JPH06276154A - Optical gain equalizing circuit - Google Patents

Optical gain equalizing circuit

Info

Publication number
JPH06276154A
JPH06276154A JP5060047A JP6004793A JPH06276154A JP H06276154 A JPH06276154 A JP H06276154A JP 5060047 A JP5060047 A JP 5060047A JP 6004793 A JP6004793 A JP 6004793A JP H06276154 A JPH06276154 A JP H06276154A
Authority
JP
Japan
Prior art keywords
optical
gain
wavelength
zehnder
mach
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5060047A
Other languages
Japanese (ja)
Inventor
Hiroshi Toba
弘 鳥羽
Kazuhiro Oda
一弘 織田
Yasushi Inoue
恭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5060047A priority Critical patent/JPH06276154A/en
Publication of JPH06276154A publication Critical patent/JPH06276154A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Abstract

PURPOSE:To obtain an optical gain equalizing circuit whereby a sufficient transmission characteristic is secured even when the number of stage in an optical amplifier is large and even when the umbalance of the gain is large. CONSTITUTION:First and second Much-Zehnder-shape filters 20 and 30 with mutually different change cycles on the wave-length (or optical frequency) axis of transmissivity are continuously connected. Thus, the nonuniformity of a gain wave-length (or optical frequency) characteristic which cannot be flattened by the first Much-Zehnder-shape optical filter 20 can be flattened by the second Much-Zehnder-shape optical filter 30 with the change cycle on the wave-length (or optical frequency) axis of transmissivity, being different from that of the above first Much-Zehnder-shape optical filter 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光波長(又は光周波
数)多重伝送方式に用いられる光利得等化回路に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical gain equalization circuit used in an optical wavelength (or optical frequency) multiplex transmission system.

【0002】[0002]

【従来の技術】光波長(又は光周波数)多重伝送方式と
は、1本の光ファイバに、情報の乗った波長(又は光周
波数)が互いに異なる複数の信号光を多重化し、伝送す
る方式である。前記方式に、多重化された信号光を一括
して増幅する光増幅器を適用すると、伝送系の送受信レ
ベル差が改善され、長距離伝送系における伝送距離の拡
大や情報分配伝送系における分配数の増大が可能とな
る。
2. Description of the Related Art An optical wavelength (or optical frequency) multiplex transmission system is a system in which a plurality of signal lights having different wavelengths (or optical frequencies) carrying information are multiplexed in one optical fiber and transmitted. is there. When an optical amplifier that collectively amplifies the multiplexed signal light is applied to the above method, the difference between the transmission and reception levels of the transmission system is improved, the transmission distance is expanded in the long distance transmission system, and the number of distributions in the information distribution transmission system is increased. It is possible to increase.

【0003】ところで、一般に、光増幅器の利得は波長
によって一定でないことから、波長多重された信号光を
一括して増幅する場合、増幅後の光レベルは波長によっ
て異なり、特に複数の光増幅器を透過した信号光ではこ
の光レベルの差が累積する。この結果、受信端において
多重化された信号光を分波して受信する際、光レベルが
波長によって異なり、特に光レベルの低いチャネルにお
いては、チャネル間クロストークの増加やSN比の劣化
が生じ、受信感度が劣化するという問題があった。
By the way, in general, the gain of an optical amplifier is not constant depending on the wavelength. Therefore, in the case of collectively amplifying wavelength-division-multiplexed signal light, the optical level after amplification differs depending on the wavelength, and particularly, it passes through a plurality of optical amplifiers. In the signal light, the difference in light level is accumulated. As a result, when demultiplexing and receiving the multiplexed signal light at the receiving end, the optical level differs depending on the wavelength, and especially in a channel with a low optical level, interchannel crosstalk increases and SN ratio deterioration occurs. However, there is a problem that the reception sensitivity is deteriorated.

【0004】前述した光増幅器の利得の波長依存性を補
償する方法としては、従来、可変透過率特性を有する可
同調マッハツェンダ形光フィルタを光利得等化回路とし
て用いて光波長多重信号出力を平坦化した例がある(文
献1:K.Inoue, T.Kominato,and H.Toba,“Tunable gai
n equalization using a Mach-Zehnder optical filter
in multi-stage fiber amplifiers ”IEEE Photon.Tec
hnol.Lett., vol.3,No.8, pp.718-720, 1991、又は文献
2:H.Toba, K.Nakanishi, K.Oda, K.Inoue,and T.Komi
nato,“A 100-channel optical FDM in-line amplifier
system employing tunable gain equalizers”ECOC'92
論文集pp.113-116参照)。
As a method of compensating the wavelength dependence of the gain of the optical amplifier described above, conventionally, a tunable Mach-Zehnder type optical filter having a variable transmittance characteristic is used as an optical gain equalizing circuit to flatten the output of the optical wavelength multiplexed signal. There is an example (Reference 1: K. Inoue, T. Kominato, and H. Toba, “Tunable gai
n equalization using a Mach-Zehnder optical filter
in multi-stage fiber amplifiers "IEEE Photon.Tec
hnol.Lett., vol.3, No.8, pp.718-720, 1991, or literature 2: H.Toba, K.Nakanishi, K.Oda, K.Inoue, and T.Komi.
nato, “A 100-channel optical FDM in-line amplifier
system employing tunable gain equalizers ”ECOC'92
See Proceedings pp.113-116).

【0005】図2は前述した文献に掲載されている光利
得等化回路を示すものである。図2(a) は光増幅器と光
利得等化回路との接続態様を示すもので、光ファイバ1
より光増幅器2に入力され、増幅されて出力された光波
長多重信号の光レベルのアンバランスを光利得等化回路
3により平坦化する如くなっている。
FIG. 2 shows the optical gain equalization circuit described in the above-mentioned document. FIG. 2 (a) shows a connection mode between the optical amplifier and the optical gain equalization circuit.
The optical gain equalization circuit 3 flattens the optical level imbalance of the optical wavelength division multiplexed signal input to the optical amplifier 2 and amplified and output.

【0006】図2(b) は光利得等化回路の詳細な構成を
示すもので、長さの異なる2本の導波路4,5の入力側
及び出力側をそれぞれ方向性結合器6及び7で接続した
マッハツェンダ形光フィルタの構成を有している。前記
入力側及び出力側の方向性結合器6及び7は対称型のマ
ッハツェンダ干渉計の構造を有し、それぞれの位相調整
用の電極6a及び7aへのバイアス電流を調整すること
により、その結合効率を変化させることができる。電極
6a及び7aとしては、例えばCrヒータを用いること
ができ、該電極6a及び7aに電流を流すことによって
生ずる熱光学効果により位相を調整することが可能であ
る。
FIG. 2 (b) shows a detailed structure of the optical gain equalization circuit. Directional couplers 6 and 7 are provided on the input side and the output side of two waveguides 4 and 5 having different lengths, respectively. It has a configuration of a Mach-Zehnder type optical filter connected by. The directional couplers 6 and 7 on the input side and the output side have a structure of a symmetric Mach-Zehnder interferometer, and their coupling efficiency is adjusted by adjusting the bias currents to the respective phase adjusting electrodes 6a and 7a. Can be changed. As the electrodes 6a and 7a, for example, a Cr heater can be used, and the phase can be adjusted by the thermo-optical effect generated by passing a current through the electrodes 6a and 7a.

【0007】図2(b) において、入力側の光ファイバ8
から出力側の光ファイバ9への透過率特性は、導波路損
失やファイバ導波路間接続損失等の過剰損失を除いた場
合、 T≒1−A・cos2 {(λ−λo )π/Δλ} ……(1) と表される。但し、ここで、λは動作波長、λo は本光
利得等化回路の透過率が最小値となる中心波長、Aは0
<A≦1を満たす実数である。この透過率特性は周期Δ
λの周期性を有している。
In FIG. 2B, the optical fiber 8 on the input side
From the output side to the optical fiber 9 on the output side is T≈1-A · cos 2 {(λ−λo) π / Δλ when the excess loss such as the waveguide loss and the connection loss between the fiber waveguides is excluded. } …… (1) is represented. Here, λ is the operating wavelength, λo is the central wavelength at which the transmittance of the present optical gain equalization circuit is minimum, and A is 0.
A real number that satisfies <A ≦ 1. This transmittance characteristic has a period Δ
It has a periodicity of λ.

【0008】図3は前記光利得等化回路の透過率特性を
示すものである。ここで、位相調整用電極6a及び7a
のバイアス電流を調整することにより、前記(1) 式のA
を変化させることができ、実線11で示された原透過率
特性の利得補償量を破線12で示すように調整すること
が可能である。また、電極4aのバイアス電流を調整す
ることにより、前記(1) 式のλo を変化させることがで
き、透過率特性の中心波長を一点鎖線13で示すように
調整することが可能である。
FIG. 3 shows the transmittance characteristics of the optical gain equalization circuit. Here, the phase adjustment electrodes 6a and 7a
By adjusting the bias current of
Can be changed, and the gain compensation amount of the original transmittance characteristic shown by the solid line 11 can be adjusted as shown by the broken line 12. Further, by adjusting the bias current of the electrode 4a, it is possible to change λo in the equation (1), and it is possible to adjust the center wavelength of the transmittance characteristic as shown by the alternate long and short dash line 13.

【0009】図4は前記文献2に掲載された利得等化の
ようすを示すものである。ここでは光波長1548nmから
1556nmを占有する波長間隔0.08nm(光周波数間隔1
0GHz )で多重化された100チャネルの信号光を、
多段接続されたアルミニウム共添加のエルビウム添加光
増幅器で増幅した際のスペクトルを示す。
FIG. 4 shows the state of gain equalization described in the above-mentioned document 2. Here, from the light wavelength of 1548 nm
Wavelength interval occupying 1556 nm 0.08 nm (optical frequency interval 1
Signal light of 100 channels multiplexed with 0 GHz)
The spectrum when amplified by the aluminum co-doped erbium addition optical amplifier connected in multiple stages is shown.

【0010】図4の左側には光増幅器の入力スペクトル
と、光利得等化回路を使用しない場合の3段目及び6段
目の光増幅器の出力スペクトルとを示している。光利得
等化回路を使用しない場合、光波長多重信号の光レベル
のアンバランスは光増幅器の段数とともに増大すること
がわかる。また、図4の右側には図2に示した光利得等
化回路を3段の光増幅器毎に挿入した場合の該光利得等
化回路の出力スペクトルを示している。光利得等化回路
を使用した場合、光波長多重信号の光レベルのアンバラ
ンスを、ある程度補償できることがわかる。
The left side of FIG. 4 shows the input spectrum of the optical amplifier and the output spectrum of the third and sixth optical amplifiers when the optical gain equalizing circuit is not used. It can be seen that, when the optical gain equalization circuit is not used, the imbalance of the optical level of the optical wavelength division multiplexed signal increases with the number of stages of the optical amplifier. The right side of FIG. 4 shows the output spectrum of the optical gain equalization circuit shown in FIG. 2 when the optical gain equalization circuit is inserted in each of the three stages of optical amplifiers. It can be seen that when the optical gain equalization circuit is used, the imbalance of the optical level of the optical wavelength division multiplexed signal can be compensated to some extent.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、図4の
右側に示した光利得等化回路有りのスペクトルを詳細に
みると、3段目の光増幅器出力に対応したスペクトルは
ほぼ平坦な特性を示しているが、6段目の光増幅器出力
に対応したスペクトルは平坦性が劣化し、スペクトルの
中心付近が盛り上がった、上に凸の特性となっているこ
とがわかる。この平坦性の劣化傾向は光増幅器の段数の
増加とともにさらに増大し、前述した光利得等化回路を
用いても伝送特性が劣化するという問題があった。
However, when the spectrum with the optical gain equalizing circuit shown on the right side of FIG. 4 is examined in detail, the spectrum corresponding to the output of the third-stage optical amplifier shows a substantially flat characteristic. However, it can be seen that the flatness of the spectrum corresponding to the output of the sixth-stage optical amplifier is deteriorated and the vicinity of the center of the spectrum is bulged and has an upwardly convex characteristic. This tendency of deterioration of the flatness further increases with an increase in the number of stages of the optical amplifier, and there is a problem that the transmission characteristics are deteriorated even when the above-mentioned optical gain equalizing circuit is used.

【0012】本発明は前記従来の問題点に鑑み、光増幅
器の段数が多い場合やその利得のアンバランスが大きい
場合でも良好な伝送特性を確保できる光利得等化回路を
提供することを目的とする。
In view of the above-mentioned conventional problems, it is an object of the present invention to provide an optical gain equalization circuit capable of ensuring good transmission characteristics even when the number of stages of the optical amplifier is large or the gain imbalance is large. To do.

【0013】[0013]

【課題を解決するための手段】本発明では前記目的を達
成するため、波長(又は光周波数)が互いに異なる複数
の多重化された信号光を一括して増幅する光増幅器の利
得波長(又は光周波数)特性を平坦化する光利得等化回
路において、透過率の波長(又は光周波数)軸上におけ
る変化周期が互いに異なる少なくとも2個のマッハツェ
ンダ形光フィルタを縦続接続してなる光利得等化回路を
提案する。
According to the present invention, in order to achieve the above object, a gain wavelength (or optical wavelength) of an optical amplifier that collectively amplifies a plurality of multiplexed signal lights having different wavelengths (or optical frequencies) from each other. In an optical gain equalization circuit for flattening frequency characteristics, at least two Mach-Zehnder optical filters having different change periods of transmittance on the wavelength (or optical frequency) axis are cascade-connected. To propose.

【0014】[0014]

【作用】マッハツェンダ形光フィルタは波長(又は光周
波数)軸上において正弦波状に変化する透過率特性を有
する。ところで、互いに異なる周期を有する複数の正弦
波を重畳することにより、任意の波形を形成可能である
ことはフーリエ級数展開法から明らかである。そこで、
透過率の波長(又は光周波数)軸上における変化周期が
互いに異なる複数のマッハ・ツェンダ形光フィルタを縦
続接続することにより、任意の透過率特性を実現するこ
とが原理的に可能である(なお、縦続接続するマッハツ
ェンダ形光フィルタの段数は、要求される光増幅器出力
の平坦性に応じて決定することになる。)。
The Mach-Zehnder type optical filter has a transmittance characteristic that changes sinusoidally on the wavelength (or optical frequency) axis. By the way, it is clear from the Fourier series expansion method that an arbitrary waveform can be formed by superimposing a plurality of sine waves having mutually different periods. Therefore,
In principle, it is possible to realize arbitrary transmittance characteristics by cascading a plurality of Mach-Zehnder optical filters having different change periods on the wavelength (or optical frequency) axis of the transmittance. , The number of cascaded Mach-Zehnder type optical filters will be determined according to the required flatness of the optical amplifier output.

【0015】本発明の光利得等化回路によれば、従来の
マッハツェンダ形光フィルタを一段のみ用いた光利得等
化回路では平坦化しきれなかった利得波長(又は光周波
数)特性の不均一性が、1段目とは透過率の波長(又は
光周波数)軸上における変化周期が異なる2段目以降の
マッハツェンダ形光フィルタで平坦化される。
According to the optical gain equalization circuit of the present invention, the non-uniformity of the gain wavelength (or optical frequency) characteristic which cannot be flattened by the conventional optical gain equalization circuit using only one stage of the Mach-Zehnder type optical filter. The first stage is flattened by the Mach-Zehnder type optical filters of the second and subsequent stages, which are different in the change cycle of the transmittance on the wavelength (or optical frequency) axis.

【0016】[0016]

【実施例】以下、実施例を用いて本発明を詳細に説明す
る。図1は本発明の光利得等化回路の一実施例を示すも
ので、図中、20は第1のマッハツェンダ形光フィル
タ、30は第2のマッハツェンダ形光フィルタ、41は
入力側光ファイバ、42は出力側光ファイバである。
EXAMPLES The present invention will be described in detail below with reference to examples. FIG. 1 shows an embodiment of an optical gain equalization circuit of the present invention, in which 20 is a first Mach-Zehnder type optical filter, 30 is a second Mach-Zehnder type optical filter, 41 is an input side optical fiber, 42 is an output side optical fiber.

【0017】マッハツェンダ形光フィルタ20及び30
は透過率の波長(又は光周波数)軸上における変化周期
が互いに異なるものであり、2段縦続に接続されてい
る。各マッハツェンダ形光フィルタ20,30の構成は
図2に示したものと基本的に同様であり、マッハツェン
ダ形光フィルタ20における電極21及び22並びにマ
ッハツェンダ形光フィルタ30における電極31及び3
2は透過率特性の利得補償量を調整するためのものであ
り、また、マッハツェンダ形光フィルタ20における電
極23並びにマッハツェンダ形光フィルタ30における
電極33は各々の透過率特性の中心波長を調整するため
のものである。
Mach-Zehnder type optical filters 20 and 30
Are different in the change cycle of the transmittance on the wavelength (or optical frequency) axis from each other, and are connected in two stages. The configuration of each Mach-Zehnder optical filter 20, 30 is basically the same as that shown in FIG. 2, and the electrodes 21 and 22 in the Mach-Zehnder optical filter 20 and the electrodes 31 and 3 in the Mach-Zehnder optical filter 30 are shown.
2 is for adjusting the gain compensation amount of the transmittance characteristic, and the electrode 23 in the Mach-Zehnder optical filter 20 and the electrode 33 in the Mach-Zehnder optical filter 30 are for adjusting the central wavelength of each transmittance characteristic. belongs to.

【0018】本実施例の具体的な作用を実測データを用
いて説明する。図5は光増幅器の入出力スペクトルの実
測値の一例を示すもので、ここでは波長1549.5nmから
1559.8nmの帯域を有する光周波数間隔10GHz で多
重化された128チャネルの信号光を、アルミニウム共
添加エルビウム添加光増幅器で増幅した際のスペクトル
を示す。前記実測結果によれば、この使用波長帯域にお
いて、光増幅器の利得は長波長のチャネルほど大きく、
しかも利得の増加率は長波長になるに従って飽和する傾
向を示していることがわかる。
The specific operation of this embodiment will be described using measured data. Fig. 5 shows an example of the measured values of the input / output spectrum of the optical amplifier. Here, from the wavelength of 1549.5 nm,
The spectrum when 128-channel signal light multiplexed with an optical frequency interval of 10 GHz having a band of 1559.8 nm is amplified by an aluminum co-doped erbium-doped optical amplifier is shown. According to the measurement result, the gain of the optical amplifier is larger in the longer wavelength channel in this used wavelength band,
Moreover, it can be seen that the rate of increase in gain tends to saturate as the wavelength becomes longer.

【0019】図6は本回路による利得等化のようすを示
すもので、図5から読取った光増幅器の利得スペクトル
を曲線G1で示す。これに対し、第1のマッハツェンダ
形光フィルタ20として周期Δλ=25nmのものを選
び、これを中心波長λo =1546.570nm、A=1に調整
すると、その透過率特性は図6中のF1で示される曲線
となる。この結果、第1のマッハツェンダ形光フィルタ
20で補償された光増幅器の利得スペクトルは図6中の
G2で示される曲線となり、右上りの利得の波長依存性
は改善されるが、上に凸の波長特性となり、2.7 dBの
残留利得偏差が生じる。
FIG. 6 shows a state of gain equalization by this circuit, and the gain spectrum of the optical amplifier read from FIG. 5 is shown by a curve G1. On the other hand, when the first Mach-Zehnder interferometer type optical filter 20 having a period Δλ = 25 nm is selected and this is adjusted to have a central wavelength λ o = 1546.570 nm and A = 1, its transmittance characteristic is shown by F1 in FIG. It becomes a curved line. As a result, the gain spectrum of the optical amplifier compensated by the first Mach-Zehnder interferometer type optical filter 20 becomes a curve indicated by G2 in FIG. 6, and the wavelength dependence of the gain on the upper right is improved, but it is convex upward. It has wavelength characteristics and a residual gain deviation of 2.7 dB occurs.

【0020】ここで、さらに第2のマッハツェンダ形光
フィルタ30として周期Δλ=7.5nmのものを選び、
これを中心波長λo =1555nm、A=0.46に調整する
と、その透過率特性は図6中のF2で示される曲線とな
る。この結果、第1のマッハツェンダ形光フィルタ20
と第2のマッハツェンダ形光フィルタ30とで補償され
た光増幅器の利得スペクトルは図6中のG3で示される
曲線となり、残留利得偏差は0.7 dBに抑圧される。
Here, a second Mach-Zehnder type optical filter 30 having a period Δλ = 7.5 nm is further selected,
When this is adjusted to have a central wavelength λ o = 1555 nm and A = 0.46, the transmittance characteristic becomes a curve indicated by F2 in FIG. As a result, the first Mach-Zehnder optical filter 20
The gain spectrum of the optical amplifier compensated by the second Mach-Zehnder optical filter 30 becomes a curve indicated by G3 in FIG. 6, and the residual gain deviation is suppressed to 0.7 dB.

【0021】このように透過率の波長(又は光周波数)
軸上における変化周期の異なる2種類のマッハツェンダ
形光フィルタを用いることにより、利得の波長依存性を
極めて平坦にすることが可能となる。
Thus, the transmittance wavelength (or optical frequency)
By using two types of Mach-Zehnder optical filters having different on-axis change periods, the wavelength dependence of gain can be made extremely flat.

【0022】本実施例ではマッハツェンダ形光フィルタ
の直後に別のマッハツェンダ形光フィルタを縦続接続し
たが、両者を離して配置しても問題はない。また、本実
施例では光増幅器の出力段にマッハツェンダ形光フィル
タを配置したが、入力段に配置しても良い。
In the present embodiment, another Mach-Zehnder type optical filter is connected in series immediately after the Mach-Zehnder type optical filter, but there is no problem if they are arranged separately. Further, although the Mach-Zehnder type optical filter is arranged at the output stage of the optical amplifier in this embodiment, it may be arranged at the input stage.

【0023】また、本実施例では変化周期の異なるマッ
ハツェンダ形光フィルタを2段縦続接続して用いたが、
光増幅器の利得の波長依存性によっては、変化周期の異
なるマッハツェンダ形光フィルタをさらに複数、縦続接
続して利得を平坦化することも可能である。
Further, in the present embodiment, Mach-Zehnder type optical filters having different change periods are used in a two-stage cascade connection.
Depending on the wavelength dependence of the gain of the optical amplifier, it is also possible to cascade a plurality of Mach-Zehnder optical filters having different change periods to flatten the gain.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、光
増幅器の利得の波長依存性を、光増幅器の段数やそのア
ンバランスの大きさに拘らず、適切に補償することがで
き、光波長多重信号の光レベルを極めて平坦にすること
ができ、従って、光波長(又は光周波数)多重伝送方式
において光増幅器の段数を従来と比較して増大すること
ができ、また、長距離伝送系においては伝送距離の拡
大、情報分配伝送系においては分配数の増大が可能とな
る。また、光増幅器のみでなく、送受信回路間に存在す
る伝送路中の他の光回路の透過率特性の波長依存性につ
いても本光利得等化回路により補償でき、波長特性を平
坦化することが可能であることは言うまでもない。
As described above, according to the present invention, the wavelength dependence of the gain of the optical amplifier can be appropriately compensated regardless of the number of stages of the optical amplifier and the magnitude of its imbalance. The optical level of the wavelength division multiplexed signal can be made extremely flat, so that the number of stages of the optical amplifier in the optical wavelength (or optical frequency) multiplex transmission system can be increased as compared with the conventional one, and the long distance transmission system can be used. It is possible to increase the transmission distance and increase the number of distributions in the information distribution and transmission system. Further, not only the optical amplifier but also the wavelength dependence of the transmittance characteristics of other optical circuits in the transmission line existing between the transmitting and receiving circuits can be compensated by this optical gain equalization circuit, and the wavelength characteristics can be flattened. It goes without saying that it is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光利得等化回路の一実施例を示す構成
FIG. 1 is a configuration diagram showing an embodiment of an optical gain equalization circuit of the present invention.

【図2】従来の光利得等化回路の一例を示す図FIG. 2 is a diagram showing an example of a conventional optical gain equalization circuit.

【図3】従来の光利得等化回路の透過率特性を示す図FIG. 3 is a diagram showing a transmittance characteristic of a conventional optical gain equalization circuit.

【図4】従来の光利得等化回路を用いた場合の光波長多
重信号の増幅特性を示す図
FIG. 4 is a diagram showing an amplification characteristic of an optical wavelength division multiplexed signal when a conventional optical gain equalization circuit is used.

【図5】光増幅器の入出力スペクトルの実測値の一例を
示す図
FIG. 5 is a diagram showing an example of actually measured values of an input / output spectrum of an optical amplifier.

【図6】本回路による利得等化のようすを示す図FIG. 6 is a diagram showing a state of gain equalization by this circuit.

【符号の説明】[Explanation of symbols]

20…第1のマッハツェンダ形光フィルタ、30…第2
のマッハツェンダ形光フィルタ、41…入力側光ファイ
バ、42…出力側光ファイバ。
20 ... 1st Mach-Zehnder type optical filter, 30 ... 2nd
Mach-Zehnder type optical filter, 41 ... Input side optical fiber, 42 ... Output side optical fiber.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H04B 3/06 A 7741−5K H04J 14/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location H04B 3/06 A 7741-5K H04J 14/02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 波長が互いに異なる複数の多重化された
信号光を一括して増幅する光増幅器の利得波長特性を平
坦化する光利得等化回路において、 透過率の波長軸上における変化周期が互いに異なる少な
くとも2個のマッハツェンダ形光フィルタを縦続接続し
てなることを特徴とする光利得等化回路。
1. An optical gain equalization circuit for flattening gain wavelength characteristics of an optical amplifier for collectively amplifying a plurality of multiplexed signal lights having different wavelengths, wherein a change cycle of transmittance on a wavelength axis is An optical gain equalization circuit comprising at least two Mach-Zehnder type optical filters different from each other connected in series.
JP5060047A 1993-03-19 1993-03-19 Optical gain equalizing circuit Pending JPH06276154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5060047A JPH06276154A (en) 1993-03-19 1993-03-19 Optical gain equalizing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5060047A JPH06276154A (en) 1993-03-19 1993-03-19 Optical gain equalizing circuit

Publications (1)

Publication Number Publication Date
JPH06276154A true JPH06276154A (en) 1994-09-30

Family

ID=13130784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5060047A Pending JPH06276154A (en) 1993-03-19 1993-03-19 Optical gain equalizing circuit

Country Status (1)

Country Link
JP (1) JPH06276154A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838487A (en) * 1995-08-05 1998-11-17 Samsung Electronics Co., Ltd. Optical amplifiers
US5880874A (en) * 1996-04-23 1999-03-09 Nec Corporation Optical equalizer and optical amplifier and wavelength multiple optical transmission apparatus using optical equalizer
EP1009078A1 (en) * 1998-12-01 2000-06-14 Nortel Networks Corporation Optical gain equalizer
JP2000199880A (en) * 1998-11-05 2000-07-18 Nippon Telegr & Teleph Corp <Ntt> Wavelength equalizer
WO2001005005A1 (en) * 1999-07-09 2001-01-18 Sumitomo Electric Industries, Ltd. Optical amplifier and optical amplifying method
EP1072937A1 (en) * 1999-07-27 2001-01-31 Sumitomo Electric Industries, Ltd. Optical filter
JP2002014306A (en) * 2000-04-26 2002-01-18 Sumitomo Electric Ind Ltd Optical filter
US6344914B1 (en) 1996-03-07 2002-02-05 Fujitsu Limited Gain equalizer which includes a plurality of optical filters for equalizing the gain of an optical amplifier
US6529326B2 (en) * 2001-06-13 2003-03-04 Jds Uniphase Corporation Tunable optical filter
US6552845B2 (en) 1998-06-15 2003-04-22 Nec Corporation Optical gain equalizer and optical fiber transmission line
WO2004040812A1 (en) * 2002-10-29 2004-05-13 Fujitsu Limited Gain equalizer, optical amplifier, and optical transmission system
US6978064B2 (en) * 2002-11-13 2005-12-20 Fujitsu Limited Variable optical filter and optical transmission system using same, and method of controlling variable optical filter
JP2011041307A (en) * 2003-03-20 2011-02-24 Alcatel-Lucent Usa Inc Multi-channel optical equalizer for intersymbol interference mitigation
CN113054528A (en) * 2019-12-28 2021-06-29 华为技术有限公司 Laser chip

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838487A (en) * 1995-08-05 1998-11-17 Samsung Electronics Co., Ltd. Optical amplifiers
US6344914B1 (en) 1996-03-07 2002-02-05 Fujitsu Limited Gain equalizer which includes a plurality of optical filters for equalizing the gain of an optical amplifier
US6807376B2 (en) 1996-03-07 2004-10-19 Fujitsu Limited Gain equalizer which includes a plurality of optical filters for equalizing the gain of an optical amplifier
US5880874A (en) * 1996-04-23 1999-03-09 Nec Corporation Optical equalizer and optical amplifier and wavelength multiple optical transmission apparatus using optical equalizer
US6552845B2 (en) 1998-06-15 2003-04-22 Nec Corporation Optical gain equalizer and optical fiber transmission line
JP2000199880A (en) * 1998-11-05 2000-07-18 Nippon Telegr & Teleph Corp <Ntt> Wavelength equalizer
EP1009078A1 (en) * 1998-12-01 2000-06-14 Nortel Networks Corporation Optical gain equalizer
US6321000B1 (en) 1998-12-01 2001-11-20 Nortel Networks Limited Optical equalizer
WO2001005005A1 (en) * 1999-07-09 2001-01-18 Sumitomo Electric Industries, Ltd. Optical amplifier and optical amplifying method
JP4635402B2 (en) * 1999-07-09 2011-02-23 住友電気工業株式会社 Optical amplifier and optical amplification method
US6952309B1 (en) 1999-07-09 2005-10-04 Sumitomo Electric Industries, Ltd. Optical amplifier and optical amplification method
EP1072937A1 (en) * 1999-07-27 2001-01-31 Sumitomo Electric Industries, Ltd. Optical filter
AU768184B2 (en) * 1999-07-27 2003-12-04 Sumitomo Electric Industries, Ltd. Optical filter
US6333807B1 (en) 1999-07-27 2001-12-25 Sumitomo Electric Industries, Ltd. Optical filter
JP2002014306A (en) * 2000-04-26 2002-01-18 Sumitomo Electric Ind Ltd Optical filter
US6529326B2 (en) * 2001-06-13 2003-03-04 Jds Uniphase Corporation Tunable optical filter
WO2004040812A1 (en) * 2002-10-29 2004-05-13 Fujitsu Limited Gain equalizer, optical amplifier, and optical transmission system
US6978064B2 (en) * 2002-11-13 2005-12-20 Fujitsu Limited Variable optical filter and optical transmission system using same, and method of controlling variable optical filter
JP2011041307A (en) * 2003-03-20 2011-02-24 Alcatel-Lucent Usa Inc Multi-channel optical equalizer for intersymbol interference mitigation
CN113054528A (en) * 2019-12-28 2021-06-29 华为技术有限公司 Laser chip

Similar Documents

Publication Publication Date Title
US6363202B1 (en) Management and control of the power levels of wavelength multiplexed optical signals
Deng et al. Challenges and enabling technologies for multi-band WDM optical networks
JP3803000B2 (en) Method for monitoring optical power deviation between wavelengths, and optical equalizer and optical amplifier using the same
US6333807B1 (en) Optical filter
JPH06276154A (en) Optical gain equalizing circuit
JPH09289349A (en) Optical equalizer, optical amplifier using it and wavelength-multiple optical transmitter
EP1168010B1 (en) Optical multi/demultiplexer
US6633698B2 (en) Optical filter
US6321000B1 (en) Optical equalizer
US6560381B2 (en) Optical filter
US6952309B1 (en) Optical amplifier and optical amplification method
JPH04147114A (en) Light level equalizing method
JP3706271B2 (en) Variable optical attenuation method and variable optical attenuator
US11733582B2 (en) Variable optical filter
JP3681995B2 (en) Optical multiplexer / demultiplexer
US7206124B2 (en) Gain-providing optical power equalizer
US6687032B1 (en) Optical equalizer
JP4062024B2 (en) Optical components, optical amplifier modules, and optical transmission systems.
US6744989B2 (en) Optical transmission system, its method, and optical amplification transmission line
JPH1172756A (en) Light signal waveform deterioration compensation apparatus
US6574413B1 (en) Arrangement and method for the channel-dependent attenuation of the levels of a plurality of optical data channels
US20030086638A1 (en) Optical all-pass filter with gain compensation
JP2001094534A (en) Optical transmitter
JP2001044935A (en) Optical equalizer, optical amplifying device using the same and wavelength multiple optical transmitting device
JP2004151227A (en) Gain equalizer, optical amplifier, and optical transmission system