JPH1172756A - Light signal waveform deterioration compensation apparatus - Google Patents

Light signal waveform deterioration compensation apparatus

Info

Publication number
JPH1172756A
JPH1172756A JP9231264A JP23126497A JPH1172756A JP H1172756 A JPH1172756 A JP H1172756A JP 9231264 A JP9231264 A JP 9231264A JP 23126497 A JP23126497 A JP 23126497A JP H1172756 A JPH1172756 A JP H1172756A
Authority
JP
Japan
Prior art keywords
transmission
optical
optical filter
transmission band
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9231264A
Other languages
Japanese (ja)
Other versions
JP3523988B2 (en
Inventor
Yasushi Inoue
恭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23126497A priority Critical patent/JP3523988B2/en
Publication of JPH1172756A publication Critical patent/JPH1172756A/en
Application granted granted Critical
Publication of JP3523988B2 publication Critical patent/JP3523988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to compensate the waveform deterioration of the light signals caused by multi-stage transmission of optical filters by passing the light signals through the optical filters for compensation. SOLUTION: The optical filters 2 for demultiplexing the light signals of the respective wavelengths to respective transmission nodes are arranged in a wavelength multiplex transmission system connected in cascade with plural transmission nodes 1-1 to 1-n. In such a case, the optical filters 2-1 to 2-n having the transmission band characteristics to allow the transmission of the light signals of a central frequency (f) are eventually connected in cascade to n-stages. The effective transmission band characteristics by the n-stage transmission are narrowed in the flat transmission characteristics and, therefore, the optical filter 3 for compensation having such a transmission band characteristic as to convert the effective transmission band characteristic to a flat characteristic near the central frequency (f) is arranged behind the optical filter 2-n. As a result, the compensation of the waveform deterioration of the light signals caused by the multistage transmission of the optical filters is made possible without widening the transmission band characteristic of the optical filters.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の伝送ノード
が縦続に接続された波長多重伝送システムにおいて、各
伝送ノードの光フィルタを順次透過することにより生じ
た光信号の波形劣化を補償する光信号波形劣化補償装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength division multiplexing transmission system in which a plurality of transmission nodes are connected in cascade. The present invention relates to a signal waveform deterioration compensating device.

【0002】[0002]

【従来の技術】異なる波長の光信号を1本の光ファイバ
に多重して伝送する波長多重伝送システムは、ファイバ
当たりの伝送容量が増大するのみならず、伝送ノードに
おいて波長を利用した経路設定等が可能になっている。
この波長による経路設定では、各波長の光信号を分波お
よび合波するために光フィルタが用いられる。したがっ
て、光信号が複数の伝送ノードを経由すれば、複数段の
光フィルタを通過することになる。
2. Description of the Related Art A wavelength division multiplexing transmission system for multiplexing and transmitting optical signals of different wavelengths onto one optical fiber not only increases the transmission capacity per fiber, but also establishes a route at a transmission node using wavelengths. Has become possible.
In the path setting based on the wavelength, an optical filter is used to demultiplex and multiplex the optical signal of each wavelength. Therefore, if an optical signal passes through a plurality of transmission nodes, it passes through a plurality of optical filters.

【0003】ここで、光フィルタの透過帯域特性は、隣
の波長光が漏れ込まない程度に狭く、かつ透過する光信
号の変調スペクトル広がりより広く、さらに平坦に設定
する必要がある。それは、隣の波長光の漏れ込みがある
とクロストーク光として受信特性を劣化させ、透過帯域
が狭いと必要な高周波数成分が阻止されて波形歪みを生
じさせるからである。
Here, the transmission band characteristic of the optical filter needs to be set narrow enough to prevent the adjacent wavelength light from leaking, wider than the modulation spectrum of the transmitted optical signal, and even flat. This is because leakage of adjacent wavelength light deteriorates reception characteristics as crosstalk light, and a narrow transmission band blocks required high frequency components and causes waveform distortion.

【0004】[0004]

【発明が解決しようとする課題】ところで、波長多重伝
送システムにおいて、各光フィルタがクロストークや波
形歪みを生じさせない透過帯域特性を有していても、複
数段の光フィルタを通過する光信号に対する実効的な透
過帯域は段数の増加とともに狭くなることが知られてい
る。そのため、光フィルタの段数が増加すると、ついに
は実効透過帯域が変調スペクトル広がりよりも狭くな
り、信号波形に歪みが生じることになる。
By the way, in a wavelength division multiplexing transmission system, even if each optical filter has a transmission band characteristic that does not cause crosstalk or waveform distortion, an optical signal passing through a plurality of stages of optical filters is not affected. It is known that the effective transmission band narrows as the number of stages increases. Therefore, when the number of stages of the optical filter increases, the effective transmission band becomes narrower than the modulation spectrum spread, and the signal waveform is distorted.

【0005】以上の様子を図4,5に示す。ここでは、
各光フィルタの3dB透過帯域幅がビットレート周波数の
3.5倍であり、さらにアレイ導波路回折格子フィルタの
ようにガウス型の透過帯域特性を有する場合とした。図
4は、光信号が1段の光フィルタを透過した場合のアイ
パターンの計算結果である。図5は、光信号が20段の光
フィルタを透過した場合のアイパターンの計算結果であ
る。1段透過では良好なアイパターンが得られるが、20
段透過すると歪んだ形になっていることがわかる。
The above situation is shown in FIGS. here,
The 3dB transmission bandwidth of each optical filter is
3.5 times, and a case having a Gaussian transmission band characteristic like an arrayed waveguide diffraction grating filter. FIG. 4 is a calculation result of an eye pattern when an optical signal passes through a single-stage optical filter. FIG. 5 shows a calculation result of an eye pattern when an optical signal passes through a 20-stage optical filter. A good eye pattern can be obtained with one-stage transmission, but 20
It can be seen that the shape is distorted when the light passes through the steps.

【0006】なお、このような光フィルタの多段透過に
よる波形劣化を抑えるには、1段当たりの透過帯域特性
を広く設定する方法があるが、1段だけ光フィルタを通
過する光信号に対しては隣接する波長光の影響が生じて
しまう。すなわち、光信号によって透過する光フィルタ
の段数が異なるような波長多重伝送システムには適用で
きない。
In order to suppress the waveform deterioration due to the multi-stage transmission of the optical filter, there is a method of setting a wide transmission band characteristic per stage. Causes the influence of light of adjacent wavelengths. That is, it cannot be applied to a wavelength division multiplexing transmission system in which the number of stages of optical filters transmitted by optical signals is different.

【0007】本発明は、各光フィルタの透過帯域特性を
広くすることなく、光フィルタの多段透過により生じた
光信号の波形劣化を補償することができる光信号波形劣
化補償装置を提供することを目的とする。
An object of the present invention is to provide an optical signal waveform deterioration compensating device capable of compensating for a waveform deterioration of an optical signal caused by multi-stage transmission of an optical filter without widening a transmission band characteristic of each optical filter. Aim.

【0008】[0008]

【課題を解決するための手段】本発明の光信号波形劣化
補償装置は、多段接続された光フィルタの後段に補償用
光フィルタを配置し、各光フィルタを多段透過すること
により生じた光信号の波形歪みを補償用光フィルタで補
償する構成である。この補償用光フィルタは、光フィル
タの多段透過による透過帯域特性を中心周波数f付近で
平坦な特性に変換する透過帯域特性を有する。また、補
償用光フィルタは、中心周波数fで透過率が極小となる
透過帯域特性を有する。
An optical signal waveform deterioration compensating device according to the present invention comprises a compensating optical filter disposed after an optical filter connected in multiple stages, and an optical signal generated by transmitting the optical filters in multiple stages. Is compensated by the compensation optical filter. This compensation optical filter has a transmission band characteristic for converting a transmission band characteristic due to multi-stage transmission of the optical filter into a flat characteristic near the center frequency f. Further, the compensation optical filter has a transmission band characteristic in which the transmittance becomes minimum at the center frequency f.

【0009】[0009]

【発明の実施の形態】図1は、本発明の光信号波形劣化
補償装置の原理構成を示す。図において、複数の伝送ノ
ード1−1〜1−nが縦続に接続された波長多重伝送シ
ステムでは、各伝送ノードに各波長の光信号を分波する
ための光フィルタ2が配置される。ここで、中心周波数
fの光信号に着目すると、中心周波数fの光信号を透過
する透過帯域特性を有する光フィルタ2−1〜2−nが
n段縦続に接続されることになる。
FIG. 1 shows the principle configuration of an optical signal waveform deterioration compensating apparatus according to the present invention. In the figure, in a wavelength division multiplexing transmission system in which a plurality of transmission nodes 1-1 to 1-n are connected in cascade, an optical filter 2 for demultiplexing an optical signal of each wavelength is arranged at each transmission node. Here, focusing on the optical signal of the center frequency f, the optical filters 2-1 to 2-n having a transmission band characteristic for transmitting the optical signal of the center frequency f are connected in cascade of n stages.

【0010】このとき、n段透過による実効的な透過帯
域特性は、図1に示すように平坦な透過帯域が狭くな
る。そこで、光フィルタ2−nの後段に、実効的な透過
帯域特性を中心周波数f付近で平坦な特性に変換するよ
うな透過帯域特性を有する補償用光フィルタ3を配置す
る。なお、補償用光フィルタ3は、伝送ノード1−nの
内外いずれに配置してもよい。
At this time, the effective transmission band characteristic due to the n-stage transmission has a narrow flat transmission band as shown in FIG. Therefore, a compensation optical filter 3 having a transmission band characteristic that converts an effective transmission band characteristic into a flat characteristic near the center frequency f is disposed at a stage subsequent to the optical filter 2-n. Note that the compensation optical filter 3 may be arranged inside or outside the transmission node 1-n.

【0011】補償用光フィルタ3による透過帯域特性の
改善例を図2に示す。図2において、横軸は光信号の中
心周波数fを基準としてビットレート周波数で規格化し
た光周波数であり、縦軸は振幅透過率である。なお、通
常、光フィルタの透過帯域特性ではパワー透過率が用い
られるが、これは振幅透過率を自乗したものである。点
線は、3dB透過帯域幅がビットレート周波数の 3.5倍の
光フィルタ2を20段透過させたときの実効的な透過帯域
特性である。一点鎖線は、補償用光フィルタ3の透過帯
域特性を示す。実線は、補償用光フィルタ3により補償
された透過帯域特性を示す。
FIG. 2 shows an example of improving the transmission band characteristic by the compensating optical filter 3. In FIG. 2, the horizontal axis is the optical frequency normalized by the bit rate frequency with reference to the center frequency f of the optical signal, and the vertical axis is the amplitude transmittance. In general, power transmittance is used in the transmission band characteristic of an optical filter, but this is a square of the amplitude transmittance. The dotted line shows the effective transmission band characteristics when 20 stages of the optical filter 2 whose 3 dB transmission bandwidth is 3.5 times the bit rate frequency are transmitted. The dashed line indicates the transmission band characteristic of the compensation optical filter 3. The solid line indicates the transmission band characteristic compensated by the compensation optical filter 3.

【0012】このように、光フィルタ2の多段透過によ
り、実効的な3dB透過帯域幅(振幅換算)がビートレー
ト周波数とほぼ同程度になると、光信号の高周波数成分
が阻止され、図5に示すような波形歪みが生じる。この
光信号を一点鎖線で示すような透過帯域特性を有する補
償用光フィルタ3に入力する。
As described above, when the effective 3 dB transmission bandwidth (in terms of amplitude) becomes substantially equal to the beat rate frequency due to the multi-stage transmission of the optical filter 2, high frequency components of the optical signal are blocked, and FIG. The waveform distortion as shown occurs. This optical signal is input to a compensating optical filter 3 having a transmission band characteristic as indicated by a dashed line.

【0013】本実施形態では、補償用光フィルタ3とし
て周期がビットレート周波数の 1.2倍、ピークとボトム
のパワー透過率比が2対1であるマッハツェンダ型光フ
ィルタを用いた。周期はマッハツェンダの2つの光路の
光学長差によって設定可能であり、透過率比はマッハツ
ェンダ内の光カプラの分岐比によって設定可能である。
この補償用光フィルタ3の透過帯域特性(一点鎖線)
と、光フィルタ2の20段透過による透過帯域特性(点
線)とを合わせたトータルの透過帯域特性は、実線のよ
うになる。すなわち、点線の透過帯域特性のピークの部
分が減少し、中心周波数f付近の透過帯域が平坦になっ
ている。これにより、光信号の波形歪みを補償すること
ができる。
In this embodiment, a Mach-Zehnder optical filter having a period of 1.2 times the bit rate frequency and a peak-to-bottom power transmittance ratio of 2: 1 is used as the compensation optical filter 3. The period can be set by the optical length difference between the two optical paths of the Mach-Zehnder, and the transmittance ratio can be set by the branching ratio of the optical coupler in the Mach-Zehnder.
Transmission band characteristics of the compensating optical filter 3 (dotted line)
And the transmission band characteristic (dotted line) of the optical filter 2 due to the 20-stage transmission, as shown by the solid line. That is, the peak portion of the transmission band characteristic indicated by the dotted line is reduced, and the transmission band near the center frequency f is flat. Thereby, the waveform distortion of the optical signal can be compensated.

【0014】補償用光フィルタ3を透過した光信号のア
イパターンを図3に示す。図5に比べると波形歪みが補
償され、アイが大きく開いている様子がわかる。なお、
補償用光フィルタ3の透過により光信号のパワーが減少
しているが、これは光増幅器などを用いることにより補
償可能である。
FIG. 3 shows an eye pattern of an optical signal transmitted through the compensation optical filter 3. Compared to FIG. 5, it can be seen that the waveform distortion is compensated and the eye is wide open. In addition,
Although the power of the optical signal is reduced by the transmission of the compensating optical filter 3, this can be compensated by using an optical amplifier or the like.

【0015】本実施形態では、補償用光フィルタ3とし
てマッハツェンダ型光フィルタを用いた例を示したが、
このような周期性のある光フィルタに限らず、実効的な
透過帯域特性が中心周波数f付近で平坦な特性に補償さ
れるような透過帯域特性を有するものであればよい。
In this embodiment, an example in which a Mach-Zehnder optical filter is used as the compensation optical filter 3 has been described.
The present invention is not limited to such an optical filter having periodicity, but may be any filter having a transmission band characteristic such that an effective transmission band characteristic is compensated for a flat characteristic near the center frequency f.

【0016】[0016]

【発明の効果】以上説明したように、本発明の光信号波
形劣化補償装置は、光フィルタの多段透過により生じた
光信号の波形劣化を補償用光フィルタを通過させること
により補償することができる。
As described above, the optical signal waveform deterioration compensating device of the present invention can compensate for the waveform deterioration of an optical signal caused by multi-stage transmission of an optical filter by passing the signal through a compensation optical filter. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光信号波形劣化補償装置の原理構成を
示す図。
FIG. 1 is a diagram showing a principle configuration of an optical signal waveform deterioration compensating device of the present invention.

【図2】補償用光フィルタ3による透過帯域特性の改善
例を説明する図。
FIG. 2 is a diagram for explaining an example of improving a transmission band characteristic by a compensating optical filter 3;

【図3】補償用光フィルタ3を透過した光信号のアイパ
ターンを示す図。
FIG. 3 is a diagram showing an eye pattern of an optical signal transmitted through a compensation optical filter 3;

【図4】1段の光フィルタを透過した光信号のアイパタ
ーンを示す図。
FIG. 4 is a diagram showing an eye pattern of an optical signal transmitted through a single-stage optical filter.

【図5】20段の光フィルタを透過した光信号のアイパタ
ーンを示す図。
FIG. 5 is a diagram showing an eye pattern of an optical signal transmitted through a 20-stage optical filter.

【符号の説明】[Explanation of symbols]

1 伝送ノード 2 光フィルタ 3 補償用光フィルタ Reference Signs List 1 transmission node 2 optical filter 3 optical filter for compensation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 波長多重された光信号から所定の波長の
光信号を透過し、他の波長の光信号を遮断する透過帯域
特性を有する光フィルタが多段に接続され、各光フィル
タを多段透過した中心周波数fの光信号の波形歪みを補
償する光信号波形劣化補償装置において、 前記各光フィルタの多段透過による透過帯域特性を中心
周波数f付近で平坦な特性に変換する透過帯域特性を有
する補償用光フィルタを備え、 前記各光フィルタを多段透過した光信号を前記補償用光
フィルタに通過させる構成であることを特徴とする光信
号波形劣化補償装置。
1. An optical filter having a transmission band characteristic for transmitting an optical signal of a predetermined wavelength from a wavelength-multiplexed optical signal and blocking an optical signal of another wavelength is connected in multiple stages, and each optical filter is transmitted in multiple stages. An optical signal waveform degradation compensator for compensating for the waveform distortion of an optical signal having a center frequency f, wherein the compensation has a transmission band characteristic for converting a transmission band characteristic due to multi-stage transmission of each optical filter into a flat characteristic near the center frequency f An optical signal waveform deterioration compensating device, comprising: an optical filter for use, wherein an optical signal transmitted through the optical filters in multiple stages is passed through the optical filter for compensation.
【請求項2】 補償用光フィルタは、中心周波数fで透
過率が極小となる透過帯域特性を有する構成であること
を特徴とする請求項1に記載の光信号波形劣化補償装
置。
2. The optical signal waveform deterioration compensating apparatus according to claim 1, wherein the compensating optical filter has a configuration having a transmission band characteristic in which the transmittance becomes a minimum at a center frequency f.
JP23126497A 1997-08-27 1997-08-27 Optical signal waveform deterioration compensation device Expired - Fee Related JP3523988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23126497A JP3523988B2 (en) 1997-08-27 1997-08-27 Optical signal waveform deterioration compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23126497A JP3523988B2 (en) 1997-08-27 1997-08-27 Optical signal waveform deterioration compensation device

Publications (2)

Publication Number Publication Date
JPH1172756A true JPH1172756A (en) 1999-03-16
JP3523988B2 JP3523988B2 (en) 2004-04-26

Family

ID=16920895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23126497A Expired - Fee Related JP3523988B2 (en) 1997-08-27 1997-08-27 Optical signal waveform deterioration compensation device

Country Status (1)

Country Link
JP (1) JP3523988B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095740A1 (en) * 2003-04-23 2004-11-04 Mitsubishi Denki Kabushiki Kaisha Optical receiver and optical transmission system
US6900940B2 (en) 2002-01-09 2005-05-31 Fujitsu Limited Optical apparatus and device
JP2006101040A (en) * 2004-09-28 2006-04-13 Fujitsu Ltd Apparatus and method for compensating transmission characteristic of optical demultiplexer/optical multiplexer
US7302191B2 (en) 2002-09-04 2007-11-27 Nec Corporation Optical transmitter with tap type optical filters
JP2013045079A (en) * 2011-08-26 2013-03-04 Nippon Telegr & Teleph Corp <Ntt> Light transmission characteristic compensation filter and optical transmission system
WO2016157800A1 (en) * 2015-03-27 2016-10-06 日本電気株式会社 Optical receiving apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900940B2 (en) 2002-01-09 2005-05-31 Fujitsu Limited Optical apparatus and device
US7302191B2 (en) 2002-09-04 2007-11-27 Nec Corporation Optical transmitter with tap type optical filters
WO2004095740A1 (en) * 2003-04-23 2004-11-04 Mitsubishi Denki Kabushiki Kaisha Optical receiver and optical transmission system
JPWO2004095740A1 (en) * 2003-04-23 2006-07-13 三菱電機株式会社 Optical receiver and optical transmission system
US7505695B2 (en) 2003-04-23 2009-03-17 Mitsubishi Denki Kabushiki Kaisha Optical receiver and optical transmission system
JP2006101040A (en) * 2004-09-28 2006-04-13 Fujitsu Ltd Apparatus and method for compensating transmission characteristic of optical demultiplexer/optical multiplexer
JP4580204B2 (en) * 2004-09-28 2010-11-10 富士通株式会社 Apparatus and method for compensating transmission characteristics of optical demultiplexer / optical multiplexer
JP2013045079A (en) * 2011-08-26 2013-03-04 Nippon Telegr & Teleph Corp <Ntt> Light transmission characteristic compensation filter and optical transmission system
WO2016157800A1 (en) * 2015-03-27 2016-10-06 日本電気株式会社 Optical receiving apparatus
US10158429B2 (en) 2015-03-27 2018-12-18 Nec Corporation Optical receiving apparatus

Also Published As

Publication number Publication date
JP3523988B2 (en) 2004-04-26

Similar Documents

Publication Publication Date Title
US7433600B2 (en) Optical node device and system including the device
JP4463808B2 (en) Low density wavelength division multiplexing optical transmission system and low density wavelength division multiplexing optical transmission method
US5410624A (en) Filter for a wavelength division multiplex system
KR100334432B1 (en) Bidirectional add/drop optical amplifier module using one arrayed-waveguide grating multiplexer
US7340174B2 (en) Programmable OADM with chromatic dispersion, dispersion slope and amplitude ripple compensation, and method
US6751414B1 (en) Circuit and channel assignment plan for optical transmissions
US6904240B1 (en) Optical multiplexing apparatus and optical multiplexing method
US20020067526A1 (en) Bi-directional optical add/drop multiplexer
JPH09247091A (en) Optical transmitter and optical transmission system
EP1248336A2 (en) Method and apparatus for wavelength conversion
US6516112B1 (en) Optical wavelength filter and demultiplexer
JPH06276154A (en) Optical gain equalizing circuit
JPH1172756A (en) Light signal waveform deterioration compensation apparatus
JP3199106B2 (en) Multi-wavelength light source and optical wavelength multiplex signal generation circuit using the same
EP1223442B1 (en) High performance optical add/drop multiplexer and optical wavelength multiplexing network
US7116907B1 (en) Acousto-optical tunable filters cascaded together
US6002504A (en) Device for the frequency transposition of optical signals
JP3071188B2 (en) Driving method of acousto-optic filter and acousto-optic filter device
JP3233269B2 (en) Four-wave mixing suppression method
JP2007028461A (en) Optical adm apparatus, system, and method
US7031613B1 (en) Chromatic dispersion compensation by sub-band
JPH08286218A (en) Wavelength multiplex light soliton repeating transmission device
US6768843B1 (en) Cascaded fourier filter interleaver having enhanced performance
Takachio et al. 12.5-GHz-spaced super-dense WDM ring network handling 256 wavelengths with tapped-type OADMs
EP1324105A2 (en) Control method and device for optical filter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees