer processing section. The registration roller 31 abuts and stops the transfer paper 14, aligns the front end of the transfer paper 14 in a direction perpendicular to the traveling direction, and stops the transfer of the transfer paper 14 at the rear end by the registration sensor 32 to align the transfer paper 14. The transferred transfer paper 14 is sent out to the transfer area of the transfer processing unit after a lapse of a certain time. The transfer paper 14 includes a photoconductor 2, a transfer electrode 11, and a separation electrode 12 which constitute a transfer processing section.
Then, the toner image is carried on the carrier unit 34 through the separation claw 33 and is sent to the fixing unit 35. A winding detection sensor 36 is provided at the subsequent stage of the separation claw 33, and the winding detection sensor 36 monitors the winding of the transfer paper 14. The transfer paper 14 is heated and pressed in the fixing unit 35 to fix the toner image on the transfer paper 14, and the toner image is sent to a discharge tray (not shown).

【0016】図2は分離用高圧制御装置のブロック図、
図3は分離用高圧電源の構成図、図4は高圧出力特性を
示す図である。感光体2の上方に配置された帯電用電極
9には、帯電用高圧電源50が接続され、感光体2の下
方に配置された転写用電極11には転写用高圧電源51
が接続されている。
FIG. 2 is a block diagram of the separation high-voltage controller,
FIG. 3 is a configuration diagram of the high voltage power supply for separation, and FIG. 4 is a diagram showing high voltage output characteristics. A charging high voltage power supply 50 is connected to the charging electrode 9 arranged above the photoconductor 2, and a transfer high voltage power supply 51 is connected to the transfer electrode 11 arranged below the photoconductor 2.
Are connected.

【0017】また、転写用電極11に近接して配置され
た分離用電極12は、放電ワイヤー120とグリットワ
イヤー121とで構成され、放電ワイヤー120にはコ
ロナ放電を行わせる直流成分補正のない交流高圧電源5
20を接続し、グリットワイヤー121にはグリッド電
位の制御を行う直流高圧電源521を接続し、分離用高
圧電源52はそれぞれ独立した交流高圧電源520と、
直流高圧電源521とで構成されている。
Further, the separation electrode 12 arranged in the vicinity of the transfer electrode 11 is composed of a discharge wire 120 and a grit wire 121, and the discharge wire 120 is subjected to a corona discharge and an alternating current having no direct current component correction. High-voltage power supply 5
20 is connected to the grid wire 121, a DC high-voltage power supply 521 for controlling the grid potential is connected, and the separation high-voltage power supply 52 is an independent AC high-voltage power supply 520.
It is composed of a DC high voltage power supply 521.

【0018】このそれぞれの帯電用高圧電源50、転写
用高圧電源51及び分離用高圧電源52は制御部53か
らの指令で駆動され、帯電用高圧電源50には帯電電流
値指令が、転写用高圧電源51には転写電流値指令が、
分離用高圧電源52の交流高圧電源520には交流成分
分離電流指令が、直流高圧電源521には直流成分分離
電流指令が出力される。
Each of the charging high-voltage power supply 50, the transfer high-voltage power supply 51, and the separation high-voltage power supply 52 is driven by a command from the controller 53, and the charging high-voltage power supply 50 sends a charging current value command to the transfer high-voltage power supply. A transfer current value command is sent to the power source 51.
An AC component separation current command is output to the AC high voltage power supply 520 of the separation high voltage power supply 52, and a DC component separation current command is output to the DC high voltage power supply 521.

【0019】この分離用高圧電源52の交流高圧電源5
20と直流高圧電源521は、図3に示すように構成さ
れている。交流高圧電源520は、交流出力トランス1
22の一次側に交流電流制御回路123が接続され、二
次側に交流電流検知回路124が接続され、この交流電
流検知回路124で二次側電流を検知して交流電流制御
回路123へ送出し、この交流電流制御回路123で一
次側を制御し、二次側の交流印加電圧を制御している。
AC high-voltage power source 5 of this separating high-voltage power source 52
20 and the DC high-voltage power supply 521 are configured as shown in FIG. The AC high voltage power supply 520 is the AC output transformer 1
An AC current control circuit 123 is connected to the primary side of 22 and an AC current detection circuit 124 is connected to the secondary side thereof. The AC current detection circuit 124 detects the secondary side current and sends it to the AC current control circuit 123. The AC current control circuit 123 controls the primary side and controls the AC applied voltage on the secondary side.

【0020】また、直流高圧電源521は、直流出力ト
ランス125の一次側に直流電流制御回路126が接続
され、二次側に直流補正方向切換ダイオードDと直流電
流検知回路127とが接続され、この直流電流検知回路
127で二次側電流を検知して直流電流制御回路126
へ送出し、この直流電流検知回路127で一次側を制御
し、二次側の直流印加電圧を制御している。
In the DC high voltage power supply 521, the DC current control circuit 126 is connected to the primary side of the DC output transformer 125, and the DC correction direction switching diode D and the DC current detection circuit 127 are connected to the secondary side. The DC current detection circuit 127 detects the secondary side current to detect the DC current control circuit 126.
The direct current detection circuit 127 controls the primary side to control the DC applied voltage on the secondary side.

【0021】このように、交流高圧電源520の印加
と、直流高圧電源521の印加とが独立して行なわれ、
それぞれを独立して制御することで、図4に示すような
高圧出力特性を得ることができる。この放電電流の交流
成分電流I(ac)、直流成分電流I(dc)とも可変
することができるため、実使用範囲Aに対応させること
ができ、しかも補正する回路構成が簡単である。
As described above, the application of the AC high-voltage power supply 520 and the application of the DC high-voltage power supply 521 are independently performed,
By controlling each independently, the high voltage output characteristic as shown in FIG. 4 can be obtained. Since both the alternating current component current I (ac) and the direct current component current I (dc) of this discharge current can be varied, it can correspond to the actual use range A, and the circuit configuration for correction is simple.

【0022】[0022]

【発明の効果】以上説明したように、この発明は、分離
用電極を放電ワイヤーとグリットワイヤーとで構成し、
放電ワイヤーに交流高圧電源を接続し、グリットワイヤ
ーにグリッド電位の制御を行う直流高圧電源を接続し、
交流高圧電源と直流高圧電源とに分離することで、独立
した制御が可能となり、実使用範囲の放電を行なうこと
ができ、しかも補正の回路構成が簡単である。
As described above, according to the present invention, the separation electrode is composed of the discharge wire and the grit wire,
Connect the AC high-voltage power supply to the discharge wire, and connect the DC high-voltage power supply that controls the grid potential to the grit wire.
By separating the AC high-voltage power supply and the DC high-voltage power supply, independent control is possible, discharge in the actual use range can be performed, and the correction circuit configuration is simple.

【図面の簡単な説明】[Brief description of drawings]

【図1】分離用高圧制御装置を備える画像形成装置の概
略構成図である。
FIG. 1 is a schematic configuration diagram of an image forming apparatus including a separation high-voltage control device.

【図2】分離用高圧制御装置のブロック図である。FIG. 2 is a block diagram of a separation high-voltage control device.

【図3】分離用高圧電源の構成図である。FIG. 3 is a configuration diagram of a high voltage power supply for separation.

【図4】高圧出力特性を示す図であるFIG. 4 is a diagram showing high voltage output characteristics.

【図5】放電電流と印加電圧の関係を示す図である。FIG. 5 is a diagram showing the relationship between discharge current and applied voltage.

【図6】分離電流の使用範囲と放電電流特性との関係を
示す図である。
FIG. 6 is a diagram showing a relationship between a use range of a separation current and a discharge current characteristic.

【図7】印加電圧の固定補正の分離用高圧電源の回路図
である。
FIG. 7 is a circuit diagram of a separating high-voltage power supply for fixed correction of applied voltage.

【図8】印加電圧の固定補正回路図である。FIG. 8 is a fixed correction circuit diagram of an applied voltage.

【図9】印加電圧の固定補正回路図である。FIG. 9 is a fixed correction circuit diagram of an applied voltage.

【図10】分離電流の使用範囲と図7の分離用高圧電源
の回路で補正された放電電流特性との関係を示す図であ
る。
10 is a diagram showing the relationship between the use range of the separation current and the discharge current characteristic corrected by the circuit of the high voltage power supply for separation of FIG. 7.

【図11】印加電圧の可変補正の分離用高圧電源の回路
図である。
FIG. 11 is a circuit diagram of a separating high-voltage power supply for variable correction of an applied voltage.

【図12】分離電流の使用範囲と図11の分離用高圧電
源の回路で補正された放電電流特性との関係を示す図で
ある。
12 is a diagram showing the relationship between the range of use of the separation current and the discharge current characteristic corrected by the circuit of the high voltage power supply for separation of FIG.

【図13】印加電圧の可変補正の分離用高圧電源の回路
図である。
FIG. 13 is a circuit diagram of a separation high-voltage power supply for variable correction of applied voltage.

【図14】分離電流の使用範囲と図13の分離用高圧電
源の回路で補正された放電電流特性との関係を示す図で
ある。
14 is a diagram showing the relationship between the use range of the separation current and the discharge current characteristic corrected by the circuit of the high voltage power supply for separation of FIG.

【符号の説明】[Explanation of symbols]

2 感光体 12 分離用電極 14 転写紙 52 分離用高圧電源 120 放電ワイヤー 121 グリットワイヤー 520 交流高圧電源 521 直流高圧電源 2 Photoreceptor 12 Separation Electrode 14 Transfer Paper 52 Separation High Voltage Power Supply 120 Discharge Wire 121 Grit Wire 520 AC High Voltage Power Supply 521 DC High Voltage Power Supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】感光体から転写紙を分離するための分離用
電極と、この分離用電極に高圧を印加する高圧電源とを
備える分離用高圧制御装置において、前記分離用電極を
放電ワイヤーとグリットワイヤーとで構成し、前記放電
ワイヤーに交流高圧電源を接続し、前記グリットワイヤ
ーにグリッド電位の制御を行う直流高圧電源を接続した
ことを特徴とする分離用高圧制御装置。
1. A separation high voltage control device comprising a separation electrode for separating a transfer paper from a photoconductor and a high voltage power source for applying a high voltage to the separation electrode, wherein the separation electrode is a discharge wire and a grit. A high voltage control device for separation, comprising a wire, an AC high voltage power source is connected to the discharge wire, and a DC high voltage power source for controlling a grid potential is connected to the grit wire.
JP20751092A 1992-07-10 1992-07-10 High voltage controller for separation Pending JPH0627826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20751092A JPH0627826A (en) 1992-07-10 1992-07-10 High voltage controller for separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20751092A JPH0627826A (en) 1992-07-10 1992-07-10 High voltage controller for separation

Publications (1)

Publication Number Publication Date
JPH0627826A true JPH0627826A (en) 1994-02-04

Family

ID=16540919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20751092A Pending JPH0627826A (en) 1992-07-10 1992-07-10 High voltage controller for separation

Country Status (1)

Country Link
JP (1) JPH0627826A (en)

Similar Documents

Publication Publication Date Title
US5337127A (en) Image forming apparatus having biased transfer roller
JPH11161108A (en) Humidification system for paper
US6173150B1 (en) Separation charger for an image forming apparatus
JP3063155B2 (en) Control method of image forming apparatus
US5233394A (en) Transfer device for use in an image forming apparatus
JP2007034092A (en) High voltage power supply system and image forming apparatus having the same
JPH0627828A (en) High voltage controller for separation
JPH0627826A (en) High voltage controller for separation
JPS60144765A (en) Transfer control method of multicolor copying method
JPH0627825A (en) High voltage controller for separation
US8849147B2 (en) Image forming apparatus reducing toner fogging on photosensitive drum
US6339691B1 (en) Image forming apparatus with a constant-current power supply
JPS6243660A (en) Image forming device
JPH06237591A (en) Constant current drive circuit of dc motor
JPS60133474A (en) Electrophotographic copying machine
JPH0764410A (en) Transfer/separation device of image forming device
JPH03134690A (en) Transfer condition control method
JPH01201686A (en) Image forming device
JPH0234883A (en) Electrostatic recorder
JP3233143B2 (en) Control method of image forming apparatus
JPS62254173A (en) Pre-cleaning electrostatic discharging device for electrophotographic copying machine
JPH05249770A (en) Image forming device
JPH04350879A (en) Transfer device for image forming device
JP2020048364A (en) Electric power unit and image formation device
JPH0627827A (en) Electrostatic copying device