JPH06277671A - Mechanism and process for raw sewage disposal - Google Patents

Mechanism and process for raw sewage disposal

Info

Publication number
JPH06277671A
JPH06277671A JP6878193A JP6878193A JPH06277671A JP H06277671 A JPH06277671 A JP H06277671A JP 6878193 A JP6878193 A JP 6878193A JP 6878193 A JP6878193 A JP 6878193A JP H06277671 A JPH06277671 A JP H06277671A
Authority
JP
Japan
Prior art keywords
urine
tank
electrolytic
heating
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6878193A
Other languages
Japanese (ja)
Inventor
Kenji Nakamura
中村  憲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6878193A priority Critical patent/JPH06277671A/en
Publication of JPH06277671A publication Critical patent/JPH06277671A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To perform the oxidative destruction for a substance to be oxidized in urine and control the generation of malodor by providing an electrolytic zone for applying the direct current to urine as electrolytic solution or electrolytic solution of higher productivity in a simple urinal lavatory. CONSTITUTION:A simple urinal lavatory built temporarily on a construction site or the like comprises a preliminary tank 2 for storing urine discharged into a urinal 1 and an adjusting tank 3 to which the urine in the preliminary tank 2 is fed by the given quantities, and common salt water is supplied from a common salt water supply tank 4 into the adjusting tank 3 to increase the conductivity of urine. The urine in the adjusting tank 3 is discharged out into a heating tank 6 by a pump P, anal the urine is evaporated by the operation of microwave irradiat mechanism or the like in the heating tank, and an electrolytic passage 5 provided with cathode electrodes on both sides of an anode is formed in the middle of a piping between the adjusting tank 3 and the heating tank 6. A substance to be oxidized (particularly ammonia) as a malodor source in the urine is oxidatively destroyed when the urine passes through the electrolytic passage to reduce the concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は尿処理機構及び尿処理
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a urine treatment mechanism and a urine treatment method.

【0002】[0002]

【従来の技術】例えば土木工事現場や建築工事現場では
小用簡易トイレが設置されている。従来この種トイレが
採用する尿処理機構又は尿処理方法には次のような構成
のものがあった。すなわち、加熱槽と固形分フィルター
と脱臭用触媒槽とを具備する。尿は小便器から加熱槽へ
と導かれここで蒸発せしめられる。蒸発分中には固形分
(無機成分等)が含まれているので、これを除去するた
めフィルターを通過させる。というのは、蒸発分中の含
有固形分による次工程の脱臭用触媒槽の目詰まり防止の
ためである。そして、蒸発分中の臭気を前記触媒槽で脱
臭した後に大気中へ排気放出する。
2. Description of the Related Art For example, a small toilet for toilets is installed at a construction site or a construction site. Conventionally, the urine treatment mechanism or the urine treatment method adopted in this type of toilet has the following configuration. That is, it comprises a heating tank, a solid content filter, and a deodorizing catalyst tank. Urine is led from a urinal to a heating tank where it is evaporated. Since solids (inorganic components, etc.) are contained in the evaporated components, they are passed through a filter to remove them. This is to prevent clogging of the catalyst tank for deodorization in the next step due to the solid content in the evaporated component. Then, after deodorizing the odor in the evaporated component in the catalyst tank, it is exhausted and released into the atmosphere.

【0003】ところが、前記加熱槽においては尿は先ず
濃縮せしめられ、次いでこの濃縮されて強烈な臭気を発
する尿が蒸発することになるので、たとえ大気中への放
出前に脱臭用触媒槽に通しても、蒸発分から強烈な臭気
を十分に取り除くことは困難であった。つまり、従来の
小用簡易トイレではその周囲に悪臭が漂うという問題が
あった。
However, urine is first concentrated in the heating tank, and the concentrated urine that emits a strong odor evaporates. Therefore, even if the urine is passed through the deodorizing catalyst tank before being released into the atmosphere. However, it was difficult to sufficiently remove the strong odor from the evaporated components. That is, the conventional small-sized portable toilet has a problem that a foul odor is present around it.

【0004】[0004]

【発明が解決しようとする課題】そこで、この発明は従
来より悪臭が漂いにくい尿処理機構及び尿処理方法を提
起することを課題とする。
Therefore, an object of the present invention is to provide a urine treatment mechanism and a urine treatment method in which a bad odor is less likely to drift than before.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
この発明では次のような技術的手段を講じている。 (請求項1記載の発明の手段)この発明の尿処理機構
は、電解質溶液である又は更に導電率の高い電解質溶液
とした尿に直流電流を流すための電解域を具備すること
を特徴とする。 (請求項2記載の発明の手段)この発明の尿処理方法
は、電解質溶液である又は更に導電率の高い電解質溶液
とした尿に直流電流を流すことにより、これによって尿
中の被酸化物質を酸化分解させる電解工程を具備するこ
とを特徴とする。 (請求項3記載の発明の手段)この発明の尿処理方法
は、電解質溶液である又は更に導電率の高い電解質溶液
とした尿に直流電流を流すことにより、これによって生
成する発生期活性酸素に、尿中の被酸化物質と反応しこ
れを酸化分解させる電解工程を具備することを特徴とす
る。 (請求項4記載の発明の手段)この発明の尿処理方法
は、尿中に食塩を溶解させることにより、尿を更に導電
率の高い電解質溶液とする調整工程を有することを特徴
とする。 (請求項5記載の発明の手段)この発明の尿処理方法
は、電解工程を経た後の尿のうち適宜量を電解工程の前
にフィード・バックし、電解工程へと送るべき尿中の被
酸化物質の濃度を希釈する工程を有することを特徴とす
る。 (請求項6記載の発明の手段)この発明の尿処理方法
は、電解工程を経た後の尿を加熱する加熱工程を有し、
この工程で加熱することにより電解工程で尿中に生成し
た次亜塩素酸ソーダを分解して食塩とし、これを調整工
程にフィード・バックすることを特徴とする。
In order to solve the above problems, the present invention takes the following technical means. (Means of the invention according to claim 1) The urine treatment mechanism of the present invention is characterized by comprising an electrolysis region for supplying a direct current to urine which is an electrolyte solution or an electrolyte solution having a higher conductivity. . (Means of the invention according to claim 2) In the urine treatment method of the present invention, a direct current is passed through urine which is an electrolyte solution or an electrolyte solution having a higher conductivity, whereby oxidizable substances in the urine are removed. It is characterized by comprising an electrolysis step of oxidative decomposition. (Means of the invention according to claim 3) In the urine treatment method of the present invention, by applying a direct current to urine that is an electrolyte solution or an electrolyte solution having a higher conductivity, nascent active oxygen generated thereby is generated. It is characterized by comprising an electrolysis step of reacting with an oxidizable substance in urine to oxidize and decompose this. (Means for carrying out the invention according to claim 4) The urine treatment method of the present invention is characterized by having a step of adjusting urine into an electrolyte solution having higher conductivity by dissolving salt in the urine. (Means for carrying out the invention according to claim 5) In the urine treatment method of the present invention, an appropriate amount of urine after the electrolysis step is fed back before the electrolysis step, and the amount of urine contained in the urine to be sent to the electrolysis step is reduced. And a step of diluting the concentration of the oxidizing substance. (Means of the invention according to claim 6) The urine treatment method of the present invention has a heating step of heating urine after the electrolysis step,
It is characterized in that by heating in this step, sodium hypochlorite produced in urine in the electrolysis step is decomposed into sodium chloride, which is fed back to the adjustment step.

【0006】[0006]

【作用】上記の手段を採用した結果、この発明は以下の
ような作用を有する。 (請求項1記載の発明の作用)この尿処理機構による
と、電解域で、電解質溶液である又は更に導電率の高い
電解質溶液とした尿に直流電流を流すと、尿中の臭気源
である被酸化物質(特にアンモニア)が酸化分解されて
その濃度は低減せしめられる。したがって、次工程にお
いて加熱槽で尿を加熱蒸発させるにしても、臭気源その
ものの濃度が非常に低減せしめられている。 (請求項2記載の発明の作用)この尿処理方法による
と、電解質溶液である又は更に導電率の高い電解質溶液
とした尿に直流電流を流すことにより、これによって尿
中の臭気源である被酸化物質(特にアンモニア)が酸化
分解されてその濃度は低減せしめられる。したがって、
次工程において加熱槽で尿を加熱蒸発させるにしても、
臭気源そのものの濃度が非常に低減せしめられている。 (請求項3記載の発明の作用)この尿処理方法による
と、電解質溶液である又は更に導電率の高い電解質溶液
とした尿に直流電流を流すことにより、これによって生
成する発生期活性酸素に、尿中の臭気源である被酸化物
質(特にアンモニア)と反応しこれを酸化分解させてそ
の濃度は低減せしめられる。したがって次工程において
加熱槽で尿を加熱蒸発させるにしても、臭気源そのもの
の濃度が非常に低減せしめられている。 (請求項4記載の発明の作用)尿中に食塩を溶解させ更
に導電率の高い電解質溶液とすることにより電極に於け
る請求項3記載の発生期活性酸素の生成を促進し、酸化
反応を強化させる。
As a result of adopting the above means, the present invention has the following effects. (Operation of the invention according to claim 1) According to this urine treatment mechanism, when a direct current is applied to urine that is an electrolyte solution or an electrolyte solution having a higher conductivity in the electrolysis region, it is a source of odor in urine. Oxidized substances (especially ammonia) are oxidatively decomposed and their concentrations are reduced. Therefore, even if urine is heated and evaporated in the heating tank in the next step, the concentration of the odor source itself is greatly reduced. According to this urine treatment method, by applying a direct current to urine which is an electrolyte solution or an electrolyte solution having a higher conductivity, a odor source in the urine is thereby generated. Oxidizing substances (especially ammonia) are oxidatively decomposed and their concentrations are reduced. Therefore,
Even if you heat and evaporate urine in the heating tank in the next step,
The concentration of the odor source itself is greatly reduced. (Effect of the Invention According to Claim 3) According to this urine treatment method, by applying a direct current to urine that is an electrolyte solution or an electrolyte solution having a higher conductivity, nascent active oxygen generated thereby is generated. It reacts with oxidizable substances (especially ammonia), which is a source of odor in urine, and oxidizes and decomposes this to reduce its concentration. Therefore, even if urine is heated and evaporated in the heating tank in the next step, the concentration of the odor source itself is greatly reduced. (Operation of the invention according to claim 4) By dissolving salt in urine to form an electrolyte solution having a high electric conductivity, the generation of nascent active oxygen according to claim 3 in the electrode is promoted and oxidation reaction is carried out. To strengthen.

【0007】尚、この際に尿中には次の反応も生じてい
る。 2Cl- →Cl2 +2e- Cl2 +H2 O→HClO+HCl 塩酸とここで生じはしたが被酸化物質の酸化反応にはあ
ずからなかった次亜塩素酸とは陰極で生じた水酸化ナト
リウムにより中和され次亜塩素酸ソーダと食塩になる。 (請求項5記載の発明の作用)前記電解工程を経た後の
尿のうち適宜量を電解工程の前にフィード・バックし、
電解工程を経た後の被酸化物質の濃度が希釈された尿を
請求項3記載の電解工程で処理するので、その分、酸化
処理後の被酸化物質はより低減される。 (請求項6記載の発明の作用)電解工程で尿中に副次的
に生成した次亜塩素酸ソーダを加熱工程に於いて加水分
解により食塩に変え、この食塩を調整工程にフィード・
バックすることにより調整工程に於ける食塩の添加量を
節減できる。
At this time, the following reaction also occurs in urine. 2Cl - → Cl 2 + 2e - and Cl 2 + H 2 O → HClO + HCl hydrochloric acid and hypochlorous acid generated was but that did not Azukara the oxidation reaction of the oxidizable material here neutralized with sodium hydroxide produced at the cathode It becomes sodium hypochlorite and salt. (Operation of the invention of claim 5) An appropriate amount of urine after the electrolysis step is fed back before the electrolysis step,
Since the urine diluted with the concentration of the oxidizable substance after the electrolysis process is treated in the electrolysis process according to the third aspect, the oxidizable substance after the oxidization treatment is further reduced. (Operation of the invention according to claim 6) Sodium hypochlorite, which is secondarily generated in urine in the electrolysis step, is converted into salt by hydrolysis in the heating step, and this salt is fed to the adjusting step.
By backing up, the amount of salt added in the adjusting step can be reduced.

【0008】[0008]

【実施例】以下、この発明の構成を実施例として示した
図面を参照して説明する。図1及び図2に示すように、
この実施例では次のような機構を有する小用簡易トイレ
を形成して尿を処理した。小便器1に排泄された尿を先
ず収容する予備槽2と、この予備槽2から尿が一定量づ
つ送られる調整槽3と、調整槽3に食塩水を供給する食
塩水供給槽4と、尿の電解域(5)を形成する電解通路
5と、電解通路5通過後の尿を蒸発させる加熱槽6とで
ある。小便器1へは用便の際に洗浄水槽7から洗浄水が
送られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described below with reference to the accompanying drawings. As shown in FIGS. 1 and 2,
In this example, a small-sized simple toilet having the following mechanism was formed to treat urine. A preliminary tank 2 that first stores the urine excreted in the urinal 1, an adjusting tank 3 to which the fixed amount of urine is sent from the auxiliary tank 2, and a saline supply tank 4 that supplies saline to the adjusting tank 3. An electrolysis passage 5 forming an electrolysis area (5) for urine, and a heating tank 6 for evaporating urine after passing through the electrolysis passage 5. Cleaning water is sent from the cleaning water tank 7 to the urinal 1 at the time of use.

【0009】予備槽2は小便器1から送られてきた尿を
一定量づつ次工程へと供給するために先ず溜めておく槽
で、その上方と下方とのそれぞれにセンサー20を有す
る。尿の液面21が下側のセンサー20位置を越えると
次工程への尿の供給を一定量づつ開始し、更に上側のセ
ンサー20位置を越えると尿処理許容量オーバーという
警告灯を点灯させる。小便器1と予備槽2との間には公
知の液体シール弁(図示せず)を設け、予備槽2中に溜
まった尿の臭気が小便器1側へと逆流することを防止し
ている。予備槽2は小用簡易トイレの使用開始当初はカ
ラである。
The preliminary tank 2 is a tank for first storing a fixed amount of urine sent from the urinal 1 to the next step, and has sensors 20 above and below it. When the liquid surface 21 of the urine exceeds the lower sensor 20 position, the supply of urine to the next process is started by a fixed amount, and when it exceeds the upper sensor 20 position, a warning lamp indicating that the urine processing allowable amount is exceeded is turned on. A known liquid seal valve (not shown) is provided between the urinal 1 and the auxiliary tank 2 to prevent the odor of urine accumulated in the auxiliary tank 2 from flowing back to the urinal 1. . The spare tank 2 is empty at the beginning of use of the small toilet.

【0010】続く調整槽3では、尿の導電率を更に高く
し引き続く電解工程で尿中の被酸化物質の濃度をより効
率良く低減するため、食塩水供給槽4からの食塩水を混
合する。この食塩水供給槽4の下方域にセンサー20を
設けており、このセンサー位置より食塩水の液面が下が
ると食塩水要供給警告灯が点灯する。また、次述の電解
通路5通過後の尿を再度フィード・バック経路Rを通じ
て調整槽3に戻すことによって次の電解工程で処理すべ
き尿の被酸化物質の濃度を下げる。
In the subsequent adjusting tank 3, in order to further increase the conductivity of urine and more efficiently reduce the concentration of the oxidizable substance in the urine in the subsequent electrolysis step, the saline solution from the saline solution supplying tank 4 is mixed. A sensor 20 is provided in the lower region of the saline supply tank 4, and when the liquid level of the saline falls from the sensor position, the saline supply warning lamp is turned on. Further, by returning the urine after passing through the electrolytic passage 5 to the adjusting tank 3 through the feed back route R again, the concentration of the oxidizable substance in the urine to be treated in the next electrolytic step is lowered.

【0011】図2及び図3に示すように、電解通路5
は、陽極電極50の両側に陰極電極51を配設し、これ
ら相互の間に形成されている。尚、陽極電極50と陰極
電極51とを多数枚配設して積層しこの間に尿の往復連
続経路を形成し(図示せず)電解通路5を長くした方
が、より被酸化物質の低減につながり好ましい。両電極
50,51の間には短絡防止のためにパッキン52が介
装されており、このパッキン52は外組み部分を残して
内部53をくり抜いた枠形状としている。くり抜いた内
部53の部分が電解通路5を形成する。両陰極電極51
の外側にはパッキン54及び塩化ビニール板55を介し
てステンレス板56を外装している。
As shown in FIGS. 2 and 3, the electrolytic passage 5
The cathode electrodes 51 are arranged on both sides of the anode electrode 50, and are formed between these electrodes. It should be noted that it is better to arrange a large number of anode electrodes 50 and cathode electrodes 51 and stack them to form a reciprocating continuous path for urine (not shown) and lengthen the electrolytic passage 5 to further reduce the substance to be oxidized. Connection is preferable. A packing 52 is interposed between both electrodes 50 and 51 to prevent a short circuit, and the packing 52 has a frame shape in which an inner part 53 is hollowed out except for an externally assembled part. The hollowed-out portion of the inside 53 forms the electrolytic passage 5. Both cathode electrodes 51
A stainless steel plate 56 is provided on the outer side of the casing via a packing 54 and a vinyl chloride plate 55.

【0012】尿は一方のステンレス板56の下方に貫通
する孔Hから流入して、塩化ビニール板55、陰極電極
51のそれぞれを貫通する孔Hを通り、陽極電極50と
接触し、陰極電極51と陽極電極50との間の電解通路
5(パッキン52の内部53の部分)を通り、陽極電極
50の上方を貫通する孔Hを通り、陽極電極50の逆面
に至る。この逆面側の陰極電極51と陽極電極50との
間の電解通路5(パッキン52の内部53の部分)を通
り、前記と同様の陰極電極51、塩化ビニール板55、
ステンレス板56のそれぞれの下方を貫通する孔(図示
せず)を通り排出される。このようにして陽極電極50
と陰極電極51との間に尿の通路が形成されている。
Urine flows in from a hole H penetrating below one of the stainless steel plates 56, passes through a hole H penetrating each of the vinyl chloride plate 55 and the cathode electrode 51, contacts the anode electrode 50, and makes contact with the cathode electrode 51. Through the electrolytic passage 5 (a portion of the inside 53 of the packing 52) between the anode electrode 50 and the anode electrode 50, and through the hole H penetrating above the anode electrode 50 to reach the opposite surface of the anode electrode 50. The cathode electrode 51, the vinyl chloride plate 55, which are the same as those described above, pass through the electrolytic passage 5 (the portion 53 inside the packing 52) between the cathode electrode 51 and the anode electrode 50 on the opposite surface side.
The stainless steel plate 56 is discharged through holes (not shown) that pass through the respective lower parts. In this way, the anode electrode 50
A urine passage is formed between the cathode electrode 51 and the cathode electrode 51.

【0013】加熱槽6には、電解通路5を通過後の尿を
蒸発せしめるため公知のマイクロ波照射機構(図示せ
ず)を設けた。マイクロ波としてはその周波数が2,4
50メガヘルツ、波長が約12センチメートルの通常電
子レンジで用いられている電波を使用した。マイクロ波
は公知のマグネトロンMという発振器で発生させた。マ
イクロ波の振動電界を及ぼすと、尿中の誘電体の摩擦熱
により発熱して蒸発する。加熱手段としてはマイクロ波
ではなく、高周波、高周波誘導加熱、シーズ・ヒータ
ー、遠赤外線ヒーター、また都市ガス、天然ガス(プロ
パンガス、石油分解ガス等も含む)、灯油、軽油等の石
油系燃料等を用いた燃焼加熱装置などの他の適宜の方法
でもよい。次に、尿の処理方法を工程毎に説明する。 調整工程 小便器1に排泄された尿は先ず予備槽2に溜まり、それ
を順次一定量づつ調整槽3へと送り込む。この実施例で
は予備槽2の容量を40リットルとしている。調整槽3
には食塩水供給槽4から食塩水を注入して尿と混合させ
る。 電解工程 陽極電極50と陰極電極51との間の電解通路5へはポ
ンプPを用いて尿を送り込みながら、これに直流電流を
流す。この工程に於いて陽極酸化反応により尿中の有機
物は酸化分解する。電解通路5を通過後の尿は二系統に
分離し、一方はフィード・バック経路Rを通じて電解通
路5の前の調整槽3に戻す。他方は次工程の加熱槽6に
送る。
The heating tank 6 is provided with a known microwave irradiation mechanism (not shown) for evaporating urine after passing through the electrolytic passage 5. The frequency of microwaves is 2, 4
A radio wave used in a normal microwave oven having a wavelength of 50 megahertz and a wavelength of about 12 cm was used. The microwave was generated by a known oscillator called a magnetron M. When an oscillating electric field of microwaves is exerted, the frictional heat of the dielectric substance in urine causes heat generation and evaporation. The heating means is not microwave but high frequency, high frequency induction heating, seed heater, far infrared heater, petroleum fuel such as city gas, natural gas (including propane gas, petroleum decomposition gas, etc.), kerosene, light oil, etc. Other suitable methods such as a combustion heating device using Next, a method for treating urine will be described step by step. Adjustment process The urine excreted in the urinal 1 first collects in the preliminary tank 2 and is sent to the adjustment tank 3 in a fixed amount in order. In this embodiment, the capacity of the preliminary tank 2 is 40 liters. Adjustment tank 3
Is injected with saline from the saline supply tank 4 and mixed with urine. Electrolysis step While pumping urine into the electrolysis passage 5 between the anode electrode 50 and the cathode electrode 51, a direct current is passed through the urine. In this step, organic substances in urine are oxidatively decomposed by the anodic oxidation reaction. Urine after passing through the electrolytic passage 5 is separated into two systems, and one of them is returned to the adjusting tank 3 in front of the electrolytic passage 5 through the feed back route R. The other is sent to the heating tank 6 in the next step.

【0014】ところで成人一人分の尿は平均一日約1,
170ccであり、その成分組成は水分約96.32
%、有機物約2.41%、無機物約1.27%である。
そして、これをそのまま加熱蒸発せしめた際には無機物
と有機物併せて約3.68%が固形分となる。ここで尿
中の有機物としては尿素、アンモニア、尿酸、クレアチ
ニン、グルコース、馬尿酸等があり、これら被酸化物質
は陽極電極50に於ける強力な酸化作用により短時間で
二酸化炭素、窒素、水に分解される。
By the way, the average urine for one adult is about 1,
It has a water content of about 96.32.
%, Organic matter about 2.41%, and inorganic matter about 1.27%.
Then, when this is heated and evaporated as it is, about 3.68% of the inorganic matter and the organic matter become a solid content. Here, the organic substances in urine include urea, ammonia, uric acid, creatinine, glucose, hippuric acid, etc., and these oxidizable substances are converted into carbon dioxide, nitrogen, and water in a short time by the strong oxidizing action of the anode electrode 50. Be disassembled.

【0015】このような酸化反応の機構についてはベン
ゼン類からフェノール、キノン類を工業的に合成するた
めの公知の電解酸化のプロセスからも説明することがで
きる。しかし、この実施例では電解質溶液中に於いて短
時間でかなり分子量の大きい複雑な有機物が二酸化炭
素、水、窒素ガスにまで分解されており、このような酸
化反応の機構としては最近研究されている電解質中の発
生期活性酸素、スーパーオキシドイオン、ペルオキシド
イオン、ヒドロペルオキシラジカル、ヒドロペルオキシ
ドイオンなどの活性酸素種の働きによるものと考えられ
る。
The mechanism of such an oxidation reaction can also be explained from a known electrolytic oxidation process for industrially synthesizing phenols and quinones from benzenes. However, in this example, a complex organic matter having a considerably large molecular weight was decomposed into carbon dioxide, water, and nitrogen gas in an electrolyte solution in a short time, and the mechanism of such an oxidation reaction has recently been studied. It is considered to be due to the action of active oxygen species such as nascent active oxygen, superoxide ion, peroxide ion, hydroperoxy radical, and hydroperoxide ion in the existing electrolyte.

【0016】すなわち電解質溶液に電流を流すと液相で
ある尿中に一種の低温酸素プラズマ類似状態が生成し、
これには前記のような活性酸素種や遊離電子が含まれ、
これらが不揮発性の有機物質に対して種々の酸化反応を
起こし低分子化合物を経由して二酸化炭素と水などにま
で酸化分解し、究極的には無機物質だけが溶液中に残存
するものと推測される。
That is, when an electric current is applied to the electrolyte solution, a kind of low temperature oxygen plasma-like state is generated in urine which is a liquid phase,
This includes active oxygen species and free electrons as described above,
It is presumed that these cause various oxidation reactions to non-volatile organic substances and oxidatively decompose to carbon dioxide and water via low molecular weight compounds, and ultimately only inorganic substances remain in the solution. To be done.

【0017】つまりこの実施例の酸化反応は、電極酸化
反応に於ける酸素活性種の強力な酸化分解作用によるも
のと考えられる。なお尿中の有機物は次のような発生期
活性酸素が関与する反応により酸化されると考えられ
る。 アンモニア:2NH3 +3(O)→N2 +3H2 O 尿素:H2 NCONH2 +3(O)→N2 +2H2 O+
CO2 尿酸:化1に示す。
That is, it is considered that the oxidation reaction of this embodiment is due to the strong oxidative decomposition action of the oxygen active species in the electrode oxidation reaction. It is considered that organic matter in urine is oxidized by the following reaction involving nascent active oxygen. Ammonia: 2NH 3 +3 (O) → N 2 + 3H 2 O Urea: H 2 NCONH 2 +3 (O) → N 2 + 2H 2 O +
CO 2 uric acid: shown in Chemical formula 1.

【0018】[0018]

【化1】 [Chemical 1]

【0019】馬尿酸:2C6 5 −CONHCH2 CO
OH+39(O)→N2 +9H2 O+18CO2 グルコース:C6 126 +12(O)→6H2 O+6
CO2 クレアチニン:化2に示す。
Hippuric acid: 2C 6 H 5 -CONHCH 2 CO
OH + 39 (O) → N 2 + 9H 2 O + 18CO 2 glucose: C 6 H 12 O 6 +12 (O) → 6H 2 O + 6
CO 2 creatinine: shown in Chemical formula 2.

【0020】[0020]

【化2】 [Chemical 2]

【0021】 加熱工程 次いで、電解通路5通過後の尿を加熱槽6へと送り、こ
こでマイクロ波で加熱してある程度蒸発させる。蒸発し
た尿は電解工程に於いて臭気源が分解しており、悪臭は
殆ど発生しない。ファンFによって蒸気を大気中に排気
放出する。
Heating Step Next, the urine that has passed through the electrolytic passage 5 is sent to the heating tank 6 where it is heated by microwaves and evaporated to some extent. The odor source of the evaporated urine is decomposed in the electrolysis process, and a bad odor hardly occurs. The fan F exhausts the steam into the atmosphere.

【0022】また、加熱工程では加熱された次亜塩素酸
ソーダが分解して食塩となり、したがって、加熱槽6内
に残っている分解後の尿中には食塩が含有されており、
蒸発を繰り返すことにより食塩が濃縮される。この濃縮
された食塩水を調整槽3に戻す。次に、更に詳細に実施
例を説明する。予備槽2に溜まった尿を調整槽3へと1
2.5cc/分で供給する。一方、食塩水供給槽4から
25%食塩水溶液を12.5cc/分で調整槽3に供給
し、これらが混合したものをポンプPで1,150cc
/分の流量で電解通路5に送り込みながらこれに直流電
流10Aを流す。この際の電圧は5.5Vであった。そ
して、電解通路5を通過させた後の被酸化物質が低減し
た尿を1,100cc/分の流量で電解通路5の前側の
調整槽3にフィード・バック経路Rにより戻し、電解通
路5へと送るべき尿中の被酸化物質の濃度を希釈した。
そして残りの50cc/分の流量の尿を加熱槽6に供給
し、ここで分解後の尿にマイクロ波を当てて蒸発させ
た。この時に使用した高周波出力は500Wであった。
全体の3割程度の容量になるくらいまで蒸発させた。尿
中の被酸化物質は殆ど分解した後であり悪臭は漂わず、
また、加熱中に次亜塩素酸ソーダが分解し食塩が生成し
ているので濃縮された食塩水が得られた。この濃縮食塩
水は調整槽3に供給した。
In the heating step, the heated sodium hypochlorite is decomposed into sodium chloride, and therefore, the decomposed urine remaining in the heating tank 6 contains sodium chloride,
The salt is concentrated by repeating evaporation. The concentrated saline solution is returned to the adjusting tank 3. Next, examples will be described in more detail. The urine collected in the spare tank 2 is transferred to the adjusting tank 3 1
Supply at 2.5 cc / min. On the other hand, 25% saline solution is supplied from the saline supply tank 4 to the adjusting tank 3 at 12.5 cc / min, and a mixture of these is pumped at 1,150 cc.
A direct current of 10 A is passed through the electrolytic passage 5 while feeding it into the electrolytic passage 5 at a flow rate of / min. The voltage at this time was 5.5V. Then, the urine in which the oxidizable substance is reduced after passing through the electrolytic passage 5 is returned to the adjusting tank 3 on the front side of the electrolytic passage 5 by the feed back route R at a flow rate of 1,100 cc / min, and then to the electrolytic passage 5. The concentration of oxidizable substances in the urine to be sent was diluted.
Then, the remaining urine having a flow rate of 50 cc / min was supplied to the heating tank 6, where the decomposed urine was microwaved to be evaporated. The high frequency output used at this time was 500W.
It was evaporated until the volume became about 30% of the whole. Most of the oxidizable substances in urine have been decomposed, and there is no odor,
Further, since sodium hypochlorite was decomposed during heating to generate sodium chloride, a concentrated saline solution was obtained. This concentrated saline solution was supplied to the adjusting tank 3.

【0023】このようにして尿の処理前、及び一定時間
経過後に於ける電解通路5通過後の尿の含有するアンモ
ニア性窒素の濃度、化学的酸素要求量(COD値)、生
物的酸素要求量(BOD値)、及びpHを測定した。結
果を表1に記載する。各値は30分経過後には激減して
おり、被酸化物質の酸化が非常に速く起こっていること
が分かる。
In this way, the concentration of ammonia nitrogen contained in the urine, the chemical oxygen demand (COD value), and the biological oxygen demand before the urine treatment and after the passage of the electrolysis passage 5 after a certain period of time has passed. (BOD value) and pH were measured. The results are shown in Table 1. Each value drastically decreases after 30 minutes, and it can be seen that the oxidation of the substance to be oxidized takes place very quickly.

【0024】[0024]

【表1】 [Table 1]

【0025】ここで、電解域と加熱槽との間に、電解通
路で尿中に生成した次亜塩素酸を分解する触媒槽(図示
せず)を設けてもよい。電解通路5の通過後の尿中には
次亜塩素酸が残存しており、次亜塩素酸は触媒槽内の次
述の過酸化ニッケル触媒と反応すると食塩となる。触媒
として、過酸化ニッケル触媒を用いることが出来る。例
えば、三二酸化ニッケル水和物(Ni2 3 .H2 O)
単独又はこれを四三酸化ニッケル水和物(Ni3 4
2 O)及び/又は二酸化ニッケル水和物(NiO2
2 O)の混合物を有効成分とするものを使用できる。
Here, a catalyst tank (not shown) for decomposing hypochlorous acid generated in urine in the electrolytic passage may be provided between the electrolysis zone and the heating tank. Hypochlorous acid remains in the urine after passing through the electrolytic passage 5, and the hypochlorous acid becomes salt when it reacts with the nickel peroxide catalyst described below in the catalyst tank. A nickel peroxide catalyst can be used as the catalyst. For example, nickel trioxide hydrate (Ni 2 O 3 .H 2 O)
Alone or as a trihydrate of nickel trioxide (Ni 3 O 4 .
H 2 O) and / or nickel dioxide hydrate (NiO 2.
A mixture of H 2 O) as an active ingredient can be used.

【0026】ところで次の比較例と対比すると、上述の
実施例の処理に於いては発生期活性酸素が生成し尿中の
被酸化物質を酸化分解しているものと考えられる。 (比較例)処理すべき尿に市販の次亜塩素酸ソーダ(濃
度12%)を尿1リットルに対し1ccの割合いで加え
約30分間攪拌した後、COD値及びアンモニア性窒素
の濃度を測定した。すると、COD値は当初の5,80
0ppmから5,200ppmにしか低減しておらず、
アンモニア性窒素の濃度は当初の540ppmから1,
335ppmへと変化していた。その後、経時的に測定
すると何時間かの時間の経過と共にCOD値及びアンモ
ニア性窒素の濃度は徐々に低下してきた。ここで、30
分経過の時点ではアンモニア性窒素の濃度が一旦増加し
ているが、これは次亜塩素酸ソーダの比較的弱い酸化作
用によって尿素や尿酸等が徐々に分解されていく過程に
於いて、二酸化炭素等や窒素ガス等の最終分解生成物に
至る前の中間生成物としてアンモニアが生成するためと
考えられる。
By the way, in comparison with the following comparative example, it is considered that nascent active oxygen is generated and oxidatively decomposes the oxidizable substance in urine in the treatment of the above-mentioned embodiment. Comparative Example Commercially available sodium hypochlorite (concentration 12%) was added to the urine to be treated at a ratio of 1 cc to 1 liter of urine and stirred for about 30 minutes, and then the COD value and the concentration of ammonia nitrogen were measured. . Then, the COD value was the initial value of 5,80.
Only reduced from 0ppm to 5,200ppm,
The concentration of ammonia nitrogen is from the initial 540 ppm to 1,
It had changed to 335 ppm. After that, when measured with time, the COD value and the concentration of ammonia nitrogen gradually decreased with the passage of several hours. Where 30
The concentration of ammoniacal nitrogen increased once after the lapse of minutes, but this is due to carbon dioxide in the process of gradually decomposing urea, uric acid, etc. due to the relatively weak oxidizing action of sodium hypochlorite. It is considered that ammonia is generated as an intermediate product before reaching the final decomposition products such as nitrogen gas and the like.

【0027】ところで、次亜塩素酸ソーダは経時的に分
解し尿中の被酸化物質を酸化していくが、その分解速度
は前記の如く何時間かにわたる非常に緩慢なものであ
る。一方、この実施例の処理方法に於いては既述の実施
例の結果のように被酸化物質の酸化分解が非常に速く起
こっている。つまり、単に次亜塩素酸ソーダを加えて攪
拌するだけの場合に於ける緩慢な分解と比較すると、こ
の実施例の処理方法に依る場合は発生期活性酸素が非常
に速い速度で生成し被酸化物質の酸化分解に関与してい
るものと考えられる。
By the way, sodium hypochlorite decomposes with time to oxidize the substance to be oxidized in urine, but the decomposition rate thereof is extremely slow over several hours as described above. On the other hand, in the treatment method of this embodiment, the oxidative decomposition of the substance to be oxidized occurs very quickly as shown in the results of the above-mentioned embodiment. That is, in comparison with the slow decomposition in the case of simply adding sodium hypochlorite and stirring, nascent active oxygen was generated at a very fast rate in the case of the treatment method of this example. It is considered to be involved in the oxidative decomposition of substances.

【0028】この実施例のものによると次のような利点
がある。 (1) 電解工程に於いて電極酸化反応による酸素活性
種の強力な酸化作用で尿を概ね二酸化炭素、窒素、水に
まで分解した後に加熱蒸発させ大気中に排気放出するの
で、放出分は安全無害で且つ殆ど悪臭を漂わすことがな
い。 (2) 仮に尿中に感染性の細菌やウィルスが混入して
いる場合も、電解工程に於ける強力な酸化作用及びこの
工程で生成する次亜塩素酸の作用により、これらをほぼ
完全に殺菌した後に排気放出するので環境衛生面に優れ
る。 (3) 処理前の尿に対し加熱蒸発させた後に残留する
廃棄物固形分の重量比は約1.5%となるので、当初の
量から大幅な容量減が可能となると共にその廃棄時の取
扱いも悪臭が殆どなく感染のおそれもない衛生的なもの
である。
According to this embodiment, there are the following advantages. (1) In the electrolysis process, urine is decomposed into carbon dioxide, nitrogen, and water by the strong oxidizing action of active oxygen species by the electrode oxidation reaction, and then it is heated and evaporated to be exhausted and released into the atmosphere. It is harmless and has almost no odor. (2) Even if infectious bacteria and viruses are mixed in urine, they are almost completely sterilized by the strong oxidizing action in the electrolysis process and the action of hypochlorous acid produced in this process. Exhaust is released after doing so, it is excellent in environmental hygiene. (3) Since the weight ratio of the waste solid content remaining after heating and evaporating the urine before treatment is about 1.5%, it is possible to significantly reduce the volume from the initial amount and to dispose of it at the time of disposal. It is hygienic and has almost no foul odor and no risk of infection.

【0029】[0029]

【発明の効果】【The invention's effect】

(請求項1乃至4に記載の発明の効果)この発明は上述
のような構成を有するものであり、次の効果を奏する。
臭気源そのもの(特にアンモニア)の濃度が非常に低減
せしめられているので、従来より悪臭が漂いにくい尿処
理機構又は尿処理方法を提供することが出来る。 (請求項5記載の発明の効果)上記効果を有すると共
に、酸化処理後の被酸化物質がより低減されるという効
果を有する。 (請求項6記載の発明の効果)上記効果を有すると共
に、調整工程に於ける食塩の添加量を節減できるという
効果を有する。
(Effects of the Invention According to Claims 1 to 4) The present invention has the above-mentioned configuration and has the following effects.
Since the concentration of the odor source itself (in particular, ammonia) is extremely reduced, it is possible to provide a urine treatment mechanism or a urine treatment method in which a bad odor is less likely to drift than before. (Effect of the invention according to claim 5) In addition to the above effects, the substance to be oxidized after the oxidation treatment is further reduced. (Effect of the invention according to claim 6) In addition to the above effects, the amount of added salt in the adjusting step can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の尿処理機構及び尿処理方法の実施例
を説明するシステム・フロー図。
FIG. 1 is a system flow chart explaining an embodiment of a urine treatment mechanism and a urine treatment method of the present invention.

【図2】図1の電解通路を中心に説明するシステム・フ
ロー図。
FIG. 2 is a system flow diagram mainly illustrating the electrolytic passage of FIG.

【図3】図1の電解通路の構造を説明する分解斜視図。FIG. 3 is an exploded perspective view illustrating the structure of the electrolytic passage of FIG.

【符号の説明】[Explanation of symbols]

5 電解域 5 electrolysis area

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電解質溶液である又は更に導電率の高い
電解質溶液とした尿に直流電流を流すための電解域を具
備することを特徴とする尿処理機構。
1. A urine treatment mechanism comprising an electrolytic region for supplying a direct current to urine which is an electrolytic solution or an electrolytic solution having a higher conductivity.
【請求項2】 電解質溶液である又は更に導電率の高い
電解質溶液とした尿に直流電流を流すことにより、これ
によって尿中の被酸化物質を酸化分解させる電解工程を
具備することを特徴とする尿処理方法。
2. The method comprises an electrolyzing step in which a direct current is applied to urine, which is an electrolyte solution or an electrolyte solution having a higher conductivity, to oxidize and decompose an oxidizable substance in the urine. Urine treatment method.
【請求項3】 電解質溶液である又は更に導電率の高い
電解質溶液とした尿に直流電流を流すことにより、これ
によって生成する発生期活性酸素に、尿中の被酸化物質
と反応しこれを酸化分解させる電解工程を具備すること
を特徴とする尿処理方法。
3. By applying a direct current to urine which is an electrolyte solution or an electrolyte solution having a higher conductivity, nascent active oxygen generated thereby reacts with an oxidizable substance in urine and oxidizes it. A urine treatment method comprising an electrolysis step of decomposing.
【請求項4】 尿中に食塩を溶解させることにより、尿
を更に導電率の高い電解質溶液とする調整工程を有する
ことを特徴とする請求項2又は3記載の尿処理方法。
4. The urine treatment method according to claim 2, further comprising a step of adjusting the urine into an electrolyte solution having a higher conductivity by dissolving salt in the urine.
【請求項5】 前記電解工程を経た後の尿のうち適宜量
を電解工程の前にフィード・バックし、電解工程へと送
るべき尿中の被酸化物質の濃度を希釈する工程を有する
ことを特徴とする請求項2乃至4のいずれかに記載の尿
処理方法。
5. A step of feeding back an appropriate amount of urine after the electrolysis step before the electrolysis step to dilute the concentration of the oxidizable substance in the urine to be sent to the electrolysis step. The method for treating urine according to any one of claims 2 to 4, which is characterized in that.
【請求項6】 前記電解工程を経た後の尿を加熱する加
熱工程を有し、この工程で加熱することにより電解工程
で尿中に生成した次亜塩素酸ソーダを分解して食塩と
し、これを調整工程にフィード・バックすることを特徴
とする請求項4又は5記載の尿処理方法。
6. The method further comprises a heating step of heating urine after the electrolysis step, wherein heating in this step decomposes sodium hypochlorite produced in the urine in the electrolysis step to form salt. The method for urine treatment according to claim 4 or 5, further comprising feeding back to the adjusting step.
JP6878193A 1993-03-26 1993-03-26 Mechanism and process for raw sewage disposal Pending JPH06277671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6878193A JPH06277671A (en) 1993-03-26 1993-03-26 Mechanism and process for raw sewage disposal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6878193A JPH06277671A (en) 1993-03-26 1993-03-26 Mechanism and process for raw sewage disposal

Publications (1)

Publication Number Publication Date
JPH06277671A true JPH06277671A (en) 1994-10-04

Family

ID=13383624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6878193A Pending JPH06277671A (en) 1993-03-26 1993-03-26 Mechanism and process for raw sewage disposal

Country Status (1)

Country Link
JP (1) JPH06277671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007064068A1 (en) * 2005-12-02 2007-06-07 Mirae Industrial Systems Co., Ltd. Treatment apparatus for excrement of rest room

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007064068A1 (en) * 2005-12-02 2007-06-07 Mirae Industrial Systems Co., Ltd. Treatment apparatus for excrement of rest room

Similar Documents

Publication Publication Date Title
US4012321A (en) Oxidation of refractory organics in aqueous waste streams by hydrogen peroxide and ultraviolet light
Neyens et al. A review of classic Fenton’s peroxidation as an advanced oxidation technique
KR101026641B1 (en) Non-degradable Waste Water Treatment Apparatus using Electrolysis and Photo-fenton Oxidation Process
US7108781B2 (en) Enhanced air and water purification using continuous breakpoint halogenation with free oxygen radicals
WO2002085793A1 (en) Mediated electrochemical oxidation of biological waste materials
WO2003091165A1 (en) Mediated electrochemical oxidation process used as a hydrogen fuel generator
JP2004143519A (en) Water treatment method and water treatment device
Idris et al. Degradation of phenol in wastewater using anolyte produced from electrochemical generation of brine solution
US6846468B2 (en) Method for decomposing bromic acid by photocatalyst and apparatus therefor
KR101516834B1 (en) Waste treatment system
JP3978124B2 (en) Hypochlorous acid self-sufficiency method and equipment in organic waste treatment system
WO2003072509A1 (en) Mediated electrochemical oxidation used for sterilization/disinfection
JPH10130876A (en) Electrolytic ozonized water producing unit and its regenerating method
Selcuk et al. An innovative photocatalytic technology in the treatment of river water containing humic substances
JPH06277671A (en) Mechanism and process for raw sewage disposal
JP2001293478A (en) Waste water treating device
JP4662327B2 (en) Wastewater treatment method and apparatus
JP2000279977A (en) Fluid treatment and fluid treatment apparatus
JP3362840B2 (en) Treatment method and treatment device for wastewater containing hydrogen peroxide
JP2001300560A (en) Method for treating waste water, device for treating waste water and catalyst for treating waste water
JP2000157972A (en) Device for advanced sewage treatment
JP2001179046A (en) Method for deodorizing and cleaning exhaust gas or flue gas
JPH06343969A (en) Sewage treatment apparatus
JP2001017995A (en) Treatment of volatile organochlorine compound and device therefor
JP2000263049A (en) Method and apparatus for cleaning barn effluent